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Synopsis

In recent years, genome wide association studies have led to an explosion in the identification of

regions containing confirmed genetic risk variants within complex human diseases, for example in

systemic lupus erythematosus (SLE). Many of these strongest SLE genetic associations can be

divided into groups based upon their potential roles in different processes implicated in lupus

pathogenesis, including ubiquitination (a process of marking proteins for degradation), DNA

degradation, innate immunity, cellular immunity (B cell, T cell, neutrophil, monocytes),

lymphocyte development, and antigen presentation. Recent advances have also demonstrated

several genetic associations with SLE subphenotypes and subcriteria, such as autoantibody

production, lupus nephritis, serositis, and arthritis. Despite the broad range of lupus genetic studies

to date, many areas for further exploration remain to move lupus genetic studies toward clinically

informative endpoints, such as identifying individuals at the greatest risk of end-organ damage,

early mortality or poor response to a specific therapeutic regimen.
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Introduction

Systemic lupus erythematosus (SLE; lupus) is a complex clinical syndrome with a wide

range of clinical symptoms and significant immune dysregulation including production of

high concentrations of autoantibodies. Lupus cases have been found to cluster in families
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with 66% heritability and a lambda S between 8 and 29. Monozygotic twin studies have

demonstrating 24–69% twin concordance rates, compared to the dizygotic twin or sibling

rates of 2–5%.(1–3) Since the first genome wide association studies (GWAS) conducted in

SLE were published in 2008(4–6), an explosion in the number of associated and confirmed

genetic associations has occurred as outlined and referenced in Table 1, which summarizes

these findings through December 2013.

Pathways implicated by lupus genetics

Genetic studies suggest and mechanistic SLE studies support the role of several different

processes being implicated in lupus pathogenesis, such as altered cell signaling, impaired

clearance of debris, and dysregulated immune cell development, function and

response.(3, 7–9) Several of these pathways are discussed briefly below and in Table 1. Please

see the following reviews for additional information(3, 10–13).

Ubiquitination (NF-kB signaling)—Polymorphisms within several genes involved in

ubiquitination (a process of marking proteins for degradation) have been associated with

SLE. Mutations in TNFAIP3 can alter ubiquitin patterns resulting in improper degradation

targeting and termination of pro-inflammatory responses through NFκB signaling.(14)

Mutations in TNIP1, an adaptor protein whose expression is induced by NFκB,(3) can result

in NFκB signaling pathway dysregulation.(15) UBE2L3, a ubiquitin-carrier enzyme, is

expressed on all lymphocytes and is important for the ubiquitination of a NFκB precursor

and cell development.(3, 8) IRAK1 encodes for a protein located downstream of NFκB

signaling and genetic mutations in this gene can offer protection from or susceptibility to

SLE.(8, 16) Mutations in SLC15A4, a peptide transporter in NFκB signaling pathway, and

PRKCB, a protein kinase involved in B-cell receptor mediated NFκB activation, have also

been implicated in SLE development in susceptible individuals.(8)

DNA degradation (apoptosis/clearance of debris)—In healthy individuals,

apoptosis, or programmed cell death, is used to remove dead or dying cells into the

surrounding environment without releasing the cellular components. In an individual with

SLE, however, this process is defective, resulting in decreased removal and, thus,

accumulation of apoptotic cells, release of apoptotic cellular materials into the surrounding

environment, and activation of immune responses against self-antigens.(3, 7–9) Genetic

studies have suggested that variants in FcγRIIB, ITGAM, ATG5, ACP5, TREX1, DNAse 1,

and DNase 1L3 may play a role in the development of lupus through their roles in apoptosis

or debris clearance.(8, 9, 17–19) Dysfunction at any of these processes leads to improper

clearance of apoptotic cells and is associated with autoantibody production and SLE

pathogenesis.

