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Abstract

The osteochondral junction is composed of numerous tissue components and serves important

functions relating to structural stability and proper nutrition in joints such as the knee and spine.
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Conventional MR techniques have been inadequate at imaging the tissues of the osteochondral

junction primarily because of the intrinsically short T2 nature of these tissues, rendering them

“invisible” with the standard acquisitions. Ultrashort time to echo (UTE) MR techniques acquire

sufficient MR signal of osteochondral tissues, thereby allowing direct evaluation. This article

reviews the anatomy of the osteochondral junction of the knee and the spine, technical aspects of

UTE MRI, and the application of UTE MRI for evaluation of the osteochondral junction.
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Introduction: Osteochondral Junction

The osteochondral junction predominates in many joints in the human body where cartilage

attaches to the subchondral bone. These include diarthrodial joints such as the knee and the

hip as well as fibrocartilaginous joints such as the intervertebral discs. The anatomy of the

osteochondral junction is complex, as several tissue components exist near the junction. For

example, in a vertical cross section of the femoral condyle, layers of tissues (Fig. 1a)

including uncalcified cartilage (which has superficial, middle and deep layers [1]), calcified

cartilage and subchondral bone are present. Similarly, in the spine, layers of tissues (Fig. 1b)

including the disc proper (nucleus pulposus and/or annulus fibrosus), uncalcified and

calcified cartilaginous endplates, and subchondral bone of vertebral endplate exist. The term

“osteochondral junction” is rather loosely defined and may refer to one or more tissue

components in the region.

In the knee, the osteochondral junction (Fig. 1a) serves to connect the overlying articular

cartilage to the subchondral bone via calcified cartilage. The deepest layer of softer

uncalcified cartilage has radially oriented collagen fibrils [1] that embed into much stiffer

calcified cartilage at the tidemark or the calcification front. Calcified cartilage interdigitates

with the subchondral bone, and the rough interface between the tissues combined with high

stiffness [2] of the calcified cartilage provides mechanical stability and resistance against

shear failure [3]. Calcified cartilage is a thin (100–200 µm thick [4•]) tissue, is metabolically

active [5], consists of a large proportion of hydroxyapatite (~65 % [6]), and remodels with

loading [7] and aging [8]. Lane et al. [4•] has showed that calcified cartilage thickness

decreases with age, from ~200 µm at about age 20, down to less than 100 µm by age 90.

Subchondral bone consists mostly of impermeable cortical bone and provides underlying

support for uncalcified and calcified cartilage. The thickness of the subchondral bone plate

is on the order of 2 mm, but varies with location, age and joint degeneration [9]. Vascular

canals penetrate both the subchondral bone and calcified cartilage, providing a nutritional

pathway between the bone marrow and articular cartilage.

The osteochondral junction of the knee has been implicated in the pathogenesis of

osteoarthritis. In addition to age-related changes in calcified cartilage [4•], joint loading can

induce injury or degenerative changes at the osteochondral junction, including subarticular

fracture [10], cloning of the cell in the calcified cartilage layer [11] and cell death in the
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deep layer [12]. It is also important for cartilage repair. During microfracture surgery in

animals, the presence of the calcified cartilage layer is an important determinant of the

outcome of the surgery [13].

A similar structure is also seen at the disco-vertebral junction (Fig. 1b) of the spine. Here,

the nucleus pulposus and annulus fibrosus anchor into the uncalcified cartilaginous endplate

(CEP), which is attached to the calcified CEP, supported by the subchondral bone. The

uncalcified CEP is ~1 mm thick, and its extracellular matrix consists mainly of

proteoglycans, collagen and water. Calcified CEP is ~100 µm thick and interdigitates with

the subchondral bone, similar to the calcified cartilage of the knee. The detailed collagen

network architecture of this region has been documented by Inoue et al. [14•] and Wade et

al. [15•].

