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Abstract

Objective—Suboptimal functioning of the basal ganglia is implicated in ADHD. These

structures are important to the acquisition of associative knowledge, leading some to theorize that

associative learning deficits might be expected, despite the fact that most extant research in

ADHD has focused on effortful control. We present two studies that examine the acquisition of

explicit rule-based (RB) and associative information integration (II) category learning among

school aged children with ADHD.

Methods and Results—In Study 1, we found deficits in both RB and II category learning tasks

among children with ADHD (n=81) vs. Controls (n=42). Children with ADHD tended to sort by

the more salient but irrelevant dimension (in the RB paradigm) and were unable to acquire a

consistent sorting strategy (in the II paradigm). To disentangle whether the deficit was localized to

II category learning vs. a generalized inability to consider more than one stimulus dimension, in

Study 2 children completed a conjunctive RB paradigm that required consideration of two

stimulus dimensions. Children with ADHD (n=50) continued to underperform Controls (n=33).

Conclusions—Results provide partial support for neurocognitive developmental theories of

ADHD that suggest associative learning deficits should be found, and highlight the importance of

utilizing analytic approaches that go beyond asking whether an ADHD-related deficit exists, to

why such deficits exist.
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Introduction

ADHD is a behavioral syndrome marked by age-inappropriate levels of sustained attention,

impulse control, and activity level that is present across multiple environments (APA, 1994).

Theoretical approaches to understanding the cognitive mechanism involved in the

development of ADHD have primarily focused on deficits in higher order executive control

(Willcutt, Doyle, Nigg, Faraone, & Pennington, 2005). Indeed, self-regulatory functions are

generally conceptualized as effortful processes used to inhibit counterproductive, negative,

and impulsive responses.
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However, work in the social and cognitive neurosciences has demonstrated that much of

human perception, cognition, and behavior in everyday life can be performed automatically

including: goal directed behavior (Bargh & Ferguson, 2000); social perception and

interaction (Adolphs, 2009; Bargh & Williams, 2006); and the development and expression

of stereotypes (Wheeler & Petty, 2001). Furthermore, even difficult cognitive or

sensorimotor procedures that initially require attentional control become automatized

following extensive practice (Anderson, 1982; Logan, 1988). In fact, in everyday life, the

time or attentional capacity is often not available for conscious deliberative decision making,

and there is a growing body of literature that implicit learning and other bottom-up

processes are critical to the cognitive underpinnings of intuitive social cognition and

behavior (Adolphs, 2009; Frith & Frith, 2006).

Implicit Learning in ADHD

The possible presence of an implicit learning deficit in ADHD has not been well evaluated

in part because it is conceptualized as a less effortful, more automatic process. However,

there is a strong theoretical rationale and converging evidence to suggest that implicit

learning may in fact be impaired in ADHD.

First, suboptimal functioning in basal ganglia and frontostriatal neural loops, upon which

implicit learning is dependent, is implicated in ADHD (Bush, Valera, & Seidman, 2005;

Dickstein, Bannon, Castellanos, & Milham, 2006). Sagvolden et al (2005) specifically

argued that the involvement of a hypofunctioning dopaminergic nigrostriatal system would

result in impairments in habit learning, a class of implicit learning (Seger, 1994). Nigg and

Casey (2005) similarly argued that weaknesses in frontal-striatal and fronto-cerebellar

neural loops would result in ADHD-related difficulty predicting both contextual and

temporal structures within the environment, structures that develop under the control of an

implicit learning system.

The sparse empirical literature on implicit learning in ADHD that exists (Barnes, Howard,

Howard, Kenealy, & Vaidya, 2010; Karatekin, White, & Bingham, 2009; Prehn-Kristensen

et al., 2011; Vloet et al., 2010; Waber et al., 2003), tends to rely on accuracy rates as a

primary performance indicator (but see: Weigard & Huang-Pollock, in press). However,

qualitatively different strategies can lead to identical accuracy rates, so the analysis of

accuracy alone is quite limited in its ability to explain the presence or absence of individual

differences in skill acquisition.

Models of skill acquisition have greatly expanded to include functional (e.g., rule-based

models, signal detection models, selective attention models), computational (e.g., COVIS,

ALCOVE, ITAM, see Palmeri, Wong, & Gauthier, 2004 for review), neuronal (e.g.,

Hebbian model, Rescorla-Wagner model), and molecular (e.g., dopamine model) models.