Innate immunity (TLR pathways/interferon)—A large number of individuals with

SLE have increased expression of IFN associated genes (interferon signatures) compared to

healthy individuals. As IFN signaling is important in the protection against viral infection

and in the development, activation, and proliferation of immune cells, dysregulation of IFN

signaling pathways can have major consequences regarding the morbidity and mortality of

SLE patients. Genetic variants in Toll-like receptor (TLR) 7, TLR regulatory molecules
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(UBE2L3), IFN signaling transcription factors (IRF5, IRF7/PHRF1, IRF8, ETS1) associate

with increased SLE susceptibility.(8, 9, 20) Variants in molecules within or involved in the

downstream signaling of the IFN pathway, such as STAT4, IFIH1, and PRDM1, have also

been associated with increased susceptibility of SLE.(8)

B cell immunity (function/signaling)—A hallmark of SLE is the presence of

autoantibodies, which indicates improper function and signaling of B cells. BLK, BANK1,

and LYN genetic variants increase SLE susceptibility, perhaps through altering B cell

receptor signaling.(8, 9, 21) IRF8, ETS1, IKZF1, AFF1, RasGRP3, PRDM1, FcγRIIB,

PRKCB, and NCF2, major players in the development, differentiation, proliferation, and

activation of B cells, also contain polymorphisms associated with SLE

susceptibility.(8, 9, 22–24) Polymorphisms in HLA-DR2 & DR3 (alter ability to produce

antibodies), IL-10 (inhibits T cells and antigen presenting cells, enhances B cell survival and

activity) and IL-21 (promotes antibody class switching and sustains autoantibody

production) also contain associated and confirmed polymorphisms with SLE.(8, 9)

T cell immunity (function/signaling)—T cells play a role in both innate and adaptive

immune responses. In SLE patients, altered T cells play a role in the activation of

autoreactive B cells, production of antibodies, and the immune surveillance of regulatory

cells. Mutations in ETS1, IKZF1, PRDM1, AFF1 and TNFS4 have been associated with

altered differentiation, activation, and proliferation of SLE T cells.(8, 9, 25–28) Dysregulated

T cell signaling has also been associated with PTPN22, TYK2, and STAT4 mutations in

SLE.(8, 9, 29–31) Genetic variations in HLA-DR2 & DR3, CD44, IL-10, and IL-21 are

associated with altered lymphocyte activation by T cells in SLE patients.(8, 9, 21, 32)

Neutrophil/monocyte immunity (function/signaling)—Neutrophils and

macrophages are important players in the innate and adaptive immune system. As a first line

of defense, these cells migrate to areas of inflammation, are involved in the removal of dead

cells and foreign antigens, and directly affect the activation of lymphocytes. ITGAM and

ICAM polymorphisms lead to altered migration and adhesion of the neutrophils and

monocytes in SLE patients.(8, 9) Genetic variants in FcγRIIB and FcγIIIA/B, IL-10, and IRF8

can alter phagocytosis, monocyte signaling, and macrophage development, drastically

changing SLE patient innate immune responses.(8, 9)

Lymphocyte development—In individuals with autoimmune disorders, impaired

lymphocyte development leads to an increase in autoreactive lymphocytes, lymphocytes

with altered tissue homing ability, and cells with inappropriate responses to external

environmental stimuli. ETS1 and IKZF1 both play a role in the regulation of lymphocyte

differentiation and development.(33, 34) Genetic variants of these genes result in abnormal

differentiation of B cells into plasma cells, increased proliferation of Th17 cells, and loss of

regulation of self-tolerance.(35–38)

Antigen presentation—In order to make a robust immune response to protect the host,

foreign antigens must be taken up, processed, and presented to T and B cells. However, in
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individuals with SLE, variations in the HLA-DRB1/MHC1 genes can lead to altered antigen

presentation.(5, 39, 40)

Genetic associations with autoantibody production

Despite the many variations of clinical presentation, almost all individuals with SLE develop

antibodies against self-antigens, particularly anti-nuclear antibodies against double stranded

DNA (dsDNA), Ro, La, Sm, nRNP, ribosomal P, and antibodies against phospholipids.

