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Cortical HCN channels: function, trafficking and plasticity
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Abstract The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels belong to
the superfamily of voltage-gated potassium ion channels. They are, however, activated by hyper-
polarizing potentials and are permeable to cations. Four HCN subunits have been cloned,
of which HCN1 and HCN2 subunits are predominantly expressed in the cortex. These sub-
units are principally located in pyramidal cell dendrites, although they are also found at lower
concentrations in the somata of pyramidal neurons as well as other neuron subtypes. HCN
channels are actively trafficked to dendrites by binding to the chaperone protein TRIP8b.
Somato-dendritic HCN channels in pyramidal neurons modulate spike firing and synaptic
potential integration by influencing the membrane resistance and resting membrane potential.
Intriguingly, HCN channels are present in certain cortical axons and synaptic terminals too. Here,
they regulate synaptic transmission but the underlying mechanisms appear to vary considerably
amongst different synaptic terminals. In conclusion, HCN channels are expressed in multiple
neuronal subcellular compartments in the cortex, where they have a diverse and complex effect
on neuronal excitability.
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Voltage-gated ion channels play a fundamental role
in regulating neuronal activity and synaptic trans-
mission. The abundance and biophysical properties of
voltage-gated ion channels varies within neuronal sub-
cellular compartments: axons, dendrites and somata (Lai
& Jan, 2006; Johnston & Narayanan, 2008; Nusser, 2009).
This variation in localization has a significant impact
on neuronal and neural network excitability and thus
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physiological processes such as learning and memory and
patho-physiological conditions, such as epilepsy.

The hyperpolarization-activated cyclic nucleotide-
gated (HCN) channels are voltage-gated ion channels
that are permeable to Na+ and K+ ions and open at
potentials more negative than −50 mV (Pape, 1996;
Robinson & Siegelbaum, 2003; Biel et al. 2009; Shah et al.
2010). These channels are therefore active at the normal
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resting membrane potentials (RMPs) of most neurons and
contribute to depolarizing the RMP. In addition, HCN
channels regulate the membrane resistance. By affecting
both the RMP and membrane resistance, HCN channels
critically influence intrinsic neuronal excitability, synaptic
potential integration and neurotransmitter release (Biel
et al. 2009; Shah et al. 2010).

Four HCN subunits (HCN1–4) have so far been cloned
(Ludwig et al. 1998; Santoro et al. 1998). All four are
expressed in the central nervous system (CNS) but their
patterns of expression vary. Of these, only HCN1 sub-
units are abundantly found in the cortex, hippocampus,
cerebellum and brain stem (Moosmang et al. 1999; Notomi
& Shigemoto, 2004). In contrast, HCN2 subunits are
distributed ubiquitously through the CNS, with highest
expression levels in the thalamus and brain stem nuclei.
HCN3 subunits are expressed at a low level in the CNS and
HCN4 subunits are found in selective brain regions such
as the mitral cell layer of the olfactory bulb (Moosmang
et al. 1999; Notomi & Shigemoto, 2004). These sub-
units can form homomeric or heteromeric channels when
expressed in heterologous systems (S. Chen et al. 2001; Biel
et al. 2009). The activation time constants and steady-state
voltage dependence of the individual HCN currents differ
considerably (Biel et al. 2009). Thus, HCN1 subunits
have very fast activation kinetics whilst HCN4 subunits
have the slowest kinetics. In addition, all HCN subunits
are modulated by cyclic nucleotides, though the extent
to which HCN1–4 currents are modified by these varies
considerably. A number of other intracellular signalling
molecules such as phosphoinositides and kinases, as well
as auxiliary subunits such as tetratricopeptide repeat
(TPR)-containing Rab8b interacting protein (TRIP8b),
also affect the biophysical properties and expression
of HCN subunits (Robinson & Siegelbaum, 2003; Biel
et al. 2009; Wahl-Schott & Biel, 2009; Shah et al. 2010).
This diversity in their expression, biophysical properties
and modulation by intracellular molecules is, therefore,
likely to differentially and dynamically regulate neuro-
nal excitability (for in-depth reviews on HCN channel
structure and biophysical properties, please see Robinson
& Siegelbaum, 2003; Biel et al. 2009; Wahl-Schott & Biel,
2009).

In this review, I will focus on the role of HCN channels
in determining cortical neuronal excitability. I will also
discuss how HCN subunits are trafficked to selective sub-
cellular compartments (axons and dendrites) and how
their activity and plasticity affects pyramidal cell dendritic
excitability and presynaptic function.

