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To gain insights into the mechanisms of cell fate decision in a noisy environment, the effects of intrinsic and
extrinsic noises on cell fate are explored at the single cell level. Specifically, we theoretically define the
impulse of Cln1/2 as an indication of cell fates. The strong dependence between the impulse of Cln1/2 and
cell fates is exhibited. Based on the simulation results, we illustrate that increasing intrinsic fluctuations
causes the parallel shift of the separation ratio of Whi5P but that increasing extrinsic fluctuations leads to
the mixture of different cell fates. Our quantitative study also suggests that the strengths of intrinsic and
extrinsic noises around an approximate linear model can ensure a high accuracy of cell fate selection.
Furthermore, this study demonstrates that the selection of cell fates is an entropy-decreasing process. In
addition, we reveal that cell fates are significantly correlated with the range of entropy decreases.

C
ells from across biological kingdoms are continuously engaged in the process of decision-making. A
growing number of cell types are being described as capable of decision-making under various circum-
stances. For example, unicellular organisms make vital decisions to enter various phases of the life cycle to

adapt to environmental changes. In multicellular organisms, precursor cells mature into specialized cell types
during development. Therefore, the selection of cell fate in response to both internal and external stimuli is
essential in a cell’s life1. As the simplest eukaryote, budding yeast is often used as a model organism to study the
molecular mechanisms underlying life processes.

Recently, a quantitative single-cell analysis of commitment dynamics during the mating-mitosis switch in
budding yeast has been provided2,3. The commitment points are frequently invoked in the explanation of
differentiation processes. For the mating-mitosis switch process, the purpose of mating is to fuse two haploid
cells, which must be restricted to the G1 phase prior to the initiation of DNA replication. The point where a cell
loses mating competence and commits to the cell-cycle is called the Start point (Fig. 1 A). Depending on the
progression level, the process can be divided into the following two stages: a pre-Start state and a post-Start state.
As shown in Fig. 1 B, the dynamics can be roughly visualized as a ‘‘quasi-potential landscape’’ in which each
potential well represents a state. In this pre-Start stage, the process is sometimes reversible to the post-Start state if
appropriately treated, thus implying instability of the pre-Start state3. However, the post-Start state generally
becomes irreversible if the system passes the critical Start point. As reported previously, the Start point is
accurately predicted by the nuclear Whi5 concentration independent of cell size, type and G1 duration2. Our
recent research has also confirmed that Start can be characterized by entropy4, as entropy defines the height in the
landscape of cell fate decision-making.

Stochastic fluctuations are ubiquitous in many real dynamical systems as follows: physical, chemical, and
biological systems. The information transduced in cellular signaling pathways is significantly limited by noise5–7.
Noise is increasingly appreciated as a force shaping biology. Therefore, the importance of precisely understanding
the mechanisms of cell fate decision in a noisy environment has already been recognized. Cells may exploit noise
in different beneficial ways. For instance, phenotypic variability may be triggered by noise because fluctuations
enable the exploration of the phase space through different types of dynamics8–11. This variability has been
observed in several natural systems such as the galactose utilization network in budding yeast12, the process of
DNA uptake from the environment in B. subtilis13,14, photoreceptor differentiation in the fruit fly retina15 and
stem cell differentiation16–18. By combining mathematical modeling and gene expression studies in zebrafish,
Zhang et al. demonstrated that noisy expression can actually facilitate boundary sharpening19. In addition,
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interactions among different types of noise have been studied the-
oretically20–22. For example, the advantage of noise in a regulatory
network in a noisy environment has been demonstrated by Chou et
al20,21. Interestingly, a general principle states that the capability of a
feedback system to attenuate the input noise is dependent on the
difference between the deactivation time and the activation time22.

However, due to complexity in highly interconnected biochemical
networks, many related questions need to be further explored. For
example, stochastic noise may interfere with the molecular regula-
tions that cooperatively allow a single cell to choose between two
different fates. However, the exact roles of stochastic noise on the cell
fate decision process are not well established. The molecular basis for
a yeast cell to use such a fundamentally stochastic process to generate
extremely reliable outcomes also remains unclear. Thus, it is crucial
to thoroughly characterize the features of stochastic cell fate decision.
Furthermore, the combined influences of intrinsic and extrinsic
noises on cell fate decision between cell-cycle commitment and mat-
ing arrest are poorly understood.

To select a mitotic fate, the upstream G1 cyclin (cell-cycle signal)
activates the cyclin-dependent kinase (CDK) to phosphorylate the
transcriptional inhibitor, Whi52,3. This initiates a positive feedback
loop centered on the downstream G1 cyclins, Cln1 and Cln2, which
drives entry into the cell-cycle23,24. Conversely, mating arrest is affec-
ted by Far1, most likely via stoichiometric inhibition of the G1 cyclin
CDK complexes2,3. Upon pheromone stimulation, Far1 is regulated
in a feedforward manner by the mitogen-activated protein kinase
(MAPK), Fus3, which interacts physically with the scaffold protein,
Ste524–27. In addition, the G1 cyclins inhibit the mating pathway by

promoting the phosphorylation and degradation of both Far1 and
the Ste5 scaffold2,25. Thus, in this study, we simplified the regulation
network of the cell-cycle and pheromone-induced MAPK pathway
as well as the mathematical model presented in the literatures2,4.
Only the proteins mentioned above, tightly related to the crosstalk
between the cell-cycle and MAPK pathway, were selected for our
core interacting network. The schematic diagram used to build the
mathematical model is shown in Fig. 1 C. We developed a simpli-
fied deterministic model (Ordinary-Differential-Equation (ODE)
model) and a corresponding stochastic model (Chemical-Langevin-
Equation (CLE) model28) responsible for selecting cell fates between
cell-cycle commitment and mating arrest. Based on these two
classes of models and quantitative measures of cell fate selections,
we investigated the effects of both external and internal noises on
the accuracy of cell fate decisions. These findings will provide new
insights into the mechanisms of cell fate decision in a noisy
environment.