Due to avascular nature, the intervertebral discs must receive a large proportion of nutrition

via disco-vertebral junction. A rich supply of blood vessels exists [16], penetrating the

subchondral bone and the calcified CEP. Studies have shown a correlation between the low

density of vascular canals with disc degeneration [17], emphasizing a nutritional role of the

disco-vertebral junction and implication for disc degeneration. Other age-related changes in

the CEP have been suggested, such as thinning and occlusion of vascular canals by ectopic

calcification [18]. A non-invasive and sensitive method to detect changes in the

osteochondral junctions of the human joints would be of considerable value for early

diagnosis and understanding of the pathogenesis.

Limitation of Conventional MRI and Advantage of UTE MRI

While the importance of the osteochondral junction for proper function and degeneration of

human joints has been recognized, it has been difficult to evaluate this important region

using conventional magnetic resonance imaging (MRI) techniques. Tissues of the human

body have intrinsic MR properties, such as T1 (spin–lattice relaxation time constant), T2

(spin–spin relaxation time constant) and T1rho (spin–lattice relaxation time constant in

rotating frame) [19]. MR pulse sequences, by adjusting parameters of time to repeat (TR),

time to echo (TE) and time to spin lock (TSL), are able to obtain images depicting many

structures of the joint with preferred contrast. For example, Fig. 2a and b shows images of a

knee, showing articular cartilage with different signal intensities relative to the surrounding

tissues.

However, due to technical limitations of clinical MR scanners, many tissues have remained

“invisible” (i.e., have very low signal intensity) on conventional MR images. A primary

reason for this is the intrinsic T2 or T2* of the tissue being too short to provide a detectable

signal when imaged with a conventional sequence with relatively long TE (e.g., Fig. 2a, b).

In the knee, the bulk of articular cartilage has intermediate T2 values of ~50 ms (Fig. 3a),

while the layer of calcified cartilage has T2 value ~2 ms [20]. Similarly, the nucleus

pulposus of the intervertebral disc has a long T2 value ~150 ms, while both uncalcified and

calcified CEPs have much shorter T2 values, less than 5 ms (Fig. 6). Subchondral bone has

even shorter T2 values than 1 ms [21]. Given that a practical minimum TE is ~10 ms for a

spin echo sequence and ~ 2 ms for a gradient echo sequence, many short T2 tissues near the
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osteochondral junction will be “invisible” or imaged with suboptimal contrast because of the

rapidly decaying MR signal.

Ultrashort TE (UTE) techniques allow acquisition of MR signals much earlier after

excitation than with conventional sequences. With UTE sequences, the minimum TE can

now be as short as 8 µs [21]. As a result, MR signal from previously “invisible” tissues with

very short T2 values can now be acquired and imaged with high signal intensity (Figs. 2c, d

and 4c, d). The majority of tissues near the osteochondral junction, including the deepest

layer of the articular cartilage, calcified cartilage, and uncalcified and calcified CEP, can

now be directly imaged using UTE techniques.

UTE MR Techniques

A number of UTE techniques have been developed and refined, focusing on the method of

image acquisition, contrast enhancement, and quantitation of MR properties. Methods of

image acquisition include two-dimensional (2D) [22–24] and three-dimensional (3D) [25,

26] approaches. The 2D UTE sequence typically employs half excitation pulses with radial

sampling of k-space from the center out [27, 28]. Data from the two half excitations are

subsequently combined to produce a single radial line of k-space. The radial k-space data are

converted to a Cartesian grid and reconstructed by 2D inverse Fourier transformation (FT).

The 3D UTE sequences usually employ a short hard pulse excitation followed by 3D radial

ramp sampling [25, 26, 29] or 3D cones trajectory [30], followed by re-gridding of k-space

onto a Cartesian grid and 3D inverse FT.