Somato-dendritic HCN channel function

Electrophysiological studies have revealed that the HCN
current, Ih, is greatest in the distal dendrites of cortical and

hippocampal pyramidal neurons (Magee, 1998; Stuart &
Spruston, 1998; Williams & Stuart, 2000; Berger et al.
2001; Shah et al. 2004; Huang et al. 2009; Fig. 1).
These findings have been corroborated with immuno-
histochemical studies showing the abundance of HCN1
and HCN2 subunits in pyramidal cell distal dendrites
(Lorincz et al. 2002; Notomi & Shigemoto, 2004). HCN
channels, though, are also located in the somata of some
pyramidal neurons (albeit at a lower density than that
in distal dendrites), interneuron subtypes and stellate
cells (Robinson & Siegelbaum, 2003; Biel et al. 2009).
Here, treatment with HCN channel inhibitors augments
the input resistance. Since the RMP is also lowered sub-
stantially, there is either a reduction or little change in the
number of spikes generated in response to depolarizing
stimuli (Maccaferri et al. 1993; Maccaferri & McBain,
1996; Gasparini & DiFrancesco, 1997; Magee, 1998;
Robinson & Siegelbaum, 2003; Fransén et al. 2004;
Shah et al. 2004; Aponte et al. 2006; van Welie et al.
2006; Nolan et al. 2007; Thuault et al. 2013). In some
neurons, such as the entorhinal cortical stellate cells, HCN
channels are activated during the afterhyperpolarization
following spikes and thereby affect spike firing patterns
(Nolan et al. 2007). In contrast, in distal dendrites,
where the expression of HCN channels is the greatest,
pharmacological blockade of Ih or genetic ablation of
HCN results in augmented dendritic excitability despite
a hyperpolarized RMP (Magee, 1998, 1999; Berger et al.
2001; Poolos et al. 2002; Shah et al. 2004; Huang et al.
2009; Fig. 1). This is because the increase in membrane
resistance following the inhibition of HCN channels in
larger in distal dendrites than at the soma such that the
change in voltage induced by depolarizing stimuli in the
absence of Ih results in spikes despite the RMP being hyper-
polarized (Magee, 1998; Poolos et al. 2002; Shah et al. 2004;
Huang et al. 2009; Fig. 1).

Changes in membrane resistance will also affect synaptic
potential shapes and integration. Indeed, when HCN
channel activity is reduced, somato-dendritic excitatory
postsynaptic potential (EPSP) amplitudes are greater and
their decay slower, leading to enhanced summation of a
train of synaptic potentials (Fig. 1; Magee, 1998, 1999,
2000; Williams & Stuart, 2000; Berger et al. 2001; Poolos
et al. 2002; Nolan et al. 2004; Shah et al. 2004; Huang
et al. 2009; Sheets et al. 2011). Thus, trains of EPSPs
are more likely to generate action potentials in axons,
boosting neuronal excitability (Shah et al. 2004). The
increased EPSP summation caused by somato-dendritic
HCN channel inhibition is, at least in part, due to the
enhanced membrane resistance. In distal dendrites, relief
of inactivation of T- and N-type Ca2+ channels by RMP
hyperpolarization also contributes to enhanced EPSP
summation following pharmacological block of HCN
channels (Tsay et al. 2007). Certainly, Ca2+ entry via these
Ca2+ channels during dendritic Ca2+ spikes is greater in
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the presence of HCN channel inhibitors (Tsay et al. 2007).
It should be noted, though, that certain subthreshold
potassium channels such as KV7/M-channels are likely to
have a larger impact on EPSP summation in the absence
of Ih if expressed in the same subcellular domain within
a particular neuron subtype (George et al. 2009). Hence,
the overall effect of HCN channels on EPSP summation
is likely to depend to a certain extent on which other ion
channels are present locally.

Somato-dendritic HCN channels affect the integration
of inhibitory synaptic inputs (IPSPs) too (Williams &
Stuart, 2003; Atherton et al. 2010; Pavlov et al. 2011). HCN
channels are activated by hyperpolarization and their
activation during trains of IPSPs serves to limit synaptic
hyperpolarization (Williams & Stuart, 2003; Atherton
et al. 2010; Pavlov et al. 2011). In cortical pyramidal cell
neurons, distal dendritic Ih enhances dendro-somatic IPSP
attenuation and constrains axo-somatic depolarization
(Williams & Stuart, 2003). Moreover, in certain neurons,
the activation of HCN channels during synaptic inhibition
restricts de-inactivation of T-type Ca2+ channels and
rebound action potential firing (Atherton et al. 2010).
Therefore, enhanced HCN channel activity during trains
of synaptic inhibitory potentials can profoundly alter the
state of neurons and their response to subsequent stimuli.