Polymorphisms within the human leukocyte antigen (HLA) genes are one of the more well-

known risk factors for the development of SLE. In addition to the increase of overall SLE

risk, these HLA polymorphisms are also associated with increased risk of autoantibody

development.(41) HLA haplotypes consisting of DRB1*1501/DQB1*0602 (DR2) are

associated with anti-Sm responses, while HLA DRB1*0301/DQB1*0201 (DR3) haplotypes

are associated with anti-Ro and anti-La responses.(41) Individuals with a mixture of

DR2/DR3 haplotypes have an increased prevalence of anti-Ro, anti-La and Sm

antibodies.(41)

Additional genetic polymorphisms are likely important in autoantibody development.

Ramos and colleagues performed a linkage study for the presence of autoantibodies in a

large collection of families multiplex for SLE and found regions on chromosome 3q21

linked with anti-La, chromosome 4q34 and 4q35 with anti-Ro and/or anti-La, and

chromosome 3q27 with anti-nRNP.(42) IgM antiphospholipid antibody responses were

enriched in individuals at chromosome 13q14.(42) Large scale genetic association studies of

collections of SLE patients and controls with autoantibody detection by the same method,

ideally at the same time, would be useful to help delineate genes and pathways further

involved in the genetic susceptibility to SLE.

While only 40%–60% lupus patients develop antibodies to dsDNA,(43) anti-dsDNA

responses are strongly associated with lupus nephritis and often indicate a poor survival

outcome.(44, 45) Interestingly, Chung and colleagues have identified genetic variants in

STAT4, ITGAM, K1AA1542, BANK1, and UBE2L3 that associate with the presence of anti-

dsDNA antibodies SLE patients.(43)

Several other genetic polymorphisms are associated with the presence of autoantibodies in

lupus patients. In a Japanese SLE cohort, polymorphisms in PHRF1 are associated with the

presence of anti-Sm antibodies.(46) PTPN22 polymorphisms are associated with the presence

of anticardiolipin antibodies (a type of anti-phospholipid antibody) in European-American

and anti-nRNP antibodies in Hispanic SLE patients.(47) An IRF8 variant is associated with

the development of antibodies against dsDNA across European-American, African-

American and Cretan lupus patients.(48) This topic is further reviewed in additional

publications(49–51).

Association of genes within select lupus clinical subsets

In recent years, an emphasis has been placed on identifying individuals at the greatest risk of

developing severe lupus to improve monitoring and identifying individuals for potential

therapeutic clinical trials.
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Studies have shown that the PTPN22 risk allele is enriched in SLE patients with anti-

phospholipid syndrome and in patients with concurrent autoimmune thyroid disease.(47)

TRAF3IP2 polymorphisms are associated with the development of pericarditis.(52) Genetic

variants in FGG, MTHFR, and FVL have been shown to be associated with increased risk of

thrombosis in European-Americans, while FGG is only associated with increased risk of

thrombosis in Hispanic lupus patients.(53) BANK1 variants are associated with

hematological, immunological, and renal subphenotypes of SLE.(54) A recent study by

Sanchez et al has examined the contribution of genetic risk alleles for SLE with clinical

subphenotypes of the disease(55) and found that TNFSF4 polymorphisms were significantly

associated with renal disorder in individuals with European ancestry.(55) Polymorphisms in

ITGAM are associated with arthritis(56), and nephritis(57).

Genetic polymorphisms that alter expression levels of the MIF gene affect both the overall

risk for developing SLE and subphenotype susceptibility. The high expression MIF allele is

associated with a lower risk of SLE and lower risk of ANA production. However, if the

lower expression allele is present, and SLE develops, individuals then have an increased risk

of serositis, double the risk for nephritis, and a nearly 9-fold risk increase in cerebritis.(58)

For a more in-depth description of the genetic associations with clinical subphenotypes of

SLE please refer to Rullo et al.(8) and to the genetics of nephritis section below.