Results
The consistency between the simulation results of the mathema-
tical models and the experimental observations under wild type
conditions. To validate our simplified ODE model, the signaling
dynamics of the system, including the cell-cycle and the
pheromone-induced MAPK pathways, were simulated. The initial
values listed in Table 1 were suitable for the cells that had already
finished at least one cell-cycle, and the cells were all at the beginning
of G1 phase. Some biomarkers were chosen to indicate different cell
fates as follows: cell-cycle commitment was represented by high

Figure 1 | Background of cell fate selection in budding yeast. (A) Schematic of the cell-cycle. (B) Cell fate decision and potential landscape. The pre-Start

state is situated immediately before the tipping point Start. At this stage, the system is sensitive to external stimuli. The post-Start state is the other stable

state or a minimum of the potential function where the system is usually irreversible to the pre-Start state. (C) Schematic of the core interacting network

between the G1 cell-cycle and the pheromone-induced MAPK pathway. All components and reactions considered in our mathematical model are

included. All arrows for individual reactions are marked with the corresponding number of this reaction in the model.
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levels of Cln1/2 and Whi5P, and mating arrest was predicted by high
levels of Ste5mem and Far1. The detailed comparisons between the
original model and the simplified model are shown in Supplemen-
tary text. The numerical results for the simplified ODE model are
presented in Supplementary Fig. S1. Given the small size of a yeast
cell (,30 fL) and the low concentration of regulatory proteins

(,50 nM), the total number of molecules of each regulatory
protein in a cell is limited (,1,000), and the intrinsic molecular
fluctuations are not only inevitable but also large enough29. The
system volume V was set to be 1000. Thus, the intrinsic molecular
fluctuation was assigned to a Gaussian distribution with a mean of 0

and a standard deviation of 1
. ffiffiffiffi

V
p

< 0.036. Fig. 2 A shows the

simulation result of the CLE model compared to the experimental
data. Fig. 2 B and C illustrate that the cell would commit without
pheromone (Fig. 2 B) and arrest with the addition of pheromone
(Fig. 2 C). The relationship between the activation of Whi5P (i.e., the
mean proportion of Whi5 exported from the nucleus from 29.8 to
30 min) and the addition time of pheromone is shown in Fig. 2 D.
According to our theoretical calculations, the critical ratio of Whi5P
for WT simulated by our CLE model was approximately 50.43%.
This result was close to the reported experimental results indicat-
ing that cell fate is determined when approximately half of the Whi5-
GFP (52% 6 3%) has been exported2.

Cell-cycle reentry as simulated by our models. A recent experiment
confirmed that for cell-cycle reentry from mating arrest, 64% 6 4%
of nuclear Whi5 is required to be removed compared with 52% 6 3%
for a cycling cell to progress through Start3. Here, we used a Cln1/2
signal pulse (sp) (Fig. 3 A) to simulate the exogenous Cln2 pulse used
in biological experiments. In addition, the degradation rate of Far1act

was set to 0 between 30 min and the end time of the exogenous Cln2
pulse to maintain a high Far1 expression level for the mating cells.

Table 1 | Parameters and initial concentrations of all components
in the simplified mathematical model

Parameters Value Parameters Value

k1 0.6500 k9 10.0000
k2 8.0000 k10 0.1200
k3 0.1000 k11 2.6750
k4 0.0310 k12 1.0000
k5 0.2600 k13 0.1400
k6 0.5800 k14 0.1530
k7 0.6200 d1 0.3000
k8 0.3150 d2 0.0250
Signals Value Signals Value
a(t) 2.400(for t $ t-added)

or 0 (otherwise)
a1 0.2500

Components Concentrations
(in the model)

Components Concentrations
(in the model)

Ste5 1.0000 Whi5 1.0000
Far1inact 1.0000

The concentrations of other components that are not listed in the Table are 0.

Figure 2 | Simulation results of the CLE model. (A) Time course of Whi5P in our CLE model. The experimental data are marked with a star. (B) The time

course of a WT yeast cell when no pheromone is added. (C) The time course of a WT yeast cell when pheromone is added at 0 min. (D) Relationship

between the addition time of pheromone and the activation of Whi5P. Here we set R 5 0, indicating that the intrinsic fluctuations in all the reaction

channels are independent of each other.

www.nature.com/scientificreports
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Similar to Doncic’s experimental design3, we varied the durations
between 3 and 30 min to express variable amounts of exogenous
Cln2 in our mathematical model. The simulation results are
presented in Fig. 3 B–D. The pre-Start state cells can clearly
commit reversibly to the post-Start state if appropriately treated.
The relationship between the duration time of the Cln1/2 signal
pulse and the maximum Whi5P value approximately 10 min after
the end of the pulse (corresponding approximately to the time
(5 min) it takes to inactivate the MET3 promoter30) is shown in
Supplementary Fig. S2. The critical point that had the largest
derivative in the dose-response curve had a critical Whi5P amount
of 65.42%. This result agreed with the experimental result of 64% 6

4%.

