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Summary

The gene regulation network (GRN) is a high-dimensional complex system, which can be

represented by various mathematical or statistical models. The ordinary differential equation

(ODE) model is one of the popular dynamic GRN models. High-dimensional linear ODE models

have been proposed to identify GRNs, but with a limitation of the linear regulation effect

assumption. In this article, we propose a sparse additive ODE (SA-ODE) model, coupled with

ODE estimation methods and adaptive group LASSO techniques, to model dynamic GRNs that

could flexibly deal with nonlinear regulation effects. The asymptotic properties of the proposed

method are established and simulation studies are performed to validate the proposed approach.

An application example for identifying the nonlinear dynamic GRN of T-cell activation is used to

illustrate the usefulness of the proposed method.
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1. Introduction

The gene regulatory network (GRN) is a complex system associated with biological

activities at the cellular level, such as cell growth, division, development, and response to

environmental stimulus (Carthew and Sontheimer, 2009), which should be modeled in a

dynamic way (Hecker et al., 2009). The new high-throughput technologies such as DNA

microarray and next generation RNA-Seq enable us to observe the dynamic features of gene
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expression profiles in a genome scale. In particular, the time course gene expression data

collected from these new technologies allow investigators to study gene regulatory networks

from a dynamic point of view in more details. Currently, several models have been proposed

for GRN construction, such as information theory models (Steuer et al., 2002;Stuart et al.,

2003); Boolean networks (Kauffman, 1969; Thomas, 1973; Bornholdt, 2008); Bayesian

Networks (Heckerman, 1996; Imoto et al., 2003; Needham et al., 2007; Werhli and

Husmeier, 2007); latent variable models (Shojaie and Michailidis, 2009); and other

regression models (Kim et al., 2009).

In particular, many popular models have been proposed for inferring gene regulatory

networks using time course gene expression data. For examples, dynamic Boolean networks

and probabilistic Boolean networks (Liang et al., 1998; Akutsu et al., 2000; Shmulevich et

al., 2002; Martin et al., 2007), dynamic Bayesian networks (Murphy and Mian, 1999;

Friedman et al., 2000; Hartemink et al., 2001; Zou and Conzen, 2005; Song et al., 2009),

vector autoregressive and state space models (Hirose et al., 2008; Kojima et al., 2009;

Shimamura et al., 2009); and differential equation models (Voit, 2000; Holter et al., 2001;

DeJong, 2002; Yeung et al., 2002). Especially Xing and his associates have recently

introduced temporal exponential random graph models and time-varying networks to

capture dynamics of networks (Hanneke and Xing, 2006; Guo et al., 2007; Kolar et al.,

2010). Most of these dynamic network models such as dynamic Bayesian networks and

random graph models require extensive computations for posterior inference, which only

allow us to deal with small networks. Song et al. (2009) also introduced a time-varying

dynamic Bayesian network to model structurally varying directed graphs. Gupta et al.

(2007) proposed a hierarchical hidden Markov regression model for determining gene

regulatory networks from gene expression microarray data, which also allows for covariate

effects varying between states and gene clusters varying over time. Furthermore, Gupta and

Ibrahim (2007) introduced a hierarchical regression mixture model to combine gene

clustering and motif discovery in an unified framework, in which a Monte Carlo method was

used for simultaneous variable selection (for motifs) and clustering (for time course gene

expression data). Shojaie et al. (2012) recently proposed an adaptive thresholding estimate

under the framework of graphical Granger causality for reconstructing regulatory networks

from time-course gene expression data.

In this paper we focus on ordinary differential equation (ODE) models for dynamic GRN

construction. The ODE approach models the dynamic change of a gene expression (the

derivative of the expression) as a function of expression levels of all related genes. So the

dynamic feature of the GRN is automatically and naturally quantified. Both positive and

negative as well as the feedback effects of gene regulations can be appropriately captured by

the ODE model in a systematic way. A general ODE model for GRNs can be written as:

(1.1)

where t ∈ [t0, T] (0 ≤ t0< T < ∞) is time, X(t) = (X1(t), ⋯, Xp (t))T is a vector representing

the gene expression level of gene 1, ⋯, p at time t and X′(t) is the first order derivative of