Category learning in particular has been extensively studied within the cognitive literature

because it is critical for survival, allowing people to make adaptive responses across a

variety of situations. Because of its strong theoretical and evidentiary base in the cognitive

literature; its ability to shed insight into the strategies that are adopted by participants

beyond accuracy analyses; its validation in school aged children (Huang-Pollock, Maddox,

& Karalunas, 2011); and its use of novel stimuli to ensure performance is independent of
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prior learning or academic experiences; we utilize a perceptual categorization paradigm and

the associated COVIS (COmpetition between Verbal and Implicit Systems) model herein.

COVIS is a neurobiologically-inspired multiple systems model of category learning that

proposes the presence of at least two distinctive systems: an (explicit) verbal rule-based

(RB) system and an (implicit) information-integration (II) learning system that learns by

association (Ashby, Alfonso-Reese, Turken, & Waldron, 1998). Neuropsychological

predictions based on the COVIS model have been validated in Parkinson’s (Ashby, Noble,

Filoteo, Waldron, & Ell, 2003), Huntington’s (Filoteo, Maddox, & Davis, 2001), Amnesia

(Maddox & Filoteo, 2007), and Anorexia Nervosa (Shott et al., 2012).

Verbal RB category learning is dependent on the anterior cingulate and prefrontal cortices,

and operates via a hypothesis testing procedure where a verbalized rule is continuously

tested and updated until an optimal rule is identified. Examples of verbalizable rules include

single feature (if-then), conjunctive (if-and-then), disjunctive (if-or-then), and exceptions (if-

then-except) (Minda, Desroches, & Church, 2008b). Verbal skills, working memory, and

attentional control facilities play important roles on RB tasks (Maddox, Ashby, & Bohil,

2003).

In contrast, II category learning, mediated predominantly by a set of frontal-striatal

structures (i.e. caudate, putamen, and globus pallidus: Keri, 2003; Seger, 1994), learns not

by active hypothesis testing, but by gradually recognizing subtle covariations within the

environment. It is theoretically best suited for situations in which hundreds if not thousands

of exemplars exist, and for which the relation among them cannot easily (if at all) be

expressed using verbalizable rule-based algorithms (Ashby et al., 1998). Recent

neuroimaging and behavioral studies have also suggested that this system also mediates the

learning of unstructured categories. These are categories for which no systematic covariation

or relations exist amongst the category exemplar and thus the category associations are

arbitrary (Crossley, Madsen, & Ashby, 2012; Seger, 2008).

Research in animal, neuropsychological, and human fMRI work have all presented

convergent evidence that RB and II category learning represent distinct systems that

partially overlap, and which together guide correct decision making in day to day life

(Maddox & Ashby, 2004; Poldrack & Foerde, 2008). Importantly, both humans and non-

human primates are biased towards the RB system, even when the optimal strategy requires

an II approach. This is likely because RB learning follows a hypothesis testing approach that

leads to all-or-none mastery and is therefore faster than the incremental trial-and-error

associative process of II learning. This bias must first be inhibited before an II strategy is

adopted (Filoteo, Lauritzen, & Maddox, 2010; Zeithamova & Maddox, 2006).

Both RB and II category learning show developmental changes (Huang-Pollock et al.,

2011). Compared to adults, typically developing school aged children persist in sorting

stimuli along a more salient but irrelevant dimension in a RB task presumably due to

immature executive control processes (Huang-Pollock et al., 2011). In turn, ADHD is a

disorder that is practically synonymous with deficits in executive functions, and particularly

with respect to inhibitory control (Nigg, 2001, 2003). Thus, we would similarly expect
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children with ADHD to have lower accuracy rates than their same aged peers because of the

persistent use of the more salient but irrelevant dimension when sorting stimuli.

Under II conditions, and compared to adults, typically developing school aged children

(Huang-Pollock et al., 2011) and older adults (Maddox, Pacheco, Reeves, Zhu, & Schnyer,

2010) show delays in transitioning from RB to II strategy use. The ability to navigate this

transition relies on the effective use of feedback to inhibit the bias towards RB learning,

which is at least partially mediated by the prefrontal cortex (Ashby & Maddox, 2011). Thus,

we might predict that compared to their same aged peers, children with ADHD would

likewise be delayed in transitioning from an RB to an II approach under II conditions.

However, if children with ADHD have more fundamental deficits in associative learning,

they may never transition to II strategy use at all, or may perform in a random fashion. We

test these predictions in Study 1.