These image acquisition sequences may be used in conjunction with techniques to modulate

image contrast. In particular, suppression of the long T2 signal while preserving the short T2

signal has been of interest in order to better evaluate short T2 tissues. A simple and effective

technique is to acquire two images at varying echo times and perform digital image

subtraction [31•, 32]. The first echo image (obtained at the minimum TE, typically less than

0.1 ms) contains MR signals from both short and long T2 tissues (Figs. 2c, 4c), while the

second echo image (obtained at longer TEs, typically greater than a few ms) contains the

signal mainly from the long T2 tissues since the signal from the short T2 tissues has mostly

decayed away. Subtracting the second image from the first image thus yields an image

unmasking short T2 tissues (Figs. 2d, 4d). For this technique, short T2 contrast can be

modulated by varying TEs, usually the later TE [33]. A variation of this technique, such as

rescaled or weighted digital subtraction [34, 35], is also available. Other advanced

techniques involving long T2 water saturation [36, 37] or inversion nulling of water [25, 38]

or water and fat using dual adiabatic inversion recovery (DIR) [39] have also been

introduced. It should be noted that short T2 tissues often have short T1 values. For example,

in the human spine, the T1 value of the nucleus pulposus is ~1,250 ms, while that of

uncalcified CEP is ~550 ms [40]. Such T1 differences can also be used to accentuate signal

intensity from short T2 tissues by optimizing TR and the flip angle [40, 41]. Table 1

summarizes applications of morphologic UTE MRI for imaging of various musculoskeletal

tissues.
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UTE techniques also enable MR quantification of short T2 tissues. Quantitative techniques

have been developed to determine UTE T2* and UTE T1rho values. T2* is typically

determined by exponential fitting of UTE MR images obtained at different TEs [42, 43].

Similarly, UTE T1rho can be measured through exponential fitting of UTE T1rho images

acquired at a series of spin-lock times (TSLs) [44]. Figure 3c and d shows UTE T2* and

UTE T1rho maps of a knee slice, respectively. With a sufficient number of images, it is also

possible to simultaneously determine short and long T2* components. UTE bicomponent

analysis [45] utilizes a model that has a reduced number of fitting parameters and noise

correction to determine both the value and fraction of short and long T2* components. An

increasing number of studies seek to determine multi-component T2* properties for

musculoskeletal tissues [46, 47]. Table 2 summarizes the application of quantitative UTE

MRI for imaging of various musculoskeletal tissues.

UTE MR Evaluation of the Osteochondral Junction of the Knee

Conventional MRI is routinely used to evaluate injury and repair of the articular cartilage of

the knee [48–51]. Sequences such as fat-suppressed proton density-weighted (PDw; long TR

and short TE) (Fig. 2a) and T1-weighted (T1w; short TR and short TE) (Fig. 2b) spin echo

or fast spin echo sequences are used to evaluate morphologic changes in articular cartilage

as well as trabecular bone and bone marrow. However, tissues near the osteochondral

junction are seen with low signal intensity in these conventional MR images. Additionally,

the magic angle effect [52, 53] results in orientation-dependent fluctuations in signal

intensity of the overlying cartilage, which further confounds evaluation of the osteochondral

junction.

In contrast to conventional MR images, UTE MRI of the articular cartilage enables direct

visualization of deep layers. Using the shortest TE of 0.008 ms (Fig. 2c), UTE MRI of a

knee exhibits high signal intensity from all layers of the articular cartilage, meniscus, and

surrounding connective tissues. In addition, it is apparent that the UTE MR image is less

sensitive to the magic angle effect; similar signal intensity of articular cartilage is seen

throughout the femoral condyle. In the image, the morphology of the osteochondral junction

(Fig. 2c, arrows) is not well defined because of the confounding signal intensity from longer

T2 tissues. After digital image subtraction of the second echo image (obtained at TE = 8 ms)

to suppress long T2 signals, the resulting image (Fig. 2d) accentuates the signal intensity

from short T2 tissues. Specifically, the osteochondral junction is seen with distinct,

continuous and high signal intensity (Fig. 2d, arrows). In some samples, focal regions of

abnormal morphology can be found, including thinning/absence of the signal intensity (Fig.