Cell fates can be distinguished by the impulse of Cln1/2. Based on
the experimental data, the histogram of WT yeast cells is shown in
Supplementary Fig. S3. The histogram (the number of cells vs. the
fraction of exported Whi5) indicates the number distribution of cells
selecting different fates. The bin size of our histogram was set to 0.1.
As mentioned in Ref. (2), the nuclear Whi5-GFP concentration was
sufficient to predict cell fate in approximately 97% of WT G1 cells.
Supplementary Fig. S3 shows that the number of cells possessing an
arrest fate slightly increased as the fraction decreased from
approximately 0.6 to 0.1 and that the number of cells committing
increased as the fraction increased from approximately 0.6 to 1. It
should be noted that this property was not captured by most of our
numerical simulations. In the experiment, the cell fates of
approximately 280 cells were observed, and the theoretical analysis
was performed using the data of these 280 cells. Due to the lack of
more experimental details, the concentrations of each protein in
different cells were unclear. In addition, the study was focused on
the coordination of intrinsic and extrinsic noises in cell fate

decisions, and the initial concentration distribution would not
change the roles that the noises play. Therefore, in our theoretical
model, we considered the initial concentration of Whi5P from the
different cells as a uniform distribution without loss of generality.
However, this interesting property can also be reproduced by our
simulation result if the initial concentrations of Whi5P for different
cells are sampled from the probability distribution of concentrations
in Fig. S3. The simulation result is shown in Supplementary Fig. S4.

The histograms of the simulation results of the ODE model (Fig. 4
A and B) and CLE model (Fig. 4 C and D) are shown. Each cell is
denoted by different random initial values in the pheromone envir-
onment. We utilized two numerical indexes to distinguish different
cell fates in budding yeast. (i) In Fig. 4 A and C, we used the fraction of
Whi5P after the G1 duration, i.e., the average fraction of Whi5P at
29.8–30 min, to identify different cell fates. If the amount of Whi5P
from our model was larger than the critical amount of Whi5P at
Start, the cell would commit; otherwise, the cell would arrest. (ii)
In Fig. 4 B and D, the other numerical index was the impulse of Cln1/
2 (See Methods) where the cell would commit if the impulse was
larger than the critical impulse otherwise, the cell would arrest. The
comparison between Fig. 4 A and Fig. 4 C (or Fig. 4 B and Fig. 4 D)
revealed that the Whi5P index was inadequate to the intrinsic noise
but that the impulse index benefitted from the fluctuations. Hence,
under the perturbation of noise, the impulse of Cln1/2 can provide a
reliable discrimination for cell fates due to the time integral of Cln1/2.
In addition, the impulse of Cln1/2 enabled a more effective separa-
tion, with an accuracy of 99.17% (Fig. 4 D) compared with the frac-
tion of Whi5P after the G1 duration. The accuracy of 99.17% was
slightly better than the value of approximately 97% derived from the
experimental data in Ref. (2). The histogram in Fig. 4 D conformed to
the experiment results shown in Supplementary Fig. S3. The clas-
sification result validated our assumption that cell fates can be dis-
tinguished by the impulse of Cln1/2. This phenomenon suggests that
the continuous operations of G1 cyclins, but not the instantaneous
concentrations, determine the cell fates of yeast and clearly indicates
that the impulse helps to decrease the uncertainty of cell fate at a
molecular level. Therefore, the critical impulse of Cln1/2 was selected
as the discrimination factor between mating and cell-cycle in the
following sections. The results of R 5 0.25 and R 5 0.75 are shown
in Supplementary Figs. S5 and S6. The result of R 5 0.25 was similar
to the uncorrelated result, but the higher correlation coefficient
caused a competitive cell-cycle process. These results implied that
the yeast cells adapted to the lower correlation between internal
noises, which corroborated the logic of intrinsic noise generally being
specific to any one gene. Therefore, the correlation coefficient of
intrinsic noise R was set to 0 in the following sections.

Large extrinsic noises and uncorrelated extrinsic noises disturb
the separation of cell fates. Extrinsic noise is common to genes of
any one cell due to differences between cells, such as temperature and
energy state31. When extrinsic noise is added, each parameter in the
model is sampled from a Gaussian distribution with a mean equal to
the listed value and a standard deviation equal to s. The following
three types of extrinsic noise were considered: (1) the extrinsic signal
noise of the mating pathway, i.e., the extrinsic noise of pheromone
introduced in the parameter of a(t) where the noise intensity of the
signal in the mating pathway is denoted as smating; (2) the extrinsic
signal noise of the cell-cycle pathway considered in the parameter of
a1, where the corresponding noise intensity is denoted with scycle;
and (3) the extrinsic noise of other biochemical reaction rates, where
the noise intensity is marked withsbrc). And we would use ‘s’ to label
the standard deviation of all types of extrinsic noise without causing
ambiguity. We also considered the correlation between each extrinsic
fluctuation. Here two cases were adopted to simplify the situation:
correlation coefficient Rex is equal to 1 or 0. In Fig. 5, the correlation
coefficient Rex was set to 1, and the noise intensity s was set to 1 (the