Somato-dendritic HCN channels have also been
implicated in regulating neuronal oscillations and sub-
threshold resonance properties of neurons (Fransén et al.
2004; van Welie et al. 2006; Haas et al. 2007; Narayanan
& Johnston, 2007, 2008; Nolan et al. 2007; Hu et al. 2009;
Marcelin et al. 2009; Vaidya & Johnston, 2013). In distal
dendrites, HCN channels are thought to act as inverse leaky
voltage-dependent inductors and thereby act as a band-
pass filter to allow synaptic inputs of a certain frequency
to be preferentially transferred to the soma (Narayanan
& Johnston, 2008; Vaidya & Johnston, 2013). Indeed,
recent evidence suggests that HCN channels influence
signal processing in distal hippocampal CA1 pyramidal
dendrites such that slower, theta frequency synaptic inputs
are preferentially transferred to the soma even when
dendrites receive synaptic inputs at gamma frequency
(Vaidya & Johnston, 2013). In addition, the inductance
property of HCN channels provides an efficient means
of synchronization of inputs so that voltage waveforms
at the soma are not very sensitive to the location of the
synaptic inputs in the dendritic tree (Vaidya & Johnston,
2013). Thus, HCN channels modulate somato-dendritic
information processing in a variety of ways, all
of which impact neuronal synaptic integration and
activity.
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Figure 1. Effects of HCN1 channels on cortical dendritic excitability
A, morphology of an entorhinal cortical (EC) layer III pyramidal neuron. Scale bar, 50 μm. B, cell-attached recordings
of the HCN channel current (Ih) from HCN1 null (HCN1–/–) and wild-type (Wt) EC layer III dendrites. The current
was generated by applying a hyperpolarizing step from −40 mV to −140 mV as shown below the traces. C,
representative current-clamp recordings from wild-type and HCN1–/– EC layer III dendrites at their normal resting
membrane potential (NRMP) when a series of 400 ms hyperpolarizing and depolarizing steps were applied as
shown schematically. The scale bar shown applies to both recordings. D, typical traces obtained when a 100 pA
hyperpolarizing pulse was applied to EC layer III dendrites from a fixed potential of −70 mV, demonstrating that
the input resistance of HCN1–/– dendrites is much greater than that of wild-type. E, single and trains of simulated
EPSPs recorded from HCN1–/– and wild-type dendrites at the common potential of −70 mV in response to alpha
waveform injections. Adapted from Huang et al. (2009).
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Role of presynaptic HCN channels in synaptic release

In addition to their location in dendrites, immuno-
histochemical evidence has suggested that HCN1 sub-
units are expressed in cortical and hippocampal axons and
synaptic terminals of inhibitory and excitatory neurons
(Notomi & Shigemoto, 2004; Lujan et al. 2005; Bender et al.
2007; Boyes et al. 2007; Huang et al. 2011, 2012; Fig. 2).
In the rodent hippocampus, HCN channels are present in
basket cell axons and terminals, where they inhibit synaptic
release by an as yet undefined mechanism (Aponte et al.
2006). HCN1 subunits are also present in immature
perforant path axons, which synapse onto dentate gyrus
granule cells (Bender et al. 2007). Here, interestingly,
pharmacological inhibitors of HCN channels moderately
reduced short-term depression of long trains of EPSPs
at 20 Hz but not at lower frequencies. These findings
suggested that HCN1 subunits in immature perforant path
axons form functional channels, which modulate action
potential-dependent release (Bender et al. 2007).

In adult neurons, the influence of HCN channels
on synaptic transmission has so far only been found
in the entorhinal cortex (EC). Here, immunogold
labelling showed that HCN1 subunits were preferentially
localized to the active zone in asymmetric (presumably
glutamatergic) synaptic terminals (Huang et al. 2011,
2012; Fig. 2). These terminals also contained the