Study 1

Methods

Participants—Sample ethnicity reflected regional demographics: 76% Caucasian, 9%

African American, 4% Hispanic, 2% Asian, 4% mixed, 5% unknown. Children aged 8–12

were community recruited from radio, magazine, and internet ads, as well as public flyers

posted in the community and provided to local schools in the Central and Dauphin counties

of Pennsylvania. Exclusion criteria included: (1) current non-stimulant medication treatment

(e.g., neuroleptics, antidepressants), (2) diagnosis of pervasive developmental disorder,

intellectual disability, sensorimotor disability, psychosis, or other parent-reported

neurological disorder, and (3) estimated Full Scale IQ (FSIQ)<70.

Children with ADHD: Children with ADHD (n=81) met DSM-IV criteria for ADHD

including age of onset, duration, cross situational severity, and impairment as determined by

parental report on the Diagnostic Interview Schedule for Children-IV (DISC-IV: Shaffer,

Fisher, & Lucas, 1997). At least one parent and one teacher report of behavior on the

Attention, Hyperactivity, or ADHD subscales of the Behavioral Assessment Scale for

Children-2 (BASC-2: Reynolds & Kamphaus, 1992) or the Conner’s Rating Scale (Conners,

1997) was required to exceed the 85th percentile (T-score>61). Both are commonly used and

well-validated for the evaluation and diagnosis of ADHD. Following DSM-IV field trials

(Lahey et al., 1994), an “or” algorithm integrating parent report on the DISC and teacher

report on the ADHD Rating-Scale (DuPaul, Power, Anastopoulos, & Reid, 1998) was used

to determine symptom count and subtype (Table 1). Children prescribed stimulant

medication (n=28, 34%) were asked to discontinue medication use for 24–48 hours

(mean=66 hours).

Controls: Controls (n=42) did not meet ADHD criteria on DISC-IV, had T-scores below the

80th percentile (T-score<58) on all listed parent and teacher rating scales, and had never

been previously diagnosed or treated for ADHD. All had ≤4 total symptoms and ≤3

symptoms per ADHD dimension according to the “or” algorithm. The presence of anxiety,

depression, oppositional defiant, and conduct disorders were not exclusionary.
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Procedures—Informed written consent from parents and verbal assent from children was

obtained in accordance with IRB procedures approved by The Pennsylvania State

University. Parents were given monetary compensation and relevant clinical feedback.

Children were given a small prize.

Intellectual ability: Estimated FSIQ was obtained using a 2-subtest short-form (vocabulary

and matrix reasoning, test-retest reliability=0.93, predictive validity=0.87) of the Wechsler

Intelligence Scale for Children (WISC-IV: Wechsler, 2003).

Categorization learning paradigms: Gabor patches (Figure 1A) were created using

MATLAB routines to randomly sample from two bivariate normal distributions of spatial

frequency and orientation (Maddox et al., 2003). All participants received the same

randomized order of stimuli. Each task had 5 blocks of 80 trials (40 per category) with

visual feedback (“correct” or “wrong”) presented below the stimulus immediately after each

response for 500 ms. The task was self-paced. One of the methodological advantages of this

approach is that unlike other associative learning paradigms (e.g. probabilistic learning), the

stimuli are numerous and varied enough to make the success of memorization unlikely.

The conditions were (1) an RB task that could be solved by sorting along spatial frequency

(Figure 1B) and (2) an II task in which both spatial frequency and orientation were needed

to achieve optimal performance (Figure 1C). The tasks were counterbalanced and spaced

one week apart. Primary results did not vary by counterbalancing order, and

counterbalancing order was equivalent between groups, Χ2 (1,123)=0.47, p=0.49.

In both, participants determined whether the images belonged in Category A or Category B

(the “z” and “/” keys; stickers were placed over appropriate keys). They were told that

though they might at first be guessing, at some point they would start to get an idea about

the right answer. They were instructed to be as accurate as possible, and not to be concerned

with speed. Instructions were repeated as necessary; optional rest periods were offered

between blocks of 80 trials. Once task instructions were provided, research assistants

removed themselves from the child’s direct line of sight but remained present in the room to

provide behavioral oversight. Task length was ~20 minutes.

Data analysis—A 2 (Group) × 5 (Block) repeated measures GLM was conducted for

accuracy analyses. Because qualitatively different strategies can lead to identical accuracy

rates, models were fit to each participant’s set of responses on a block by block basis to

determine the type of strategy used. All models assume that participants partition the

stimulus space into response regions. Each response region was assigned to a category (e.g.,

respond A if the line is thick) and the location of each decision criterion was a free

parameter.