Figure 3 | Simulations of reentry and reversibility in cell fate selection.
(A) Time course of Cln1/2 signal pulse (sp). (B) The time course of a WT

yeast cell when pheromone is added at 0 min in the ODE model. The

duration is 3 min, and the cell fate remains in the mating program. (C) The

time course of a WT yeast cell when pheromone is added at 0 min in the

ODE model. The duration is 30 min, and the cell reenters the cell-cycle

from the mating program. (D) The time course of a WT yeast cell when

pheromone is added at 0 min in the CLE model. The duration is 3 min,

and the cell remains in the mating program. (E) The time course of a WT

yeast cell when pheromone is added at 0 min in the CLE model. The

duration is 30 min, and the cell reenters the cell-cycle from the mating

program.
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results of extrinsic the noise intensity of 0.1, 0.2 and 0.5 with Rex 5 1
are shown in Supplementary Figs. S7–S9, respectively). When
comparing Fig. 5 A, to Fig. 4 B, we found that the large extrinsic
noise of the parameters would promote the competitiveness of
mating pathway but fail in the separation of cell fates. If the large
extrinsic signal noise of mating pathway was also taken into
consideration, we found that the extrinsic noise of pheromone
would promote the competitiveness of the mating program and
disturb the separation of cell fates (Fig. 5 B). Fig. 5 C indicates that
the large extrinsic noise of the cell-cycle pathway would enhance the
competitiveness of the cell-cycle pathway but would not help the
separation of cell fates. The result of all the extrinsic noises are
shown in Fig. 5 D, it suggested that the large extrinsic signal noise
of the cell-cycle pathway is more aggressive compared to the signal
noise of the mating pathway with the same standard deviation.

The results of the correlation coefficient Rex 5 0 and extrinsic
noise intensity s 5 1 are illustrated in Supplementary Fig. S10
(the results of extrinsic noise intensity of 0.1, 0.2 and 0.5 with Rex

5 0 are shown in Supplementary Figs. S11–S13). Supplementary Fig.
S10 to Supplementary Fig. S13 suggested that uncorrelated extrinsic
noises cause more misclassification and more cross-borders in dif-
ferent cell fates. These results suggested that cells can adapt to highly
correlate extrinsic noises, and these results corroborated our general

viewpoint that the origin of extrinsic noises, such as temperature, has
a similar influence on each reaction channel. Therefore, the uncor-
related extrinsic noises will disrupt the cell fate decision due to the
lack of adaptation to these noises. The correlation coefficient Rex was
set to 1 in the following sections.

We then considered that the extrinsic signal noises in the cell-cycle
and mating pathways have different strengths compared with noise
in other biochemical reaction parameters. The results of the signal
noise with intensities of 0.1 and 1 in addition to the noise in each
reaction parameter with an intensity of 0.5 are shown in
Supplementary Figs. S14 and S15. Figs. S9, S14 and S15 show that
more cells became committed with greater strengths of extrinsic
signal noise in the mating pathway and that the extrinsic signal noises
played a more important role than the extrinsic noise of the reaction
parameters. This property indicated that the extrinsic signal noises
would greatly confuse the fate selection, and this confusion may
result in the trigger role that the signals play.

In addition, we explored the role of the extrinsic signal noise without
the extrinsic and intrinsic noises of the reaction parameters (detailed in
Supplementary Figs. S16 and S17). Compared with each of the noises
alone, we concluded that a small fluctuation in pheromone together
with a relatively large fluctuation in the cell-cycle signal give rise to a
higher performance in promoting the accuracy of fate selection.

Figure 4 | Simulation histograms based on cell fate determined by the fraction of exported Whi5 at the time of pheromone addition. N indicates the

number of cells. (A) The cell fate is distinguished by Whi5P after G1 duration in the ODE model. (B) The cell fate is distinguished by the impulse of Cln1/2

in the ODE model. (C) The cell fate is distinguished by Whi5P after the G1 duration in the CLE model. (D) The cell fate is distinguished by the impulse of

Cln1/2 in the CLE model showing a perfect threshold system. We set R 5 0 for (C) and (D).

www.nature.com/scientificreports
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Intrinsic noise and extrinsic noise play different roles in cell-fate
selection. In this experiment, the intrinsic and extrinsic noises in
yeast cell populations were integrated. At first, the system volume
was set to 1000, and the effects of extrinsic signal noise were then
examined. The results of the cell-cycle signal noise and the mating
signal noise are shown in Supplementary Figs. S18 and S19. In
contrast to the results shown in Fig. 4 D, the cell-fate selection
depends almost entirely on intrinsic noise for a small extrinsic
noise with a standard deviation of 0.1 and 0.2 (Supplementary Fig.
S18 A and B; Supplementary Fig. S19 A and B). Supplementary Fig.
S18 C and D as well as Supplementary Fig. S19 C and D illustrate that
the selection of cell-fate was influenced by strong extrinsic noise.
Furthermore, strong extrinsic noise in the mating signal caused a
large decrease in the accuracy of fate decision (Supplementary Fig.
S19 D). Previous studies have suggested that noise is dominated by
intrinsic fluctuations at low expression levels. Thus, based on this
conclusion, the results shown in Supplementary Figs. S18 and S19
confirmed that the extrinsic noise values were close to a well-
delineated CVext less than 0.5, which was in agreement with
previous studies31–34. In addition, the effects of intrinsic noise were
studied for different system sizes (V 5 10000, V 5 1000, V 5 100,

and V 5 10) with a fixed standard deviation of extrinsic noise. The
corresponding histogram results with the fixed standard deviations
of 0.1 and 1 for the extrinsic noise are plotted in Fig. 6 and
Supplementary Fig. S20, respectively. Based on the observations
above, increasing intrinsic fluctuations resulted in a parallel shift in
the separation ratio of Whi5P, and the increasing extrinsic
fluctuations led to the mixture of different cell fates. This result
was consistent with the logic of extrinsic fluctuations being an
unwelcome influencing factor while cells adopt the intrinsic
fluctuations to decease the confusion in cell fates.