Genetics of nephritis and renal outcomes

One of the most devastating clinical symptoms of SLE can be lupus nephritis (LN),

especially when associated with end-stage renal disease. While many studies have identified

genes associated with increased risk of developing SLE, genetic association with lupus

nephritis or end stage-renal disease remains an understudied area. Polymorphisms in several

genes (Table 2) have been associated with increased risk of lupus nephritis and vary based

upon gender and race.(16, 59–61)

ABIN1/TNIP1—ABIN1 [D485N] transgenic mice develop an SLE-like autoimmune

disease(62), developing proliferative glomerulonephritis with histologic features similar to

class III and IV human lupus nephritis.(16) SNPs within TNIP1, located within the ABIN1

gene, have previously been associated with the development of SLE(63). Caster and

colleagues have examined the association of TNIP1 with lupus nephritis in a large multi-

racial cohort (n=16,999)(16), showing that SNP rs7708392 and rs495881 in TNIP1 were

significantly associated with lupus nephritis in individuals with European (p=3.663×10−24)

or African (p=8.473×10−23) ancestry.(16)

APOL1—APOL1 (apolipoprotein L1 gene) polymorphisms have been associated with

progressive non-diabetic nephropathy in African-Americans.(64–70) Freedman and

colleagues found that the G1 and G2 alleles of APOL1 are significantly associated

(p=6.23×10−6) with the risk of developing lupus nephritis end-stage renal disease in

African-Americans (n=1389).(65, 66) However, a smaller study (n=407 AA) by Lin et al

observed only a minimal association (p=0.023) of APOL1 with LN in AA individuals with

SLE.(71)
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FcγRIIB, Fc gamma receptors (FcγR) play a large role in the clearance of immune

complexes and are major players in SLE pathogenesis. Impaired clearance and removal of

immune complexes may result in immune complex deposition in organs which could then

lead to organ damage. Genome wide association studies have implicated FcγR

polymorphisms as genetic risk factors for SLE.(72) However, these studies were in SLE as a

whole and did not assess the association of these receptors with clinical phenotypes. A small

study from Zidan and colleagues (n=90) identified the FcγRIIB 232 ILE/Thr polymorphism

as increasing the risk of the development of LN in Egyptian SLE patients.(73)

STAT4—STAT4 polymorphisms have been associated with a number of different

autoimmune diseases, including SLE. STAT4 polymorphisms have been associated with LN

in individuals of European decent and with severe LN.(74, 75) Bolin and colleagues utilized

GWAS to examine genetic association with LN in two Swedish cohorts(76), showing

genome wide significant association (p<5×10−8) in four SNPs located within the STAT4

gene. Additionally, STAT4 association was found in SLE patients with severe renal

insufficiency (p=7.6×10−6).(76)

TNFSF4—Previous reports have linked TNFSF4 with susceptibility to SLE in Chinese and

European individuals.(10, 23, 77) Zhou et al found a significant additive association between

TNFSF4 alleles rs2205960 (p=0.014) and rs10489265 (p=0.005) and LN.(78)

SLE genetic studies on the horizon

With all of the studies which have been performed to help decipher genetic contributions to

lupus, many areas for further exploration remain. SLE is oftentimes more severe with poorer

outcomes in some racial subpopulations, including African American, American Indian and

some Asian subpopulations.(79–83) Unfortunately, to date, the major GWAS have focused on

individuals of European descent or select Asian populations, but GWAS are currently

underway in populations from additional racial demographics.(84) These studies may

identify genetic associations that are unique to select populations and may also serve to help

narrow associated regions by allowing trans-racial mapping across common genetic areas of

association.