Five models were applied to the RB data: (1) an RB unidimensional model along the correct

frequency dimension that used the optimal decision criterion, (2) an RB unidimensional

model along the correct frequency dimension that estimated the decision criterion from the

data, (3) an RB unidimensional model along the incorrect orientation dimension that

estimated the decision criterion from the data, (4) an II general linear classifier (GLC) model
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that partitions the stimulus space using a linear decision bound that includes both

dimensions, and (5) a random responder model.

Five models were applied to the II data: (1) an II GLC model that assumed the optimal slope

and intercept, (2) an II GLC model that estimated the slope and intercept from the data, (3)

an RB conjunctive (CJ) model that partitions the stimulus space into four perpendicular

regions by frequency and orientation, (4) an RB unidimensional model (along either

dimension), and (5) a random responder model. A 2 (Group) × 5 (Block) repeated measures

logistical regression was conducted for analyses of strategy use.

All models included a “noise” parameter which provides an estimate of the perceptual and

criterial noise associated with classification. The models were fit using maximum likelihood

procedures (Ashby & Maddox, 1992) and Akaike Information Criterion (AIC). The AIC

statistic penalizes models for each additional free parameter with AIC=(2*n)+(2L), where n

equals the number of parameters and L is the maximum likelihood estimate of the data given

the model (Akaike, 1974).

The experiments generated a two factor Block (5) × Group (2) design. Dependent variables

were accuracy rate, and the proportion of children using a given sorting strategy (i.e. RB, II,

etc). SPSS’s GenLin procedure was used to test the effects of Block and Group on strategy

use as a dichotomous variable.

Results

Children with ADHD were more hyperactive, impulsive, and inattentive than Controls (all

p<0.001, ; Table 1). There were no group differences in IQ or age (both p>0.26,

).

RB Category Learning—Main effects of Group, Block, and a Group × Block interaction

were found for accuracy (all p<0.03, ; Figure 2A, Table 2). Controls outperformed

children with ADHD, and both groups improved their performance over time. Whereas

Controls showed a quadratic early steep learning trajectory that reached asymptote after

Block 3, F(1,35)=12.31, p=0.01, , children with ADHD maintained a steady, slow

linear trajectory, F(1,62)=10.58, p=0.002, .

Analyses of strategy use found that a larger proportion of Controls than children with

ADHD sorted stimuli along the correct dimension, Χ2(1,N=99)= 7.08, p=0.01 (Figure 2B).

The main effect of Block and the Block × Group interaction were not significant (both

p>0.12). Conversely, a larger proportion of children with ADHD sorted along the irrelevant

dimension Χ2(1,N=99)= 6.13, p=0.01 (Figure 2B). The proportion of children sorting along

the irrelevant dimension significantly decreased with Block, Χ2(4,99) = 11.99, p=0.02, but

the Group × Block interaction was not significant, Χ2(4,99) = 3.18, p=0.53. The proportion

of non-ADHD Controls attempting to sort stimuli using an II model was higher than

children with ADHD, Χ2(1,N=99)= 7.08, p=0.01 (Figure 2C), but the main effect of Block
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and Block × Group interaction were not significant (both p >0.12). The proportion of

children in both groups using a random strategy was essentially zero (Figure 2D).

II Category Learning—Main effects of Group and Block (both p<0.02, ), were

found in which Controls outperformed children with ADHD, and accuracy improved over

time (Figure 2E; Table 2). The Block × Group interaction was not significant (p=0.24,

).

There was no main effect of Group or Block for the proportion of participants sorting by the

correct II strategy (all p>0.12), but a significant Group × Block interaction was found in

which more Controls were increasingly best fit by an II strategy than children with ADHD,

Χ2(4,96)=14.18, p=0.01 (Figure 2F). In contrast, a larger proportion of children with ADHD

than Controls were best fit with a random responder model, Χ2(1,96) = 4.39, p=0.04 (Figure

2H). The main effect of Block and Block × Group interaction for random model use were

not significant (both p>0.21). There was no main effect of Group or a Group × Block

interaction for use of a unidimensional rule-based strategy (both p>0.43), though

unidimensional rule use decreased with Block, Χ2(4,96)=15.05, p=0.01 (Figure 2G).

Discussion

In an earlier developmental study comparing typically developing school aged children to

adults (Huang-Pollock et al., 2011), children underperformed adults because they persisted

in sorting stimuli along the irrelevant dimension. Likewise, in the current study, we found

that children with ADHD underperformed Controls for the same reason. Such a finding is

consistent with documented ADHD-related weaknesses in interference control (Lansbergen,

Kenemans, & van Engeland, 2007; Mullane, Corkum, Klein, & McLaughlin, 2009), as well

as evidence for ADHD-related deficits in well-known simple explicit category learning tasks

(e.g. WCST: Romine et al., 2004).