2d, triangle) or diffuse thickening (Fig. 2d, star). In a recent study performed on cadaveric

patellae [54•], ~80 % of the combined length of all osteochondral junctions had a normal

morphology, ~10 % had thinned/absent morphology and the remainder had a thick diffuse

morphology.

It remains to be determined how different UTE MR morphologies and properties are related

to the structure and health of the osteochondral junction as well as other tissues of the knee.

In an early validation study [54•], UTE MR morphology of experimentally prepared samples

containing variable tissue components were compared. The following samples were

Bae et al. Page 5

Curr Radiol Rep. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



prepared: intact osteochondral (uncalcified cartilage, calcified cartilage, subchondral bone),

uncalcified cartilage, calcified cartilage and subchondral bone, and subchondral bone. Only

the samples containing the uncalcified cartilage (at the deepest layer) and calcified cartilage

exhibited the characteristic high linear signal intensity, suggesting those two tissue

components are sources of the signal intensity. It should be noted that while the cortical

bone is detectable using UTE techniques [55–57] when imaged on its own, when imaged

alongside other short T2 tissues such as calcified cartilage, the subchondral bone exhibits a

relatively low signal intensity. In another preliminary study [58], the UTE MR morphology

of the osteochondral junction of the human patella was compared with histological measures

of calcified cartilage thickness and roughness. Regions that exhibited the MR appearance of

thinning or absence of the linear signal intensity had a thinner calcified cartilage as well as a

smoother interface to the subchondral bone.

Quantitatively, UTE MRI has often been performed to evaluate full thickness articular

cartilage or other tissues of the knee as a whole, but not specifically to evaluate the

osteochondral junction. This is partly due to the thinness of the osteochondral junction of the

knee, combined with the long scan duration required for achieving high spatial resolution in

quantitative sequences. In a few in vitro studies that have evaluated UTE MR properties of

the patellar osteochondral junction, UTE T1 values ranging from 250 to 400 ms, UTE T2*

values ranging from 1 to 3 ms and UTE T1rho values ranging from 2 to 5 ms were found in

cadaveric patellar samples [20]. When UTE T2* and UTE T1rho values of the

osteochondral junctions with normal versus abnormal UTE morphology were compared

[59], abnormal regions with diminished signal intensity in subtraction images also had ~40

% greater UTE T2* and T1rho values than the normal regions. Quantitative UTE MR

techniques are increasingly used to evaluate other parts of the lower extremities, including

the overlying articular cartilage [43, 60], the meniscus [44, 61, 62], the ligaments [44, 63]

and the cortical bone [55, 64]. Additional studies are needed to fully understand implications

of MR changes of the osteochondral junction for the health of the knee.

UTE MR Evaluation of the Osteochondral Junction of the Spine

Conventional MRI is routinely used to evaluate intervertebral disc degeneration and

associated conditions. Based on the MR signal intensity and morphology, disc grading [65,

66] can be performed, usually based on spin echo images in the sagittal plane (Fig. 4a, b).

Conditions such as disc herniation and nerve root compression can be detected accurately

[67, 68] using similar techniques. Conventional quantitative techniques have also been

useful for evaluation of disc degeneration: T2 values of the disc correlate strongly with the

water content [69, 70] and proteoglycan content [71, 72]. Similar relations were found using

T1rho imaging [73]. While useful for evaluation of the nucleus pulposus and anulus

fibrosus, and gross morphology of the spine, conventional sequences yield very little signal

from the region of the disco-vertebral junction (Fig. 4a, b, arrows). It should be noted that

while it is feasible to image uncalcified CEP using conventional gradient echo imaging at a

short TE [40], the image contrast for the CEP may be suboptimal.