Extrinsic noise in Cln1/2-mediated phosphorylation of Whi5
plays an important role in the separation of cell fates. In this
section, we focused our attention on the function of a single
extrinsic or intrinsic noise. As mentioned above, extrinsic and
intrinsic noises play different roles in the selection of cell fate, but
it remains unknown which one (or ones) acts as the most important
factor. As shown in Fig. 7, the extrinsic noise in k12 with both small
and slightly large standard deviations benefitted the mating process
(Fig. 7 A and B), but the noise with a larger standard deviation led to
an orderless separation of cell fate (Fig. 7 C and D). However,

Figure 5 | Simulation histograms based on cell fate as determined by the fraction of exported Whi5 at the time of pheromone addition. The cell fate is

distinguished by the impulse of Cln1/2. (A) The result of the ODE model with extrinsic noise in the biochemical reaction parameters (sbrc 5 1).

(B) The result of the ODE model with extrinsic noise in the biochemical reaction parameters and the mating pathway signal (sbrc 5 1 and smating 5 1).

(C) The result of the ODE model with extrinsic noise in the biochemical reaction parameters and signal of the cell-cycle pathway (sbrc 5 1 andscycle 5 1).

(D) The result of the ODE model with extrinsic noise in the biochemical reaction parameters, the signal of the mating pathway and the signal of the cell-

cycle pathway (sbrc 5 1, smating 5 1 and scycle 5 1). Rex 5 1 indicates that the correlation coefficient of the considered types of extrinsic noise equals 1.

www.nature.com/scientificreports
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extrinsic noises of other parameters (taking k10 as an example) will
play a similar role even though the standard deviation was quite large
as shown in Supplementary Fig. S21. Hence, our simulation results
illustrated that only the extrinsic noise from k12 (a Michaelis
constant) induced the mixture of different cell fates indicating that
the extrinsic noise from the reaction of Cln1/2-mediated
phosphorylation of Whi5 plays an important role in the separation
of cell fates. This result suggested that a potential mechanism in
decreasing the extrinsic noise of k12 is essential for budding yeast.
In fact, this corresponding reaction of k12 (i.e., Cln1/2-mediated
phosphorylation of Whi5) only occurs in the nucleus to reduce the
extrinsic noise. The roles of single intrinsic noises in each reaction
channel are presented in Supplementary Fig.S22. By numerical
analysis, we classified all the reaction channels into two categories
as follows: supporter of the mating pathway (resulting in more
mating cells than Fig. 4 B) or cell-cycle program (resulting in more
committed cells than Fig. 4 B). Interestingly, interaction between
Cln1/2 and Far1act acted as the most important balance in the cell
fate decision. It is clear that the intrinsic noise in the inhibition of
Cln1/2 on Far1act belonged to the first three supporters of the mating
program, and the inhibition of Far1act on Cln1/2 was the unique
supporter of the cell-cycle program. It is well known that the
interaction between Cln1/2 and Far1act is a crucial crosstalk
between the cell-cycle and MAPK pathway. Our findings further

verified that the noise from the crosstalk also contributes to the
fate decision.

The linear interplay of intrinsic and extrinsic noises ensures a high
accuracy of cell fate selection in budding yeast. Furthermore, to
quantitatively clarify the relationship between extrinsic and intrinsic
noises, we proposed a formula to quantify the accuracy of cell fate
selection (See Methods) and calculated Acc under different noises.
The numerical results are shown in Fig. 8. Fig. 8 A shows that for
small intrinsic noise, the accuracy of cell fate selections increased at
first and then decreased with the increase of standard deviation of
extrinsic noise. The result remained unchanged for small extrinsic
noise when increasing the standard deviation of intrinsic noise. We
also identified the point(s) with a maximum accuracy larger than
95% for each fixed intrinsic noise. The first three largest extrinsic
noise strengths among these points for each fixed intrinsic noise were
taken into consideration (only the largest one will be adopted if the
total number of points is less than three). The average values of these
three extrinsic noise strengths are marked with stars for each row in
Fig. 8 A. Based on our analysis, these points were found to be
approximated by the following straight line: y1 5 21.2391 2

0.1235x. The linear regression showed that it had the property of
0.8076 in the Pearson correlation coefficient suggesting that a proper
strength of extrinsic and intrinsic noise near the straight line y1 helps

Figure 6 | Simulation histograms based on cell fate as determined by the fraction of exported Whi5 at the time of pheromone addition. The cell fate is

distinguished by the impulse of Cln1/2, and extrinsic noise has a standard deviation s 5 0.1. The intrinsic noise has a standard deviation (A) 1
. ffiffiffiffi

V
p

<
0.01 (V 5 10000). (B) 1

. ffiffiffiffi
V
p

< 0.0316 (V 5 1000). (C) 1
. ffiffiffiffi

V
p

< 0.1 (V 5 100). (D) 1
. ffiffiffiffi

V
p

< 0.3162 (V 5 10).
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Figure 7 | Simulation histograms based on cell fate as determined by the fraction of exported Whi5 at the time of pheromone addition. The cell fate is

distinguished by the impulse of Cln1/2, and only extrinsic noise in k12 is taken into consideration. (A) s 5 0.05. (B) s 5 0.1.(C) s 5 0.5. (D) s 5 1.