With respect to II category learning, typically developing children underperform adults

because they have more difficulty inhibiting the bias for the RB system and transitioning to

the II system (Huang-Pollock et al., 2011). Thus, children with ADHD might also have been

expected to demonstrate this same pattern of performance when compared against non-

ADHD controls. Instead, they were best fit by a random responder model even after

extensive training. In comparison, with each successive block, more non-ADHD controls

were sorting according to the correct II strategy. Thus, both explicit RB and associative II

learning were impaired in ADHD, but the cause for poor performance on the II task could

not be attributed to an ADHD-related developmental delay in the inhibition of the verbal RB

system.

A prominent difference between the RB and II tasks, other than the explicit-associative

distinction, is that the latter requires the integration of two dimensions, whereas the former

requires attention to only a single dimension. Thus, the apparent ADHD-related deficit in II

learning, though predicted by theoretical models of ADHD, might instead reflect a general

weakness in the simultaneous consideration of two stimulus distributions. With this in mind,

in Study 2, we used a task that followed an explicit conjunctive (CJ) rule “If X and Y, then,”
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that required consideration of two continuous dimensions. To encourage use of both

stimulus dimensions, the stimulus variance on the orientation and spatial frequency was

equated so the salience of the two dimensions was approximately equal.

Study 2

Methods

Participants—A new sample of children aged 8–12 was recruited, screened, and identified

in the same manner as in Study 1. Sample ethnicity was 75% Caucasian, 10% African

American, 3.6% Hispanic, 1.2% Asian, and 10.2% mixed ethnicity. Children with ADHD.

There were 50 children with ADHD; children currently taking stimulant medication (n=11,

22%) discontinued medication use for 24–48 hours (mean=73 hours). Controls. Thirty-three

typically developing children were recruited. See Table 1.

Procedure and Data Analysis—All stimuli, procedures, and instructions were identical

to Study 1. In the CJ task, the optimal strategy was an explicit rule that partitioned the

stimulus space into four perpendicular regions (Figure 1D). The stimulus variances on the

orientation and spatial frequency dimensions were equated so that the salience of the two

dimensions was approximately equal. Items in Category A (large spatial frequency, shallow

slopes) were over sampled to equate baserate of occurrence. There were 7 blocks of 54

trials. Model fitting procedures were identical to Study 1. Task length was ~20 minutes. Six

models were applied to the CJ data: (1) an RB conjunctive model that assumes the optimal

decision criteria along the frequency and orientation dimensions, (2) an RB conjunctive

model that estimates the decision criteria along the frequency and orientation dimensions

from the data, (3) an RB unidimensional model along the frequency dimension, (4) an RB

unidimensional model along the orientation dimension, (5) an II general linear classifier

(GLC) model that partitions the stimulus space using a linear decision bound that includes

both dimensions, and (6) a random responder model.

Results

Children with ADHD were more hyperactive, impulsive, and inattentive than Controls (all

p<0.001, ; Table 1). There were no group differences in IQ or age (both p>0.06,

).

A significant main effect of Group (p=0.001, ) was found in which Controls were

more accurate than children with ADHD (Figure 3A; Table 2). The main effect of Block and

Block × Group interaction were not significant (both p>0.10, ). However, there was

a significant linear trend for increasing accuracy among Controls, F(6,192)=2.44, p=0.03,

, but not children with ADHD, F(6,294)=0.83, p=0.55, , which can be seen

in Figure 3A.

Analyses of strategy use found no main effect of Group, Block, or Group × Block

interaction on the proportion of individuals utilizing an optimal CJ strategy (all p>0.06;

Figures 3B and C). However, a larger proportion of Controls were best fit with a one-
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dimensional model than children with ADHD, and a larger proportion of children with

ADHD were best fit with a random responder model (both p<0.001; Figure 3C and D).

There were no main effects of Block or a Block × Group interaction on model use, except

that random model use decreased with Block, Χ2(6,83) = 17.66, p=0.01.