T-type Ca2+ channel subunits CaV3.2 as evident from
co-labelling for HCN1 and CaV3.2 subunits (Huang
et al. 2011). Pharmacological inhibition or genetic
ablation of HCN1 channels resulted in enhanced
frequency of miniature excitatory postsynaptic currents
(mEPSCs) selectively onto EC layer III pyramidal neurons,
suggesting that presynaptic HCN channels regulate basal
glutamatergic synaptic release (Huang et al. 2011; Fig. 2).
The significantly increased mEPSC frequency was a
consequence of relief of inactivation of CaV3.2 channels
caused by membrane hyperpolarization when HCN
channel function was reduced (Huang et al. 2011). Inter-
estingly, the paired pulse ratio of EPSCs evoked by
stimulating distal dendrites of EC layer III pyramidal
neurons was significantly lowered in the presence of HCN
channel blockers, suggesting that action potential-driven
release onto EC layer III pyramidal neurons is also
regulated by HCN channels (Huang et al. 2011). Hence,
HCN channels affect multiple modes of synaptic trans-
mission onto EC layer III pyramidal neurons.

Dendritic and presynaptic HCN1 subunit trafficking

HCN channels are actively trafficked to dendrites by
binding to chaperone proteins known as TPR-containing
Rab8b interacting protein (TRIP8b) (Santoro et al. 2004,
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Figure 2. Presynaptic HCN channels and synaptic release in the adult entorhinal cortex (EC)
A, immunogold particles for HCN1 in asymmetric synaptic terminals (presumably excitatory glutamatergic synapses)
in EC layer III in wild-type (Wt). Labelling was absent in HCN1–/– tissue. Adapted from Huang et al. (2011). B,
schematic diagram showing that presynaptic HCN channels and T-type Ca2+ channels are present on the same
terminals. Pharmacological inhibition or genetic ablation of HCN1 channels leads to membrane hyperpolarization
and enhanced Ca2+ influx through T-type Ca2+ channels, boosting spontaneous synaptic release.
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2009; Lewis et al. 2009; Zolles et al. 2009; Shah et al. 2010).
Moreover, TRIP8b is essential for membrane expression
of HCN channels in hippocampal and cortical dendrites
(Santoro et al. 2004, 2009; Lewis et al. 2009). In addition,
the presence of TRIP8b shifts the activation curve of Ih

to the left (Lewis et al. 2009; Santoro et al. 2009; Zolles
et al. 2009). Further, the presence of TRIP8b alters the
sensitivity of HCN channels to cyclic nucleotides (Zolles
et al. 2009; Han et al. 2011; Hu et al. 2013). Thus, the
presence of TRIP8b is important for the expression and
voltage dependence of dendritic HCN channels.

Nine isoforms of TRIP8b have so far been identified,
most of which enhance the expression of dendritic
HCN subunits (Lewis et al. 2009; Santoro et al. 2009).
Some TRIP8b isoforms, however, suppress HCN sub-
unit expression (Zolles et al. 2009; Lewis & Chetkovich,
2011; Santoro et al. 2011). Interestingly, TRIP8b isoforms
that hinder HCN subunit expression have been suggested
to predominantly exist in adult principal cell (including
pyramidal neuron) axons (Piskorowski et al. 2011). It has
thus been proposed that TRIP8b prevents mislocalization
of HCN subunits to adult axons (Piskorowski et al.
2011). In agreement with this notion, HCN1 subunits
are localized to immature perforant path axons when
TRIP8b expression is low, suggesting that upregulation of
TRIP8b expression during development leads to reduced
axonal HCN subunit expression (Wilkars et al. 2012).
Moreover, the absence of all TRIP8b isoforms results in
HCN1 expression in adult perforant path axons (Wilkars
et al. 2012).

HCN1 subunits, however, are expressed in certain
adult axons and synaptic terminals in the entorhinal
cortex (EC) (Huang et al. 2011, 2012). Are TRIP8b iso-
forms, therefore, not localized to these? There was no
difference in HCN1 subunit expression in these axons and
synaptic terminals when wild-type and TRIP8b tissue was
compared (Huang et al. 2012). Further, functional pre-
synaptic HCN1 channels regulated synaptic release onto
EC layer III pyramidal neurons to a similar extent in both
wild-type and TRIP8b null mice, suggesting that TRIP8b
is not involved in the targeting of HCN1 subunits to these
axons (Huang et al. 2012). In heterologous systems as well
as neurons, other proteins such as filamin A have been
shown to regulate HCN subunit expression (Biel et al.
2009). It remains to be determined if these proteins might
be involved in the targeting and stabilization of HCN sub-
units in adult axons.