X(t). F serves as the link function that quantifies the regulatory effects of regulator genes on

the expression change of a target gene which depends on a vector of parameters θ. In general
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F can take any linear or nonlinear functional forms. Many GRN models are based on linear

ODEs due to its simplicity. Lu et al. (2011) proposed using the following linear ODEs for

dynamic GRN identification and applied the SCAD approach for variable selection,

(1.2)

where parameters θ = {θkj}k,j=1, ⋯, p quantify the regulations and interactions among the

genes in the network. In practice, however, there is little a priori justification for assuming

that the effects of regulatory genes take a linear form. Thus, the linear ODE models may be

very restrictive for practical applications. In fact, nonlinear parametric ODE models have

been proposed for gene regulatory networks (Weaver et al., 1999; Sakamoto and Iba, 2001;

Spieth et al., 2006), but the variable selection (network edge identification) problem for

high-dimensional nonlinear ODEs has not been addressed. In this paper, we intend to extend

the high-dimensional linear ODE models in Lu et al. (2011) to a more general additive

nonparametric ODE model for modeling high-dimensional nonlinear GRNs:

(1.3)

where μk is an intercept term and fkj (·) is a smooth function to quantify the nonlinear

relationship among related genes in the GRN. Based on the sparseness principle of gene

regulatory networks and other biological systems, we usually assume that the number of

significant nonlinear effects, fkj (·), is small for each of the p variables (genes), Xk, although

the total number of variables (genes), p, in the network may be large. Thus, we refer to

model (1.3) as the sparse additive ODE (SA-ODE) model. Also we assume that the

measurements of gene expression for the kth gene are obtained at multiple time points, ti, i =

1, ⋯, n, that is,

(1.4)

where the measurement errors εk(ti) (i = 1, ⋯, n) are assumed to be i.i.d. with mean zero and

variance . The challenging question is how to perform model selection for the

nonparametric SA-ODE model (1.3) under the assumption of sparsity constraints on the

index set {j : fkj (·) ≠ 0} of functions fkj (·) that are not identically zero.

There exist several classes of parameter estimation methods for ODE models, which include

the nonlinear least squares method (NLS) (Hemker, 1972; Bard, 1974; Li et al., 2005; Xue et

al., 2010), the two-stage smoothing-based estimation method (Varah, 1982; Brunel, 2008;

Chen and Wu, 2008a,b; Liang and Wu, 2008; Wu et al., 2012), the principal differential

analysis (PDA) and its extensions (Ramsay, 1996; Heckman and Ramsay, 2000; Ramsay

and Silverman, 2005; Poyton et al., 2006; Ramsay et al., 2007; Varziri et al., 2008; Qi and

Zhao, 2010) and the Bayesian approaches (Putter et al., 2002; Huang et al., 2006; Donnet

and Samson, 2007). Among these methods, we are more interested in the two-stage

smoothing-based estimation method, where in the first stage, a nonparametric smoothing

approach is used to obtain the estimates of both the state variables and their derivatives from
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the observed data, and then in the second stage, these estimated functions are plugged into

the ODEs to estimate the unknown parameters using a formulated pseudo-regression model.

In particular, the two-stage smoothing-based estimation method avoids numerically solving

the differential equations directly and does not need the initial or boundary conditions of the

state variables. This method also decouples the high-dimensional ODEs to allow us to

perform variable selection and parameter estimaion for one equation at a time (Voit and

Almeida, 2004; Jia et al., 2011; Lu et al., 2011). These good features of the two-stage

smoothing-based estimation method in addition to its computational efficiency greatly

outweigh its disadvantage in a small loss of estimation accuracy in dealing with high-

dimensional nonlinear ODE models (Lu et al., 2011).

In the past two decades, there has been much work on penalization methods for variable

selection and parameter estimation for high-dimensional data, including the bridge estimator

(Frank and Friedman, 1993); the least absolute shrinkage and selection operator (LASSO)

(Tibshirani, 1996) and its extensions, such as the adaptive LASSO (Zou, 2006), the group

LASSO (Yuan and Lin, 2006) and the adaptive group LASSO (Wang and Leng, 2008); the

smoothly clipped absolute deviation (SCAD) penalty (Fan and Li, 2001); the elastic net

(Zou and Hastie, 2006) among others. Recently, the LASSO approach has been applied to

high-dimensional nonparametric sparse additive (regression) models to perform variable

selection and parameter estimation simultaneously (Meier et al., 2009; Ravikumar et al.,