Ultrashort time-to-echo (UTE) MR techniques have enabled direct imaging of the

osteochondral junction of the spine or disco-vertebral junction. Similar to knee imaging, the
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UTE image of the spine at the shortest TE reveals the entire disc (Fig. 4c, square) as well as

the CEP (Fig. 4c, arrows) with medium to high signal intensity. Using the subtraction

technique, the longer T2 signals are diminished, and the osteochondral junction is seen with

a characteristic continuous, linear, and high signal intensity (Fig. 4d, arrows). With

enhanced contrast, focal regions of abnormal morphology are more easily detected (Fig. 4d,

triangle), unlike in the first echo UTE image (Fig. 4c). Abnormal morphologies including

signal loss (Fig. 4d, triangle), thickening or irregularity have been noted. A histologic

validation study [74••] has been performed on small disco-vertebral specimens (Fig. 5)

containing the disc, uncalcified and calcified CEPs, and sub-chondral bone. This study

confirmed that the CEPs (uncalcified and calcified) exhibit lowered signal intensity in

conventional fast spin echo MRI (Fig. 5a), while the UTE subtraction image revealed two

layers of characteristic high signal intensity (Fig. 5b–ii), which corresponded with thicker

uncalcified and thinner calcified layers of CEP. In the corresponding histology (Fig. 5c), the

structure and arrangement of these tissues at the osteochondral junction can be seen. Using a

different combination of prepared samples, the study [74••] determined that both uncalcified

and calcified CEP contributed to the characteristic UTE MR morphology, while the disc

tissue and subchondral bone did not. MR quantification of the disco-vertebral junction is

also difficult because of the thinness of the region, but has been performed in a limited

number of small specimens at a high spatial resolution (Fig. 6). Compared to a conventional

multi-echo spin echo T2 sequence that yielded images (Fig. 6a–c) of the disco-vertebral

junction with low signal intensity, both UTE T2* (Fig. 6f–h) and UTE T1rho (Fig. 6k–m)

images show the region with high-to-medium signal intensity. The T2 map created from a

conventional sequence (Fig. 6d) shows highly noisy results in the CEP, while the UTE T2*

(Fig. 6i) and UTE T1rho (Fig. 6n) maps show smoother results, likely to be more accurate.

Curve fitting (Fig. 6e, j, o) in the CEP region of interest suggested a UTE T2* value of 2.9

ms and a UTE T1rho value of 4.5 ms in the region.

Implications of the altered UTE MR morphology or MR properties of the disco-vertebral

junction for spine health have yet to be determined. There is early evidence suggesting that

abnormal UTE morphology is related to formation of calcium deposits in the CEP [75],

determined by micro CT imaging. Such deposition may lead to occlusion of vascular canals

and hindered nutrient transport into the disc. More importantly, in vitro [76] and in vivo [77]

UTE MR studies have also shown that a significant association exists between abnormal

UTE morphology and advanced degeneration of the adjacent discs. Increased UTE

abnormality was also found with more aged subjects. Future UTE MRI studies may offer

important insights into the epidemiology of the pathology of the disco-vertebral junction and

how it is related to spine health and back pain.
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Fig. 1.
Anatomy. a Osteochondral junction of the knee. Uncalcified articular cartilage (UCC)

consists of three layers: the superficial tangential zone (STZ), middle zone (MZ) and deep

zone (DZ). The UCC is attached to the subchondral bone (SCB) via calcified cartilage (CC),

which interdigitates with subchondral bone and forms a tight junction. There are vascular

canals penetrating the SCB and CC, which allow diffusion of solutes between the deep zone

cartilage and the marrow space. b Osteochondral junction of the spine or disco-vertebral

junction. Components of the intervertebral disc (IVD) including the annulus fibrosus (AF)

and nucleus pulposus (NP) anchor into the uncalcified cartilaginous endplate (UCEP), which

is attached to the calcified cartilaginous endplate (CCEP), supported by the subchondral

bone (SCB)
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Fig. 2.
MR images of a human knee in the sagittal plane obtained using conventional and UTE

techniques. Conventional fast spin echo (FSE) a proton density-weighted fat suppressed