Discussion

Controls maintained a suboptimal one-dimensional approach and outperformed children

with ADHD, who, as in the II task of Study 1, were again best fit with a random responder

model. The ADHD-related performance deficit is therefore not specific to II learning, but is

seen when the consideration of more than one stimulus dimension is required. We might

therefore wonder why children with ADHD would not resort to a single dimensional

strategy in the same manner as non-ADHD controls, particularly as they were able to

identify a reliable (though incorrect) one dimensional strategy in the RB task of Study 1. We

believe that the answer lies in the fact that unlike the RB task of Study 1, in the CJ task, the

stimulus variances on the orientation and spatial frequency dimensions were approximately

equal so that no single dimension was more salient than the other. It remains to be seen

whether children with ADHD would have been able to identify a coherent sorting strategy

had the stimulus dimensions been equated in the RB task of Study 1.

Controls do not demonstrate this general inability to incorporate information across multiple

dimensions. Instead, their response strategies were responsive to category structure. Use of a

unidimensional rule in the CJ task (although less optimal than the correct CJ strategy) could

still result in an 83% accuracy rate overall, with 100% accuracy for Category A. In contrast,

in the II condition, a unidimensional rule would only yield a maximum 65% accuracy.

Unidimensional rule use was therefore not as reinforcing in the II condition, leading to the

gradual adoption of the two dimensional II approach for the majority of Controls.

General Discussion

Category learning is a fundamental decision process needed for survival, and its underlying

neuroanatomical substrates have been extensively studied. Among its many methodological

strengths, the paradigm produces a large number of continuous stimuli that prevents

participants from memorizing discrete responses. Because the stimuli and paradigm are

novel to children, performance is not influenced by the quality, level, or extent of previous

academic instruction. Most importantly, however, how a child or any individual solves a

given task is an empirical question, and no task is process pure. The computational COVIS

model provides important insight into participant response strategies that goes well beyond

simple accuracy analyses. Across both studies, we found evidence that children with ADHD

underperformed Controls on both explicit RB and associative II category learning tasks.

With respect to explicit learning, a process that optimally results in the creation of a

verbalizable, abstract, flexible, and context-independent rule or set of rules (Ashby & Ell,

2001; Ashby & Maddox, 2005; Maddox et al., 2003; Maddox & Ing, 2005), children with

ADHD struggled to acquire both a single unidimensional rule (Study 1) as well as a

conjunctive rule (Study 2), but for strikingly different reasons. In Study 1, increased

variance along the irrelevant dimension interfered with their ability to sort along the correct
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but less salient dimension. In Study 2, they were not only unable to consider both

dimensions to optimize performance, but were also unable to identify a suboptimal one-

dimensional approach. Instead, they were best fit with a random responder model.

The ability to learn increasingly complex explicit rules is dependent upon the health and

development of the neuroanatomical structures needed to represent such rules, including the

prefrontal and medial-temporal cortices, anterior cingulate cortex, and the head of the

caudate (Gabrieli, Brewer, Desmond, & Glover, 1997; Minda, Desroches, & Church,

2008a). As such, the ability to explicitly learn is intimately and neuroanatomically related to

executive functionality (e.g. Bunge & Zelazo, 2006). The moderating effect of executive

demands during explicit skill acquisition in ADHD, focusing in that case on working

memory, has previously been demonstrated (Huang-Pollock & Karalunas, 2010). Many of

the fundamental building blocks of academic skill depend upon learning explicit rules that

gradually build and increase in complexity (e.g. multiplication and division building upon

addition and subtraction). Our findings suggest that impairments in rule-based learning, may

represent one important cognitive mechanism that contributes to academic

underachievement among children with ADHD (Frazier, Youngstrom, Glutting, & Watkins,

2007).

But what about associative learning processes, which are not solved using rule-based verbal

strategies and are less dependent upon executive processes? Although children with ADHD

were best fit with the random responder model in the II task, this was also the case for the

CJ task, suggesting a broad weakness when required to consider more than one stimulus

dimension during category learning. Importantly, results are not due to problems with

sustained attention. Problems sustaining attention would be identified if performance

deteriorated over time (Huang-Pollock, Nigg, & Halperin, 2006; Huang-Pollock, Karalunas,

Tam, & Moore, 2012), a pattern that was not seen for either group of children. Note,

however, that the analysis of multiple sorting strategies may have inflated our Type I error

rate. It also bears mentioning that the model-fitting process requires that the individual apply

a fixed strategy across multiple trials. Therefore, when the random responder model proves

the best fit, COVIS is unable to determine whether a participant is in fact responding

randomly, or whether s/he is rapidly switching between strategies. Although we are unable

to disentangle whether the adoption of random response strategies under II and CJ

conditions can be attributed to separate mechanisms, such a question could be addressed in

future studies.