Dendritic and presynaptic HCN channel plasticity
under physiological and patho-physiological states

HCN channel activity in hippocampal CA1 pyramidal
neurons is modified by activity-dependent mechanisms
involving changes in intracellular Ca2+ concentrations

(van Welie et al. 2004). Hebbian plasticity, including
NMDA receptor-dependent long-term potentiation
(LTP), also alters dendritic HCN subunit expression
and channel function in hippocampal CA1 pyramidal
neurons (Shah et al. 2010). In CA1 pyramidal neurons,
induction of NMDA receptor-dependent LTP via a theta
burst protocol enhances HCN channel expression by
activating calcium–calmodulin-dependent protein kinase
II (CaMKII) (Fan et al. 2005; Campanac et al. 2008).
LTP induced by high frequency stimulation, though,
reduces dendritic HCN channel function and causes
greater synaptic potential summation and EPSP-spike
coupling (Campanac et al. 2008). Further, activation of
the α2 adrenoreceptors in prefrontal cortical dendritic
spines led to enhanced LTP and working memory via
a decrease in spine cAMP and HCN1 channel activity
(Wang et al. 2007). Alterations in modifications in Ih

induced by stimulation of Schaffer collateral inputs to CA1
pyramidal neurons were absent in TRIP8b null neurons,
indicating that changes in TRIP8b expression or function
might underlie plasticity-induced changes in Ih (Brager
et al. 2013). Interestingly, though, pairing of Schaffer
collateral and perforant path inputs produced LTP in
TRIP8b null CA1 pyramidal neurons (Brager et al. 2013).
LTP induced by stimulation of the distal perforant path
was also greater in HCN1 null CA1 pyramidal neurons
(Nolan et al. 2004). Consistent with this, HCN1 null
mice have increased hippocampal-dependent learning and
memory (Nolan et al. 2004). In addition to LTP, induction
of long-term depression (LTD) modulates Ih. Thus,
metabotropic glutamate receptor-dependent LTD lowered
dendritic HCN channel activity due to Ca2+ release
from internal stores and activation of protein kinase C
(Brager & Johnston, 2007). Therefore, whilst activity and
Hebbian forms of plasticity modulate dendritic HCN
channel function and expression, the consequent change
in HCN channel activity (up- or downregulation) is
likely to be dependent upon the locus where plasticity is
induced and the intracellular signalling cascades triggered
by plasticity-inducing mechanisms.

Abnormal neuronal activity is a common feature of
many neurological disorders too. Indeed, modifications
in HCN channel expression and function have been
associated with disorders such as neuropathic pain and
epilepsy (Biel et al. 2009; Noam et al. 2011). Considerable
evidence for alterations in HCN channel function has
been reported in animal models of epilepsy, particularly
those mimicking temporal lobe epilepsy (TLE). TLE
is the most common, drug-resistant form of acquired
epilepsy (Engel, 1996). It can be mimicked in animals
by administering chemoconvulsants such as kainic acid or
pilocarpine (White, 2002). Intriguingly, cortical dendritic
HCN1 and HCN2 subunit expression and activity is
reduced within hours of chemoconvulsant-induced status
epilepticus and remains persistently downregulated for
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weeks (Shah et al. 2004; Jung et al. 2007, 2011; Shin et al.
2008; Marcelin et al. 2009). There is also a long-term
decrease in cortical presynaptic HCN channel activity
following kainic acid-induced status epilepticus (Huang
et al. 2012). Further, a decrease in HCN1 mRNA and
current function has also been found in cortical and
hippocampal tissue obtained from TLE patients (Bender
et al. 2003; Wierschke et al. 2010). HCN2 mRNA levels,
though, appear slightly enhanced in epileptic human
hippocampus (Bender et al. 2003). Interestingly, though,
HCN2 null mice have absence epilepsy (Ludwig et al.
2003) and loss of function mutations in HCN2 sub-
units have been associated with idiopathic generalized
epilepsies in patients (DiFrancesco et al. 2011). HCN1
null mice, however, are not spontaneously epileptic but
are more susceptible to chemoconvulsant-induced status
epilepticus or kindling (Huang et al. 2009; Santoro
et al. 2010). These results suggest that the loss of
HCN subunits following status epilepticus is likely to
contribute to the process of epileptogenesis. The sustained
reduction in HCN subunits has been attributed to
multiple mechanisms including repressed transcription
of HCN1 by upregulation of neuron-restrictive silencer
factor (NRSF) (McClelland et al. 2011) and altered activity
of the phosphatase calcineurin and the kinase p38 MAPK,
resulting in a leftward shift in the HCN current activation
curve and fewer HCN channels available at rest (Jung
et al. 2010). Indeed, transiently restoring HCN channel
expression by disrupting the interaction between the NRSF
and HCN1 delays the onset of spontaneous seizure activity
following termination of status epilepticus (McClelland
et al. 2011).