(PDw FS; TR = 2,000 ms, TE = 30 ms) and b T1-weighted (T1w; TR = 500 ms, TE = 15

ms) MR images are often used for clinical evaluation. These conventional MR images

exhibit low signal intensity at the osteochondral junction and are more susceptible to magic

angle effects. c UTE MR image obtained at TR = 300 ms and TE = 0.008 ms exhibit many

soft tissues with high signal intensity, including the osteochondral junction (arrows). In

UTE images, the magic angle artifact in the articular cartilage is reduced compared to

conventional MR images. d After subtracting the second echo image (at TE = 8 ms) from

the UTE image, the osteochondral junction is seen with much greater contrast due to

suppression of longer T2 signals. In the subtraction image, osteochondral regions of

abnormal morphology can be readily identified, including a region with signal loss (triangle)

and another region with diffuse thickening (star)
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Fig. 3.
Quantitative MRI of the knee. Conventional a spin echo multi-echo T2 map (SE; TR =

2,000 ms, TE = 10–80 ms, 8 TEs) and b spiral chopped magnetization preparation (SCMP;

TR = 1,500 ms, TE = 3 ms, TSL = 10–40 ms, 4 TSLs) show relatively high T2 and T1rho

values of articular cartilage. In comparison, quantitative c UTE T2* (TR = 100 ms, TE =

0.012–60 ms, 16 TEs) and d UTE T1rho (TR = 100 ms, TE = 0.012, TSL = 0.02–10 ms, 4

TSLs) are able to detect short T2 components in articular cartilage and other soft tissues
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Fig. 4.
Morphologic MRI of a human lumbar spine in the sagittal plane using conventional and

UTE techniques. Conventional fast spin echo (FSE) a T2-weighted (T2w; TR = 2,000 ms,

TE = 80 ms) and b T1-weighted (T1w; TR = 600 ms, TE = 10 ms) MR images are often

used for clinical evaluation of the disc proper (square) and the bone marrow (circle). These

conventional MR images exhibit low signal intensity at the disco-vertebral junction

(arrows). c UTE MR images obtained at TR = 300 ms and TE = 0.01 ms reveal high signal

intensity at the disco-vertebral junction (arrows) as well as the disc proper (square). d After

subtracting the second echo image (at TE = 11 ms) from the UTE image, the osteochondral

junction is seen with a much greater contrast. A focal region of abnormal disco-vertebral

junction (triangle) can now be seen
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Fig. 5.
Comparison of MRI and histology of a small disco-vertebral specimen. a Conventional fast

spin echo proton density-weighted fat-suppressed (FSE PDw FS; TR = 2,000 ms, TE = 15

ms) image exhibits a medium to low signal intensity at the disco-vertebral junction. In

contrast, b the UTE subtraction (TR = 300 ms, TE = 0.008 and 6.6 ms) MR image exhibits a

medium to high signal intensity with a bilaminar appearance. On the UTE subtraction

image, the thicker layer with medium signal intensity (b-iidownward arrows) corresponded

with the thicker layer of the uncalcified cartilaginous endplate, and a thinner layer (b-
iiupward arrows) of high signal intensity corresponded with the thinner layer of the calcified

cartilaginous endplate. These observations were consistent with c the histology of the

sample, stained with hematoxylin and eosin. In a through c, i is the full-size image, and ii
and iii are magnified images. NP nucleus pulposus, uCEP uncalcified cartilaginous endplate,

cCEP calcified cartilaginous endplate, ScB subchondral bone
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Fig. 6.
Quantitative MRI of the disco-vertebral junction. a–c Conventional multi-echo spin echo T2

(ME SE T2) images taken at increasing TEs exhibit low signal intensity in the region of the

cartilaginous endplate (CEP) (ddotted line). d The resulting T2 map shows a lot of noise,

and e the mean T2 value is relatively high at 16 ms. In contrast, f–h UTE T2* and k–m UTE

T1rho images are able to depict the cartilaginous endplate with markedly higher signal

intensity. Corresponding i UTE T2* and n UTE T1rho maps show consistent values

throughout the CEP (dotted lines). j The mean UTE T2* and o mean UTE T1rho values of

the CEP were 2.9 and 4.5 ms, respectively
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Table 1

Morphologic UTE MRI for evaluation of human musculoskeletal tissues

Organ or tissue Technique (Scan parameters) Findings Ref.