Larger GWAS have already been published for other autoimmune diseases, such as multiple

sclerosis(85) and rheumatoid arthritis(86). These studies of greater than 72,000 subjects, in

each, have nearly doubled the number of confirmed genetic associations for these complex

human diseases with somewhat lower heritability compared to SLE. Therefore, extremely

large SLE studies may help to identify additional confirmed genetic associations that help to

address the still unexplained heritability in SLE. These findings may, in turn, help focus or

expand pathways important to lupus pathogenesis. Once more causal variants are identified

and a greater amount of the genetic heritability of SLE has been described, then another

large opportunity will evolve to further explore gene-gene, gene-environment and other

types of pathway analyses with SLE.

Studies are also ongoing to perform directed deep sequencing, exome sequencing and whole

genome sequencing in SLE patients compared to healthy controls and family members to

identify rare variants that are missed on the GWAS arrays and may be important in lupus
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pathogenesis or within smaller homogenous subsets of this disease. With the decreasing cost

of exome and whole genome sequencing, new data will likely be accruing quickly, allowing

for broader studies of rare variants.

Copy number variations (CNVs) are also beginning to be explored in lupus pathogenesis.

Work by Yu and colleagues(87) have demonstrated that CNVs of IL-17F, IL-22, and IL-21

are associated with SLE. Additional CNV studies are warranted to examine other potential

SLE genetic associations.

Of course, for many, many of these confirmed SLE genetic associations, functional

consequences of putative causal variants have yet to be elucidated. Novel methods and

analytic approaches to help speed throughput, prioritize candidates, and select the highest

likelihood variants for functional impact and potential causation are needed to help make the

next monumental leap in deciphering the impact of genetic risk on lupus pathogenesis.

Although time consuming, these necessary next steps are crucial to help move toward more

directed therapies or better selections of patients for specific therapeutic interventions.

Future Considerations

Opportunities for additional clinically important genetic studies

Although significant advances have been made in identifying and confirming genetic

associations in SLE, opportunities abound to move lupus genetic studies toward even more

clinically informative endpoints (Box 1).

Many lupus consortia are performing studies to help identify early in the course of disease

the patients at the highest risk of damage or early mortality. For example, work from the

University of Toronto Lupus Clinic has shown that 25% of SLE patients with early damage

(defined as Systemic Lupus International Collaborating Clinics (SLICC)/American College

of Rheumatology (ACR) Damage Index [SDI] score ≥ 1at initial assessment) died within 10

years of their initial assessment compared to only 7.3% without early damage (log rank P-

value=0.0002)(88). Work from the LUMINA (Lupus in Minority Populations, Nature versus

Nurture) consortia assessed five year follow-up data from 288 patients to identify potential

predictors of early mortality. They demonstrated that living below the poverty level

(OR=4.06, CI [1.50–11.01), SDI at initial visit (as above) (OR=1.45, CI [119-1.91]) and a

disease activity measure at baseline – SLAM or Systemic Lupus Activity Measure

(OR=1.09, CI [1.01–1.17]) were each associated with early mortality in 34 individuals who

died during the first five years of study.(89) If lupus cohorts of sufficient size and with SDI

measurements near lupus onset can be assembled, assessing genetic risk of those SLE

patients at increased risk of early mortality and/or increased morbidity would be useful in

guiding therapeutic selection and potential pathway directed therapies.

Alternately, some SLE patients followed in longitudinal cohorts are found to have

persistently elevated disease activity and, therefore, may have increased risk of disease

damage as measured by SDI.(90) Genetic analysis of these patients may be useful in better

understanding patients who are candidates for more aggressive immunosuppression or,

conversely, better understanding the genetic susceptibility of patients with persistently
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quiescent or suppressed disease may help lead to pathways which may help temper or

control lupus inflammation and damage.