Considering CJ first, when either verbal or visual spatial resources are reduced under dual

task conditions, adults revert to random or unidimensional strategies, presumably because

their ability to analyze the stimuli and their individual dimensions have been disrupted

(Miles & Minda, 2011; Zeithamova & Maddox, 2006, 2007). Thus, for the CJ task, reduced

WM capacity among children with ADHD (compared to their non-ADHD counterparts),

may have similarly disrupted the process of rule discovery and lead to the adoption of a

random response strategy.

In contrast, and unlike RB category learning, the learning of II category structures is highly

dependent upon feedback timing (Maddox et al., 2003; Maddox & Ing, 2005). In adults, a
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delay of even a few seconds is enough to disrupt II learning because nonverbal learning is

dependent upon the availability and timing of dopamine release (Ashby & Maddox, 2005),

which is also believed to be altered in ADHD (Sagvolden et al., 2005). In the paradigms

used in the current study, visual feedback (“correct”/”wrong”) was presented immediately

following the response and remained onscreen for 500 ms. However, it may be that children

with ADHD were unable to fully process this feedback within this period of time, which

would have lead them to have an altered feedback experience when compared to non-ADHD

Controls. Indeed, organic evidence of error monitoring deficits in ADHD have been found in

functional (Depue et al., 2010; Durston et al., 2007), structural (Castellanos et al., 2002;

Seidman, Valera, & Makris, 2005), and neural connectivity studies (Konrad & Eickhoff,

2010). Thus, for the II task, the rise of random strategy use might be due to a delayed or an

otherwise altered feedback experience.

To better disentangle the mechanisms leading to the adoption of random response strategies

in both the CJ and II learning tasks, future studies should consider either prolonging the

feedback period or the manner in which feedback is delivered. Such a manipulation would

not be expected to improve peformance on the CJ task, which, as an explicit rule-based task

is robust to disruptions in (or even absence of) feedback (Maddox et al., 2003; Maddox &

Ing, 2005). But, if impaired II learning in ADHD was related to feedback processing, such a

manipulation would be expected to improve II category acquisition.

We chose to examine performance among children aged 9–12 given previous validation of

the COVIS model in this age group (Huang-Pollock et al., 2011), and because it is at this

age that children are most commonly identifed with ADHD. However, future studies might

seek to examine performance in a population of adolescents or adults, as well as preschool

children with ADHD to better map the developmental progression of category learning

deficits in this population.

Conclusions

Overall, we found evidence that children with ADHD have deficits in both explicit RB and

associative II perceptual category learning. Deficits in the former are understood to reflect

underdeveloped executive systems critical to explicit learning, and deficits in the latter

appear to reflect a decreased ability to utilize multiple continuously distributed streams of

information in the service of decision making. Our results provide partial support for

neurocognitive developmental theories of ADHD that suggest associative learning deficits

should be found. That being said, the construct of “implicit learning,” like that of executive

function (Miyake et al., 2000), is not unitary (Gebauer & Mackintosh, 2007), and evidence

for or against one type of implicit learning process would not necessarily be expected to

generalize to others. What is clear, however, is that the COVIS framework allows us to

move beyond asking whether an ADHD-related deficit in performance exists, to

understanding why such deficits exist.
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Figure 1.
Stimulus and stimulus plots.
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Figure 2.
Study 1 accuracy and proportion of participants using any given strategy by Block. Solid

line=Control, Dashed=ADHD.
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Figure 3.
Study 2 accuracy and model use over Block where Squares=Controls, Circles=ADHD.
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Table 1

Demographic data with means and SD.

Study 1 Study 2

Control ADHD Control ADHD

N (Males:Females) 42 (16:26) 81 (52:29) 33 (14:19) 50 (29:21)

#Subtypes (H, I, C) -- 5,42,34 -- 5,21,24

Age 10.51 (1.37) 10.35 (1.32) 10.23 (1.20) 9.78 (1.14)

Estimated Full Scale IQ 106.07 (12.18) 103.20 (13.75) 108.39 (10.53) 103.08 (13.54)

Hyperactivity/Impulsivity

  Total # of symptoms 0.27 (0.50) 5.10 (2.94)*** 0.23 (0.50) 5.72 (2.64) ***

  Parent BASC-2 T score 42.79 (5.76) 65.32 (13.47)*** 44.52 (6.08) 62.20 (12.11) ***

  Parent Conners T score 46.31 (2.91) 67.06 (14.36)*** 47.00 (3.23) 66.54 (13.12) ***