Intriguingly, HCN2 channel expression and function is
increased in hippocampal pyramidal neurons following
febrile seizures (K. Chen et al. 2001; Brewster et al.
2002; Dyhrfjeld-Johnsen et al. 2008). A heterozygous
missense mutation in HCN2 (S126L) has also been
correlated with increased incidence of febrile seizures
(Nakamura et al. 2013). Expressed HCN2 channels
containing this mutation displayed faster kinetics with
higher temperatures, resulting in enhanced availability
of the current under these conditions (Nakamura et al.
2013). Moreover, dendritic HCN current is enhanced in
hippocampal pyramidal neurons in mice with targeted
deletions in the Fragile X FMR1 gene (Brager et al.
2012). Fmr1 knockout mice do not exhibit spontaneous
seizures but are more susceptible to audiogenic seizures
(Musumeci et al. 2000). Similarly, only about a third
of the rodents subjected to febrile seizures develop
chronic epilepsy (Walker & Kullmann, 1999; Dube et al.
2007). Hence, whether HCN channel upregulation under
these conditions is a homeostatic change or a cause
of the epileptogenic activity remains to be further
investigated.

Concluding remarks

In summary, in the cortex, HCN channels are pre-
dominantly located in pyramidal neuron distal dendrites
(Johnston & Narayanan, 2008; Nusser, 2009; Shah et al.
2010). They are actively trafficked here by binding to
TRIP8b (Shah et al. 2010). Dendritic HCN channels
lower the membrane resistance and depolarize the resting
membrane potential, limiting calcium channel activation.
Consequently, inhibition of these channels enhances
dendritic excitability and synaptic potential summation
despite the membrane potential being hyperpolarized
(Robinson & Siegelbaum, 2003; Shah et al. 2010). Further,
dendritic HCN channels contribute to the synchronization
of synaptic potentials such that the voltage waveform
at the soma is not influenced by the location of the
synaptic inputs (Vaidya & Johnston, 2013). In addition
to TRIP8b, dendritic HCN channels are modulated by
a number of different intracellular molecules including
cyclic nucleotides, kinases and phosphatases (Robinson
& Siegelbaum, 2003; Biel et al. 2009; Shah et al.
2010). Thus, Hebbian and homeostatic plasticity-inducing
mechanisms, as well as pathological conditions that result
in alterations of the activity of various intracellular sub-
stances, modulate HCN channel function and neuronal
excitability.

Whilst HCN channel function in cortical pyramidal cell
dendrites has been studied the most, HCN channels are
also located at the somata of some pyramidal neurons,
interneurons and stellate cells (Robinson & Siegelbaum,
2003; Biel et al. 2009; Wahl-Schott & Biel, 2009) as well as
in a subset of excitatory and inhibitory synaptic terminals
(Notomi & Shigemoto, 2004; Lujan et al. 2005; Bender
et al. 2007; Huang et al. 2011). At the somata, HCN
channels contribute to maintaining intrinsic excitability
too. However, in contrast to their effects in dendrites,
pharmacological block or genetic deletion of HCN
channels at pyramidal neuron, interneuron or stellate
cell somata has little effect on spike firing (Maccaferri
et al. 1993; Maccaferri & McBain, 1996; Gasparini &
DiFrancesco, 1997; Magee, 1998; Robinson & Siegelbaum,
2003; Fransén et al. 2004; Shah et al. 2004; Aponte et al.
2006; van Welie et al. 2006; Nolan et al. 2007; Thuault
et al. 2013). Synaptic potential integration at the soma is
affected by HCN channels as well but the overall effect on
somatic excitability is likely to depend on the complement
of other ion channels expressed. Similarly, HCN channels
in synaptic terminals regulate synaptic release but the over-
all effect on the change in neurotransmission appears
to be dependent on which other ion channels might
also be located in particular synaptic terminals (Aponte
et al. 2006; Bender et al. 2007; Huang et al. 2011,
2012). In comparison to dendritic HCN channels,
though, relatively little is known about the regulation,
modulation and trafficking of presynaptic HCN channels.

C© 2014 The Authors. The Journal of Physiology C© 2014 The Physiological Society



J Physiol 592.13 Cortical HCN channels 2717

Hence, HCN channels are diversely expressed within the
cerebral cortex, where they contribute to maintaining
intrinsic neuronal activity and synaptic transmission,
thereby serving to dynamically influence cortical network
activity.
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