Definitions of “severe” lupus have been difficult to adapt and are usually focused on specific

individual clinical manifestations of lupus, such as nephritis or major central nervous system

involvement. Alternate approaches have explored the total number of ACR classification

criteria(91, 92). Another approach that may be useful would be to use therapeutic use as a

surrogate for severe disease. Most rheumatologists and other lupus care providers would not

give major immunosuppressive drugs, such as cyclophosphamide, cyclosporine, or

rituximab, to patients with mild or moderate lupus. Although patients with nephritis might

dominate this category, patients with other less common serious manifestations of lupus,

such as cerebritis, systemic vasculitis, or pulmonary hemorrhage, would not be eliminated

from this analysis. As the field evolves and can help clinically define those patients with the

most severe forms of SLE, genetic, as well as partnered genomic, epigenetic, and

immunologic measurements, may help provide critical insights to the most appropriate

pathways to target in these highest risk individuals.

Many opportunities remain in further assessing the genetic architecture of SLE clinical

subphenotypes. Expansion of sample sizes of the lupus phenotype genetic association

studies, partnered with detailed clinical phenotype for ACR classification criteria and

subcriteria in needed. Detailed phenotype data might also provide opportunities to look for

genetic associations with atypical presentations, such as anti-nuclear antibody negative, or

uncommon clinical subtypes, such as thrombocytopenia at diagnosis, that are enriched

within select large multiplex families or are found often enough to be studied in very large

case-control association studies. Novel analytic methods that allow for more sophisticated

bioinformatic assessments of clinical subgroups are also intriguing options to provide more

insight to clinical subtypes identified by machine learning or other methods (please see

review by Vyse and colleagues(93)). Alternate options for further genetic dissection would

allow testing of markers of genetic risk with co-morbidities that are enriched in lupus

patients, such as accelerated atherosclerosis, osteonecrosis, or others. Genetic associations of

response to therapy would help with selection of medications, optimization of treatment or

potentially identification of individuals at increased risk of select toxicities.
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Key points

• Polymorphisms in genes important for ubiquitination, DNA degradation, innate

immunity, cellular immunity, antigen presentation, and lymphocyte

development are associated and confirmed in SLE.

• Select genetic associations are enriched in SLE patients with certain

autoantibodies, antiphospholipid syndrome, pericarditis, thrombosis, arthritis, or

lupus nephritis.

• New lupus genetic studies are warranted, especially with large cohorts enriched

for understudied races, and in patients with severe disease or poor prognosis.

• New lupus genetic studies are also warranted in large cohorts of SLE patients

with phenotype information about common lupus co-morbidities and response

to therapeutics.
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Box 1

Opportunities for Clinically Important genetic Studies

1. Markers of early damage (poor prognosis)

2. Markers of persistently elevated diseases (other SLE subsets)

3. Markers of “severe” disease

4. Expanded studies of genetic architecture of clinical subphenotypes

5. Larger sample size (allow subsetting

6. Better phenotype data for ACR criteria/subcriteria

7. Opportunities to look for genetic associations with:

a. Atypical disease presentations

b. Uncommon clinical subtypes

c. Phenotypes enriched within select large multiplex families

8. Novel analytic methods

9. Markers of common SLE co-morbidities

10. Pharmacogenetics

a. Markers of early flare off medication

b. Selection of medication

c. Response to medication
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Table 2

Genetic variants associated with lupus nephritis.

Gene Location Variant Population References

ABIN1/TNIP1 5q32 rs7708392
rs495881

EU
AA

(16, 62, 63)

APOL1 22q13.1 rs2157257
rs5750250
rs2413396
rs4820232

rs73885319; rs60910145/rs71785313

EU
AA

(64, 65, 67–71)

FcyRIIB 1q23 rs1050501 EU (72, 73)

STAT4 2q32.2–32.3 rs11889341
rs7582694

EU (74–76)

TNFSF4 1q25 rs2205960
rs10489265

AS (10, 23, 77, 78)

EU= European; AA= African-American; AS=Asian
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