Figure 8 | Selection accuracy in noisy environment. (A) The accuracy as functions of the strength of extrinsic noise s and intrinsic noise 1
. ffiffiffiffi

V
p

. The

average values of the three largest extrinsic noise strengths are marked with stars. The straight line y1 is obtained using linear regression. (B) The contour

lines of the accuracy function shown in (A). The points with stars represent the near edge points in each contour line, and these data points are fitted well

by a straight line y2.
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to ensure a high accuracy in budding yeast cells. The contour lines of
Fig. 8 A are shown in Fig. 8 B. The contour lines had the approximate
right angle form. The stars in Fig. 8 B indicated the near edge points
in each contour line, and these points can also be approximated by
the following straight line: y2 5 0.7288 1 1.0769x. Therefore, the
accuracy more likely depended on the intrinsic noise for the tuple
(log10(1=

ffiffiffiffi
V
p

),log10(s)) under the line y2, and the accuracy was
mainly determined by the extrinsic noise for the upper tuple
(log10(1=

ffiffiffiffi
V
p

),log10(s)). In addition, the cross point of these two
straight lines was (21.6394,21.0366), which was close to the
default noise strength of (log10(1=

ffiffiffiffiffiffiffiffiffiffi
1000
p

),log10(0:1))~({1:5,{1)
obtained through the experiments. These results indicated that the
noise strengths in wild type yeast cells contribute to ensure a high
accuracy in fate selection as an inevitable consequence of intelligent
evolution.

Fluctuation range in entropy shows strong correlation with the
cell fates. Network entropy exhibits dynamic changes in time course
differentiation data, and it is in line with the cell fate stage35. We
recorded the entropy of a yeast cell Y between 0 and 30 min every
0.01 min, and the entropy was represented by EY. The data were
collected through the CLE model, and we set s 5 0.1 and V 5

1000. For a yeast cell Y, we further computed the ratio of an
entropy-decreasing time point, i.e., the time point where entropy is
larger than the entropy of its following neighbor. The result is shown
in Fig. 9, and it suggested that approximately 92.14% of the cells had
more than 1500 entropy-decreasing time points. These results
suggested that the cell fate selection program may be an entropy-
decreasing process. Thus, we investigated if there were any
differences in the fluctuation range between different cell fates. The
fluctuation range for a yeast cell Y was defined as follows:

FY~
max (EY)- min EYð Þ

E0
, where E0 is the entropy of cell Y at

0 min. As observed in Fig. 9 B, the fluctuation range showed
strong correlation with the cell fates (R 5 0.8522 and p-value ,

10270). This result illustrated that the entropy of these cells

selecting the mating fate was decreased significantly due to the
input of pheromone information. However, these cells selecting
cell-cycle fate shutdown the input of the mating signal and
underwent a small fluctuation in entropy. This result was
consistent with the theory of information entropy and negative
entropy principle. In another way, the result suggests that the cell
fate is determined by the impulse of Cln1/2 is somehow reasonable.

The correlations between entropy-decrease and cell fate for the
CLE model with other tuples (log10(1=

ffiffiffiffi
V
p

),log10(s)) characterized
by the two linear relationships in Fig. 8 are shown in Supplementary
Fig. S23. These results also suggested a great dependence between cell
fate and the decrease of entropy, thereby indicating that a decrease in
entropy can serve as a common rule for the selection of cell fate in
budding yeast. In addition, the dependence of the average fluctuation
in entropy for right predicted cells and the noise characterizing
model was calculated and shown in Fig. 10. Fig. 10 shows that the
accuracy decreased with an increase of log10(1=

ffiffiffiffi
V
p

) according to the

linear model y2. The high accuracy tuples (log10(1=
ffiffiffiffi
V
p

),log10(s))
characterized by model y1, model y2 as well as the combinatorial
model of y1 and y2 (i.e., in the left plane) shared a sharp boundary
in entropy fluctuation for different cell fates (the left plane) while low
accuracy tuples suffered an unsharp boundary (the right plane).
Thus, we conclude that cells in the high accuracy plane have smaller
fluctuations and consistent differences in entropy decrease while the
cells with low accuracy in the right plane have larger fluctuations and
confused differences in entropy decrease, thereby suggesting that
high accuracy results from both the sensitive decrease in entropy
and the sharp boundary in entropy fluctuation.

Sensitivity analysis of the model parameters. In this section, the
CLE model with s 5 0.1 and V 5 1000 was used to perform the
calculations. We perturbed each parameter with 10–30% variations.
The results of the sensitivity analysis are presented in Table 2. The
sensitivity analysis implied that a1 (the signal of the cell-cycle), k14

(Whi5–ICln1/2) and k11 (Whi5 1 Cln1/2 R Whi5P) had relatively
significant effects on Whi5P expression. The other parameters had a

Figure 9 | Cell fate and entropy. (A) The fraction of entropy-decreasing cells for mating and cell-cycle fates. (B) The fraction of cells with an entropy

fluctuation over or below 15% for mating and cell-cycle fates.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5764 | DOI: 10.1038/srep05764 9



slight effect or almost no effect on Whi5P expression. These results
demonstrated that the Start point was mainly dominated by the
biochemical processes of Whi5. In addition, our model showed
good dynamical robustness. Furthermore, we perturbed all of the
parameters for 10%, 20% and 30%, and the simulated results
indicated that the number of cells predicted to commit varied
slightly with values of 12.24%, 12.59% and 7.14%, respectively.