2009; Huang et al., 2010; Cantoni et al., 2011). In this paper, we propose to couple the ideas

of the two-stage smoothing-based estimation method and the high-dimensional variable

selection techniques to perform variable selection and nonparametric function estimation for

the proposed SA-ODE model (1.3). However, this is not just to trivially combine the two

ideas, instead we have to tackle several critical challenges, which include: 1) the two-stage

smoothing-based estimation method allows us to convert our nonparametric SA-ODE model

into a pseudo-sparse additive regression model where the covariates and the response

variables are derived from nonparametric smoothing estimates of the ODE state variables

and their derivatives (instead of direct observed data); 2) the resulting errors in the pseudo-

sparse additive regression model are not i.i.d., but dependent; and 3) the number of

covariates, p, in the SA-ODE models is usually large (maybe greatly larger than the sample

size). Thus, it is not trivial to establish the theoretical properties for the proposed method. To

the best of our knowledge, this is the first attempt to propose a variable selection method for

a high-dimensional nonparametric ODE model, and it is also the first time to establish the

theoretical results for the penalized estimators for ODE models under the “large p, small n”

setting.

The remainder of this paper is organized as follows. In Section 2, we propose a five-step

variable selection procedure for the SA-ODE model (1.3). In Section 3, the theoretical

properties of the proposed method are established in the “large p, small n” setting. In Section

4, we present some simulation results to validate the proposed method. To illustrate the

usefulness of the proposed methods, we apply the proposed method to identify a dynamic

gene regulatory network based on time course gene expression data from a T-cell activation

study in Section 5. We conclude the paper with some remarks in Section 6. The detailed

technical proofs are given in the Appendix.
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2. Pseudo-Sparse Additive Model and Variable Selection

In this section, we propose a five-step variable selection procedure for the SA-ODE model

(1.3). In Step I, we use one of the nonparametric smoothing approaches to estimate both the

ODE state variables and their derivatives based on the measurement model (1.4). In Step II,

we use spline functions to approximate each of the nonparametric additive components in

the SA-ODE model (1.3), and then substitute the estimated state variables and their

derivatives from Step I into the SA-ODE model (1.3) to form a ‘pseudo’ sparse additive

model. In Step III, we apply the group LASSO approach to obtain an initial estimator and

reduce the dimension of the problem. In Step IV, we apply the adaptive group LASSO

approach (Wang and Leng, 2008; Huang et al., 2010) for component selection, which

combines ideas from the adaptive LASSO (Zou, 2006) and the group LASSO (Yuan and

Lin, 2006). In Step II, we usually use a larger number of basis functions to approximate the

nonparametric functions and some of these basis functions may not be necessary. In Step V,

we propose to use the regular LASSO again to the selected model from Step IV to further

shrink some of the coefficients of B-spline basis to zero so that we can obtain a more

parsimonious model at the end.

Step I. Nonparametric Smoothing

First we apply one of nonparametric smoothing approaches such as smoothing splines,

regression splines, penalized splines or local polynomial to estimate the state variables and

their derivatives, Xk (t) and  based on model (1.4). In this paper, we adopt the

penalized splines (Ruppert et al., 2003; Li and Ruppert, 2008; Claeskens et al., 2009; Wu et

al., 2012) to obtain the estimates, X̂
k (t) and , k = 1, ⋯, p. That is, approximate Xk (t)

one by one for 1 ≤ k ≤ p by , where δk =

(δk,−ν, ⋯, δk,Kk)
T is the unknown coefficient vector to be estimated from the data, and

Nk,ν+1(t) = {Nk,−ν,ν+1(t), ⋯, Nk,Kk,ν+1(t)}T is the B-spline basis function vector of degree ν

and dimension Kk + ν + 1 at a sequence of knots t0 = τk,−ν = τk,−ν+1 = ⋯ = τk,−1 = τk,0 < τk,1

< ⋯ < τk,Kk < τk,Kk+1 = τk,Kk+2 = ⋯ = τk,Kk+ν+1 = T on [t0, T] (Schumaker, 1981). Define n

× (Kk + ν + 1) matrix Nk = {Nk,ν+1(t1), ⋯, Nk,ν+1(tn)}T, Yk = (Yk (t1), ⋯, Yk (tn))T and let