Knee 3D UTE-weighted subtraction (TR = 6 ms, TE = 0.07 and 3.8
ms)

Determined weighting factors
optimized for cartilage, tendon, bone,
meniscus

[35]

Mandibular condyle 3D UTE (TR = 50 ms, UTE = 0.05 ms, FOV = 4 cm, matrix
= 384 × 384 × 384)

Condylar fibrocartilage imaged with
high signal intensity, allowing
determination of 3D contour

[78]

Disco-vertebral junction 2D UTE subtraction (TR = 300 ms, TE = 0.008 and 6.6 ms) Identified uncalcified and calcified
cartilaginous endplates as sources of
high linear signal intensity

[74••]

Lumbar spine 3D UTE (TR = 4.8 ms, TE = 0.14 ms) Found association between the
presence of CEP defects and disc
degeneration

[77]

Tibial cortical bone 3D UTE: subtraction (TR = 20 ms, TE = 0.06 and 4.6 ms),
dual-band saturation (TR = 240 ms), inversion recovery (TR
= 300 ms, TI = 100 ms)

Subtraction and saturation techniques
provided good short T2 SNR and
CNR. Inversion recovery had the
lowest SNR but uniform short T2
contrast

[79]

Knee 2D UTE Spiral subtraction (Cor, TR = 100 ms, TE = 0.36
ms, 10 ms)

In healthy subjects, deep layer of
articular cartilage was visualized

[80]

Meniscus 3D UTE subtraction (TR = 35 ms, TE = 0.056, 5.1 ms) Meniscal calcifications detected with
high signal intensity

[61]

Knee 3D AWSOS UTE (TR = 80 ms, TE = 0.6–0.8 ms, in-plane
voxel = 0.14 mm)

Feasibility of high resolution UTE
imaging using AWSOS sequence

[81]

Lower leg, knee, Achilles
tendon, forearm

3D UTE subtraction, rescaled subtraction, long T2 water and
fat saturation, single inversion recovery, double inversion
recovery

Feasibility shown for in vitro and in
vivo imaging of osteochondral
junction, aponeuroses, meniscus,
tendon, ligament and cortical bone

[25]

Tooth 3D SWIFT (TR = 2.5 ms, TE = 0.006 ms) Hard and soft tissues of teeth were
simultaneously imaged

[82]

Wrist (cortical bone) WASPI WASPI technique allows imaging of
solid bone matrix and tendons, with
suppression of soft tissues

[83]

Achilles tendon and
cortical bone

2D UTE OSC and subtraction (TR = 200–300 ms, TE =
0.008 ms)

UTE-OSC technique suppresses long
T2 water and fat effectively, creating
high contrast for short T2 tissues

[84]

Foot, ankle, knee 3D UTE subtraction (TR = 7.7 ms, TE = 0.05 ms, 2.3 ms at
3T), 3D UTE magnetization preparation (long T2 and fat
suppression)

Both techniques well suited for long
T2 suppression

[32]

Tibial cortical bone and
ankle

2D UTE with inversion recovery pulse (TR = 300 ms, TE =
80 µs)

T2 suppression allows good
visualization of bone and tendon

[38]

Achilles 2D UTE subtraction (TR = 500 ms; TE = 0.08, 6.0, 11.1,
17.7 ms)

UTE MRI shows pathological changes
and not seen inconventional MRI

[63]

Spine 2D UTE subtraction (TR = 500 ms, TE = 0.08, 6.0, 11.1,
17.7 ms)

UTE sequence shows hyper-intense
band near cartilaginous endplates

[85]

Meniscus 2D UTE subtraction (TR = 500 ms, TE = 0.08, 6.0, 11.1,
17.7 ms), with and without contrast administration