Discussion
Despite considerable advances in the research of underlying mechan-
isms in cell fate decision, it has been largely unclear how individual
cells make critical cell fate decisions in the presence of stochastic
fluctuations in intracellular biochemical reactions and extracellular
environments. The relative importance of intrinsic and extrinsic
noises in cell fate decision also remains uncertain. We attempted
to answer these questions with a simple theoretical model of the cell
fate decision network responsible for cell-cycle commitment and
mating arrest in budding yeast. Using ODE and CLE models, the
combined effects of extrinsic and intrinsic noise on cell fate selection
were clarified at a single cell level. As a driving factor of the Start
point, the impulse of Cln1/2, which can effectively discriminate
between different cell fates, was used to identify cell fates. In this
study, we found that the uncorrelated extrinsic noises caused mis-
classification and cross-borders in different cell fates. Increasing
intrinsic fluctuations gave rise to a parallel shift in the separation
ratio of Whi5P, and increasing extrinsic fluctuations resulted in a
mixture of different cell fates. Our investigation of the function of

single extrinsic noise or intrinsic noise suggested that an effective
method to decrease the extrinsic noise in the Michaelis constant of
Cln1/2-mediated phosphorylation of Whi5 is required for budding
yeast. Furthermore, our study indicated that the linear interplay of
intrinsic and extrinsic noises contributes to a high accuracy of cell
fate selection. It should be pointed out that the biochemical reaction
network is highly nonlinear. Our key findings, i.e., that the approx-
imate linear coordination between extrinsic and intrinsic noise may
help cells transit more accurately from one fate to the other fate, were
still a result of the nonlinear nature of biological processes. In addi-
tion, our study also suggested that the selection of cell fates is an
entropy-decreasing process. We found that a large range of entropy-
decreasing correlated with mating arrest and that a small range of
entropy-decreasing was related to the fate of cell-cycle commitment.

The effects of noise on cell fate decision were quantitatively cla-
rified by our theoretical model. Conventional scientific thinking has
been that the random nature of such fluctuations within cells inter-
feres with the reliable operation of biological systems. Our findings
showed that the cells could still select the different cell fates due to the
stochastic noise even if the cells had the same initial conditions. The
coordination between extrinsic and intrinsic noise was beneficial by
helping cells transform more accurately from one fate to another.
Therefore, our work provides a new paradigm suggesting that cel-
lular noise might have a constructive function in cell fate decision. In
addition, by controlling the noise level within the yeast cells, we could
prevent or prompt yeast cells to transition into a specific fate type by
essentially tuning cellular behavior.

Figure 10 | The dependence of entropy decreasing and accuracy. Here, C-correct indicates cells with more than 50% of the Whi5 removed from the

nucleus, which are predicted to commit, and M-correct indicates cells with more than 50% of the Whi5 still in the nucleus, which are predicted to arrest.

Table 2 | Sensitivity analysis of parameters in the CLE model

Parameter (Pi) Reaction DPi 5 10% DPi 5 20% DPi 5 30% Average

a1 The signal of Cell- Cycle 0.8231 0.8396 0.8790 0.8472
k14 Whi5 | Cln1/2 0.4450 0.4476 0.4512 0.4479
k11 Whi5 1 Cln1/2 R Whi5P 0.2429 0.2440 0.2456 0.2442
k13 Whi5P R Whi5 0.0827 0.0827 0.0827 0.0827
k10 The degradation rate of Cln1/2 0.0746 0.0747 0.0747 0.0747
k8 Self-promoting rate of Cln1/2 0.0100 0.0100 0.0100 0.0100
others ,0.01
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The budding yeast is a relatively well-studied example of a network
with noisy environments. The cell-to-cell variability of the cell-fate
decision system and the mating pheromone response pathway in
yeast have been studied experimentally36. The quantitative output
of the cell-fate decision system in response to the defined perturba-
tions has been estimated. The mechanism that allows cells to respond
more precisely to pheromones in the presence of a large variation has
been provided. Furthermore, a combination of genetic elements,
including pathway regulators, RNA-based transducers, constitutive
promoters and pathway-responsive promoters, has been used to
build modular network diverters37. Cell fate has been engineered
through synthetic gene circuits, and cell fate determination has been
measured through halo assays. Motivated by these experiments, it is
expected that our theoretical results could be tested by natural and
synthetic genetic circuits in individual cells in the future.

Our research presents a theoretical framework for cell fate
decision in budding yeast and provides a clear investigation of the
interaction between intrinsic and extrinsic noises. Understanding the
mechanisms that increase the accuracy in cell-fate decision system
might enable new therapeutic interventions. However, some pro-
blems should be discussed. First, the dynamics of a biological system
can be modeled more accurately using a Markov jump process38–40.
Exploring the Markov jump process of this decision-making system
using the Gillespie algorithm41–45 may provide a molecular realiza-
tion that is much closer to reality. Second, cellular transformations
that involve a significant phenotypical change of the cell’s state often
use bistable biochemical switches as underlying decision sys-
tems10,44,45. Hence, the bistability and irreversibility of our simple
model should be clarified. Third, the relationship between the accu-
racy of the cell fate and entropy-decreasing process is not studied.
Our next task will be to analyze the change of entropy in the high
accuracy region. Fourth, the regulatory mechanism to yield high
accuracy of cell fate decision in large populations of cells is still poorly
understood despite the underlying stochasticity36,46,47. The potential
roles of positive feedback, feedforward, slow transcription and rapid
phosphorylation in the reliable fate decision needs to be further
analyzed3,48.

Methods
Mathematical models. To clarify the mechanism for selecting cell fates between cell-
cycle commitment and mating arrest in a noisy environment, we presented two
classes of mathematical models. First, based on mass action law and Michaelis–
Menten kinetics, the dynamics of the regulation network of cell-cycle and
pheromone-induced MAPK pathway presented in Fig. 1 C were characterized by a
deterministic model, i.e., the ODE model. For simplification, the activities for total
Ste5 and total Whi5 were assumed to be one unit. The parameters are listed in Table 1.
We estimated these parameter values to reproduce the biological observations in
budding yeast and the critical transition value for Start in the previous experiment
simultaneously. To consider the effects of intrinsic noise, the corresponding CLE
model based on the above ODE model was as follows:
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where fi(t) is Gaussian white noise, for i 5 1, 2, 3,…,17, ,fi(t). 5 0, and for each i, j
5 1, 2, 3,…,17,

fi(t)fj(t’)
� �

~
Rd(t{t’), for i=j

d(t{t’), for i~j

�
: ð8Þ

here R is a constant number and V denotes the total number of molecules of each
regulatory protein. Furthermore, when extrinsic noise was considered, each
parameter pi in the model was sampled from a Gaussian distribution with a mean
equal to the listed value and a standard deviation equal to s, i.e., pi(1 1 sei(t)), here
ei(t) is Gaussian white noise, ,ei(t). 5 0, and for each i, j,

ei(t)ej(t’)
� �

~
Rexd(t{t’), for i=j

d(t{t’), for i~j

�
ð9Þ

where Rex 5 1 indicates that the extrinsic noises we considered were correlated with
each other; and Rex 5 0 indicates that all these noises were independent.