. The penalized spline (P-spline) objective function

contains a penalized sum of squared differences with a penalized term by the integrated

squared second order derivative of the spline function as

(2.1)

The minimizer of (2.1) takes the form . Then we have

(2.2)

From de Boor (2001), the derivatives of spline functions can be simply expressed in terms of

lower order spline functions, then we can obtain the explicit expressions of  and
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. To determine λk, we use the standard generalized cross validation (GCV) method

(Craven and Wahba, 1979). Note that, if the longitudinally replicate data are available (see

our application example in Section 5), the nonparametric mixed-effects smoothing methods

can be used in this step in order to obtain better smoothing results (Wu and Zhang, 2006; Lu

et al., 2011).

Step II. Pseudo-Sparse Additive Models

In this step, we propose a method to identify significant functions in model (1.3) using a

high-dimensional variable selection technique, the group LASSO. First, following the idea

similar to Varah (1982); Brunel (2008); Chen and Wu (2008a,b); Liang and Wu (2008);Wu

et al. (2012), we substitute the estimated state variables X̂
k (t) and their derivatives 

into ODE model (1.3) to form the following pseudo-sparse additive (PSA) model:

(2.3)

where  and X̂
ji = X̂

j (ti), ϒki is the sum of measurement errors and estimation

errors of  and X̂
k (t) from Step I. In model (2.3), the response variables and the

covariates are derived from the nonparametric smoothing estimates of the state variables and

their derivatives, respectively. Moreover, the resulting error terms ϒki are not i.i.d., but

dependent. Thus this is not a standard sparse additive regression model studied in the

literature (Meier et al., 2009; Ravikumar et al., 2009; Huang et al., 2010; Cantoni et al.,

2011). That is why we call it as a ‘pseudo’ sparse additive (PSA) model. Since X̂
k (t) and

 in the above model are estimated continuously at any time point t from Step I, we may

augment more time points than the original observation times for the next step analysis. In

fact, other investigators (D’Haeseleer et al., 1999; Wessels et al., 2001; Bansal et al., 2006)

have used this data augmentation strategy for ODE parameter estimation. We adopt a similar

idea here.

Remark 1. Decoupled property. Note that the substitution approach in model (2.3) allows us

to decouple the p-dimensional ODE model into p one-dimensional ODEs independently

(Voit and Almeida, 2004; Jia et al., 2011; Lu et al., 2011), so that we can deal with the

variable selection problem for these ODEs one by one separately. This is a unique feature of

the two-stage smoothing-based estimation method for ODEs (Varah, 1982; Brunel, 2008;

Chen and Wu, 2008a,b; Liang and Wu, 2008; Wu et al., 2012).

We adopt a similar idea from Huang et al. (2010) and apply truncated series expansions with

B-spline bases to approximate the additive components in model (2.3). Let t0 = ξ0 < ξ1 < ⋯

< ξKn < ξKn+1 = T be a partition of the interval [t0, T], where Kn = O(nϖ) (0 < ϖ < 0.5) is a

positive integer such that max0≤m≤Kn |ξm+1 − ξm| = O(n−ϖ). Let n be the space of

polynomial splines on [t0, T] of degree l ≥ 1 consisting of functions s satisfying: (i) s is a

polynomial of degree l on the subintervals Im = [ξm, ξm+1), m = 0, ⋯, Kn − 1 and IKn = [ξKn,

ξKn+1]; (ii) for l ≥ 2 and 0 ≥ l′ ≤ l − 2, s is l′ times continuously differentiable on [t0, T]. Then
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there exists a normalized B-spline basis {ϕm, 1 ≤ m ≤ mn} on [t0, T] for n, where mn ≡ Kn

+ l such that, for any , it can be expressed

(2.4)

where βkjm are spline coefficients. Here we propose to conservatively choose the number of

basis functions, mn, as large as possible (more than enough or under-smoothing). Note that it

is computationally prohibited to select different  for different functions fkj (·) when p is

large. To deal with this problem, we will re-apply the LASSO approach to shrink

unnecessary basis coefficients into zero in Step V. Replacing fkj by its B-spline

approximation in (2.4), model (2.3) can be expressed as

(2.5)

where  is the sum of ϒki and the approximation errors of the additive regression

functions by splines. Let βkj = (βkj1, ⋯, βkjmn)T (k, j = 1, ⋯, p) and .