  Teacher BASC-2 T score 44.05 (5.05) 60.12 (11.83)*** 43.06 (3.40) 61.48 (11.58) ***

  Teacher Conners T score 46.12 (3.40) 60.16 (11.57)*** 45.79 (3.30) 61.46 (11.59) ***

Inattentive symptoms

  Total # of symptoms 0.74 (0.91) 7.89 (1.40)*** 0.70 (0.99) 7.58 (1.54) ***

  Parent BASC-2 T score 43.81 (5.88) 66.27 (6.10)*** 44.61 (5.78) 66.88 (5.89) ***

  Parent Conners T score 46.02 (3.63) 69.47 (11.19)*** 46.09 (4.01) 69.64 (12.43) ***

  Teacher BASC-2 T score 43.33 (6.59) 61.30 (6.30)*** 43.64 (5.02) 62.34 (5.43) ***

  Teacher Conners T score 46.64 (4.68) 59.49 (11.11)*** 45.30 (3.50) 59.82 (10.71) ***

Note:

***
p<0.001.

*
p<0.05

Neuropsychology. Author manuscript; available in PMC 2015 July 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Huang-Pollock et al. Page 20

Table 2

Table of F and Wald Χ2 values for Studies 1 and 2.

Dependent Variable MainEffect/Interaction F (dfw,dfb), 
or
Wald Χ2 (dfw,N), φc p

Direction

Rule-Based Task

Accuracy Group F(1,97)=7.80,0.07 0.01** Control>ADHD

Block F(4,388)=10.99,0.10 <0.001***

Block×Group F(4,388)=2.73,0.03 0.03*

Proportion using relevant RB dimension Group Χ2 (1,99) = 7.08,0.27 0.01** Control>ADHD

Block Χ2 (4,99) = 7.32,0.14 0.12

Block×Group Χ2 (4,99) = 4.11,0.10 0.39

Proportion using irrelevant RB dimension Group Χ2 (1,99) = 6.13,0.25 0.01** ADHD>Control

Block Χ2 (4,99) = 11.99,0.17 0.02*

Block×Group Χ2 (4,99) = 3.18,0.09 0.53

Proportion using II approach Group Χ2 (1,99) = 7.08,0.27 0.01** Control>ADHD

Block Χ2 (4,99) = 7.32,0.14 0.12

Block×Group Χ2 (4,99) = 4.11,0.10 0.39

Information Integration Task

Accuracy Group F(1,94)=5.62,0.06 0.02* Control>ADHD

Block F(4,376)=6.56,0.06 0.001***

Block×Group F(4,376)=1.37,0.01 0.24

Proportion using II approach Group Χ2 (1,96) = 1.64,0.13 0.20

Block Χ2 (4,96) = 7.36,0.14 0.12

Block×Group Χ2 (4,96) = 14.18,0.19 0.01**

Proportion using 1D approach Group Χ2 (1,96) = 0.18,0.04 0.67

Block Χ2 (4,96) = 15.05,0.20 0.01**

Block×Group Χ2 (4,96) = 3.82,0.10 0.43

Proportion using Random approach Group Χ2 (1,96) = 4.39,0.21 0.04* ADHD>Control

Block Χ2 (4,96) = 4.61,0.11 0.33

Block×Group Χ2 (4,96) = 5.87,0.12 0.21

Conjunctive Rule-Based Task

Accuracy Group F(1,81)=11. 99,0.13 0.001** Control>ADHD

Block F(6,486)=1.78,0.02 0.10

Group×Block F(6,486)=1.77,0.02 0.10

Proportion using optimal CJ approach Group Χ2 (1,83) = 3.61,0.21 0.06

Block Χ2 (6,83) = 10.76,0.15 0.10
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Dependent Variable MainEffect/Interaction F (dfw,dfb), 
or
Wald Χ2 (dfw,N), φc p

Direction

Group×Block Χ2 (6,83) = 7.56,0.12 0.27

Proportion using a 1D approach Group Χ2 (1,83) = 12.50,0.39 0.001*** Controls>ADHD

Block Χ2 (6,83) = 6.25,0.11 0.40

Group×Block Χ2 (6,83) = 6.49,0.11 0.37

Proportion using Random approach Group Χ2 (1,83) = 10.35,0.35 0.001*** ADHD>Controls

Block Χ2 (6,83) = 17.66,0.19 0.01**

Group×Block Χ2 (6,83) = 7.34,0.12 0.29

***
p<0.001,

**
p<0.01,

*
p<0.05
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