The CLE model was solved with the Euler–Maruyama method49, and the temporal
step size was set to 0.01 min. We simulated different yeast cells by stochastic initial
values. Each cell had a set of random initial values. We obtained the initial concen-
tration of Whi5P randomly at first, and the initial concentrations of the remained
components are given according to the interactions in the simplified model. A.
Doncic et al. compared the amount of Whi5-GFP exported to the largest value of
nuclear Whi5-GFP within 30 min prior to pheromone exposure for each G1 cell. We
recorded the amount of Whi5 exported, i.e., the stochastic initial value of Whi5P.
Thus, we simulated the histograms based on cell fate through a theoretically defined
cell fate.

Determination of the Start point. In yeast, the G1 checkpoint Start determines
whether a cell enters the mitotic cycle or engages the mating program but never both
because the aims of the two programs are diametrically opposed as follows: mating
produces one cell from two; and mitosis produces two cells from one. Doncic et al.
identified the main probe for the status of the Start trigger as the amount of Whi5
protein exported from the nucleus2. Our previous study showed the relationship
between the activation of Whi5P (i.e., the proportion of Whi5 exported from the
nucleus at 30 min calculated by our full ODE model) and the addition time of
pheromone, and a critical point that had the largest derivative in the dose-response
curve was defined to be the Start point. The Start point defined above was proven to be
reasonable.

Impulse of cell fate. Because the cell fate can only be determined experimentally, the
driving factor of Start must be defined if we want to trace back to the underlying
mechanism. It is known that the G1 cyclins collaborate to drive yeast cells through the
G1-S transition. According to classical mechanics, the impulse is the multiplication of
the applied force and time interval equal to the change in momentum. Hence, the
impulse will cause a change in mechanical motion of the particle. The impulse of
Cln1/2, which was defined as the accumulation of Cln1/2 with time, was presented as
follows:
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I(t added)~

ð30

0
Cln1=2t added(t)dt ð10Þ

The relationship between the Cln1/2 impulse and the addition time of pheromone
was provided. The impulse of the point that had the largest derivative in addition time
v.s. the proportion of exported Whi5 curve is further defined to be the critical impulse
of cell fate. When a cell treated with the a-factor at 0 min was taken into consideration
in our ODE or CLE model, the impulse of this cell was determined. We verified the
assumption that the cell would commit if its impulse was larger than the critical
impulse or otherwise arrest.

Entropy defined in our network. To further quantify the dynamics of the network,
we provided a definition of the entropy E in this biochemical reaction network by
extending the concept of entropy in statistical mechanics as follows:

E~{
Xn

i~1

P(i) log (P(i)) ð11Þ

where P(i)~x(i)=(
Xn

j~1

x(j)) is the distribution function of the proteins’

concentration; x(i) denotes the concentration of the ith component, and n is the
number of all components considered in the model (Here n 5 7). From the viewpoint
of evolutionary biology, the change of the entropy implies the evolution of the
structure and function of a molecular network due to its adaptation ability.

Quantification of cell fate’s accuracy. We observed that if the mating pheromone
was applied to a cell when more than 50% of Whi5 was still in the nucleus, the cell
almost always directly arrested, which is called pre-Start. If the mating pheromone
was applied when more than 50% of nuclear Whi5 was removed, the cell almost
always underwent one more mitotic cycle before arresting, which is called post-Start.
Thus, the accuracy Acc can be defined as follows:

Acc~
NM{correctzNC{correct

Total
ð12Þ

where NM-correct denotes the number of cells with more than 50% of the Whi5 still in
the nucleus, which are predicted to arrest by our critical index; and NC-correct denotes
the number of cells with more than 50% of the Whi5 removed from the nucleus,
which are predicted to commit. The total number of cells in our model was set to 280,
which was consistent with the average number of cells used by Doncic et al2.

Measure of sensitivity and robustness. Due to the lack of experimental data to
determine all of the parameters, it was necessary to analyze the sensitivity of the
system to changes of the parameters. Similar to the literature (4), each parameter was
perturbed with 10–30% variations. The sensitivity function sj(t) of parameter Pj at
time t was defined as follows:

sj~
LO(t)
O(t)

=
LPj(t)

Pj(t)
<

O(PjzDPj ,t){O(Pj{DPj ,t)j j
O(Pj ,t)

2 DPj

Pj

��� ��� ð13Þ

where O(t) is the model output (Whi5P level) at time t; T is the total reaction time;DPj

is a small perturbation; and Sj~

ðT

0
sj(t)dt is the sensitivity value of parameter Pj. In

addition, we also perturbed all the parameters with 10–30% variations and measured
the robustness as follows:

RM(DP)~
C(PzDP){C(P{DP)j j

2C(P)
ð14Þ

where C(P) is the number of cells that are predicted to commit by our critical index for
parameters P; and DP is a small perturbation of all the parameters.
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