Then we have p groups of parameters and our purpose is to select non-zero groups, i.e.,

nonzero βkj, k, j = 1, ⋯, p.

Step III. Group LASSO

For model (1.3), we need a constraint to deal with unidentifiability problem, i.e., Efkj (Xj (t))

= 0 (j = 1, ⋯, p). Thus, for model (2.5), we impose the constraints

. We may also use the centralization of the

response and the basis functions to remove the restrictions. Let  and

ψm(x) ≡ ψjm(x) = ϕm(x) − ϕj̄m. Write Zij = {ψ1(X̂
ji),⋯ ψmn(X̂

ji)}T, Zj = (Z1j, ⋯, Znj)T, and Z

= (Z1, ⋯,Zp). Let  and Hk = (Hk1 − H̄
k, ⋯, Hkn − H̄

k)T. Similar to Brunel

(2008) and Wu et al. (2012), a weight function with boundary restrictions should be imposed

in order to achieve a better convergence rate for parameter estimation. Let Dk1 =

diag{dk1(t1), ⋯, dk1(tn)}, Dk2 = diag{dk2(t1), ⋯, dk2(tn)} and Dk3 = diag{dk3(t1), ⋯,

dk3(tn)}, where dk1(t), dk2(t) and dk3(t) are prescribed non-negative weight functions on [t0,

T] with boundary conditions dk1(t0) = dk1(T) = 0, dk2(t0) = dk2(T) = 0 and dk3(t0) = dk3(T) =

0. More discussions on how to select the weight function can be found in Brunel (2008) and

Wu et al. (2012). With these notations, we can obtain the group LASSO estimator β̃
k by

minimizing the following penalized weighted least squares criterion,

(2.6)

where λk1 is a penalty parameter, which can be determined by BIC or EBIC (Chen and

Chen, 2008). Here we have dropped μk in the arguments of Lk1 with the centering μ̂
k = H̄

k.
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Based on the group LASSO estimator β̃
k, we can also obtain the estimates of the

nonparametric functions, , 1 ≤ j ≤ p.

Step IV. Adaptive Group LASSO

The above group LASSO penalty treats coefficients from each group equally which is not

optimal. In order to allow different amounts of shrinkage for different coefficients, an

adaptive group LASSO is necessary. In this step, we perform the adaptive group LASSO

based on the results from Step III by setting  if ‖β̃
kj‖2 > 0, otherwise wkj = ∞.

Then we obtain the adaptive group LASSO estimator β̂
k by minimizing the penalized

weighted least squares criterion,

(2.7)

with a penalty parameter λk2, which can also be determined by BIC or EBIC (Chen and

Chen, 2008). Then we obtain the adaptive group LASSO estimates of μk and fkj,

 and , 1 ≤ j ≤ p.

Step V. Regular LASSO for Shrinking Basis Coefficients

In Step II, we approximate each of the nonparametric functions in the pseudo-sparse

additive model intentionally using a larger number of basis functions (under-smoothing).

Thus, some of these basis functions may not be necessary. In this step, we re-apply the

regular LASSO or adaptive LASSO to the final model selected from the adaptive group

LASSO in Step IV to shrink the coefficients of unnecessary basis functions into zero so that

we can obtain a final parsimonious model. The minimization criterion for the adaptive

LASSO is

(2.8)

where the superscript “(s)” stands for the corresponding quantities for groups picked up

from Step IV and s is the total number of groups. The weight wkjm is set as  if

 and wkjm = ∞, otherwise.

3. Theoretical Results

In this section, we establish the asymptotic properties of the proposed group LASSO

estimator in Step III and the adaptive group LASSO estimator in Step IV for the pseudo-

sparse additive model derived from a set of ODEs in the last section. This is challenging

since we need to integrate the asymptotic results from the two-step smoothing-based

estimation method for ODE models (Varah, 1982; Brunel, 2008; Chen and Wu, 2008a,b;

Liang and Wu, 2008; Wu et al., 2012) and the sparse additive models (Meier et al., 2009;