Increase in SI of red zone and
perimeniscal tissue after contrast
injection, especially at shorter TEs

[86]

2D Two dimensional, 3D three dimensional, UTE ultrashort time to echo, IR inversion recovery, DIR dual inversion recovery, TR time to repeat,
TE time to echo, TI time to invert, FOV field of view, SNR signal-to-noise ratio, CNR contrast-to-noise ratio, CEP cartilaginous endplate, AWSOS
acquisition weighted stack of spirals, SWIFT sweep imaging with Fourier transformation, WASPI water- and fat-suppressed proton projection MRI
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Table 2

Quantitative UTE MRI for evaluation of musculoskeletal tissues

Organ or tissue Technique (scan parameters) Findings Ref.

Meniscus and cartilage in
meniscal repair

2D UTE T2* (TR = 350 ms, TE = 0.3, 6.3, 12.5, 18.7 ms) Higher UTE T2* values in repaired
menisci and articular cartilage.

[60]

Patella: zone of calcified
cartilage (ZCC)

2D DIR UTE T2* (TR = 300 ms, TI1 = 140 ms, TI2 = 105 ms,
TE = 0.008–12 ms); 2D DIR UTE T1rho (TSL = 0.02–12 ms)

Characterization of patellar ZCC UTE
T2*: 2.0 ± 1.2 ms UTE T1rho: 3.6 ±
1.2 ms

[87]

Meniscus calcification 2D IR UTE T2* (TR = 300 ms, TE = 0.012, 0.05, 0.1, 0.2, 0.4
ms); 3D UTE T2* (TR = 35 ms, TE = 0.056, 2, 5.1, 7.1 ms)

Lower T2* value of calcification (~10
ms) compared to surrounding tissue
(15–30 ms)

[61]

Meniscus 3D AWSOS UTE T2* (TR = 30 ms, TE = 0.6–40 ms, 11 TEs) Meniscal T2* values were higher in
ACL-injured subjects, with and
without concomitant tear

[62]

Cortical bone (lower
extremity)

2D UTE T2* bicomponent analysis for short and long T2* and
fractions (TR = 200 ms, TE = 0.008–8 ms, 16 TEs); 3D UTE
for total water content

UTE measures of water content and
T2* fraction correlated with porosity
and biomechanical measures of
cortical bone

[55]

Knee articular cartilage 3D AWSOS UTE T2* (TR = 80 ms, TE = 0.6–40 ms, 11 TEs) Repeatability of UTE T2* values of
cartilage in asymptomatic subjects
was determined

[43]

Cortical bone (lower
extremity)

3D hybrid-radial UTE T2* (TR = 20 ms, 0.25–1.65 ms, 8 TEs) Repeatable bone water quantification
in vivo

[64]

TMJ disc 2D UTE T2* (TR = 500 ms, TE = 0.1–15 ms, 8 TEs) Significant correlation between UTE
T2* and indentation stiffness of TMJ
disc was found

[88]

Achilles 2D UTE T1rho (TR = 400 ms, TE = 0.008 ms, TSL = 0.2, 2, 5,
10 ms)

UTE T1rho ranged from 3.0 ± 0.5 ms
for healthy volunteers to 5.2 ± 0.6 ms
for specimens

[44]

Meniscus 2D UTE T1rho (TR = 400 ms, TE = 0.008 ms, TSL = 0.2, 2, 5,
10 ms)

UTE T1rho of 7.98 ± 1.43 ms found
in healthy volunteers

[44]

Achilles 2D UTE (TR = 500 ms, TEs = 0.14–2.5 ms, 8 TEs) UTE T2* values of 2.9 and 3.0 ms
were found

[63]

2D two dimensional, 3D three dimensional, UTE ultrashort time to echo, IR inversion recovery, DIR dual inversion recovery, TR time to repeat, TE
time to echo, TI time to invert, FOV field of view, AWSOS acquisition-weighted stack of spirals, TMJ temporomandibular joint
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