Ravikumar et al., 2009; Huang et al., 2010; Cantoni et al., 2011) together.
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Let r be a nonnegative integer and ζ ∈ (0, 1] such that ϱ = r + ζ > 0.5. Let ℱ be the collection

of functions f on [t0, T] whose r-th derivative, f(r) exists and satisfies the Lipschitz condition

of order ζ: |f(r)(s) − f(r)(t)| ≤ C|s − t|ζ for s, t ∈ [t0, T] with a general positive constant C. In

model (1.3), without loss of generality, suppose that the first q components are nonzero, that

is, fkj (x) ≠ 0, 1 ≤ j ≤ q, but fkj (x) ≡ 0, q+1 ≤ j ≤ p. Let A1 = {1, ⋯, q}, A0 = {q+1, ⋯, p}, Ã1

= {j :, ‖β̃
kj‖2 ≠ 0, 1 ≤ j ≤ p}, and Ã2 = A1 ∪ Ã1. Let |A| be the cardinality for any index set A.

Define  for any function f(x) at x ∈ [a, b], whenever the integral exists.

For 1 ≤ k ≤ p, we make the following assumptions:

Assumption A:

(A1)
For , there exists a constant M > 0 such that

 and .

(A2) Kk ~ cnϑ with 1/(2ν + 3) ≤ ϑ < 1 and λk = O(nπ) with π ≤ ν /(2ν + 3).

(A3) Xk(t) ∈ Cν+1[t0, T] with ν ≥ 2.

(A4) K* = (Kk + ν − 1)(λkc̃1)1/4n−1/4 < 1 for some constant c̃1.

(A5) Random design points t1, ⋯, tn are i.i.d. with a cumulative distribution function

Q(t) and a positive and continuous derivative density ρ(t). Moreover, ρ(t) is

bounded away from 0 and +∞ and has a bounded and continuous first-order

derivative.

Assumption B:

(B1) l + 1 ≥ ϱ.

(B2) The number of nonzero components q is fixed and there is a constant cf > 0 such

that min1≤j≤q ‖fkj‖2 ≥ cf for those nonzero fkj ’s.

(B3) The random variables εk(ti) (i = 1, ⋯, n) are i.i.d. with E[εk(ti)] = 0 and

. Furthermore, their tail probabilities satisfy P{|εk(ti)|

> x} ≤ K exp(−Cx2), i = 1, ⋯, n, for all x ≥ 0 and for some constants C and K.

(B4) E[fkj (Xj (t))] = 0 and fkj ∈ ℱ for k, j = 1, ⋯, p.

(B5) ν ≥ 3ϱ.

(B6) Both the weight functions dk1(․) and dk2(․) are bounded and nonnegative on [t0,

T] with dk1(t0) = dk1(T) = 0 and dk2(t0) = dk2(T) = 0. For simplicity, assume that

‖dk1‖∞ ≤ 1 and ‖dk2‖∞ ≤ 1. Moreover, both dk1(t) and dk2(t) have bounded and

continuous first-order derivatives.

Note that Assumption A is required to derive the local properties for penalized splines

estimates, which were also used by Claeskens et al. (2009) and Wu et al. (2012).

Assumption B1 is required for the nonparametric smoothing approaches (Huang, 2003; Xue

et al., 2010). Assumptions B2, B3 and B4 are standard conditions for nonparametric additive

models (Huang et al., 2010). Assumption B5 means that the smoothness degrees for the state

Wu et al. Page 9

J Am Stat Assoc. Author manuscript; available in PMC 2015 April 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



variables Xk (․) are higher than those for the additive functions fkj(․), which is required to

control the error of the first-step nonparametric smoothing in order to achieve the same

order of the error rate in the pseudo-sparse additive model in Step II. Assumption B6 is for

dealing with the boundary effect for the derivative estimation so that the proposed adaptive

group LASSO estimator can achieve the optimal nonparametric convergence rate.

Theorem 1 Suppose that Assumptions A and B hold and  for a

sufficiently large constant C. Then we have

i. With probability approaching to one, |Ã1| ≤ M1|A1| = M1q for a finite constant M1 >

1.

ii. If  and  as n → ∞, then all the nonzero βk,j, 1

≤ j ≤ q, are selected with probability approaching to one.

iii.

.

Theorem 2 Suppose that Assumptions A and B hold and that  for a

sufficiently large constant C. Then we have the following results:

i. Let Ãf = {j : ‖f̃k,j‖2 > 0, 1 ≤ j ≤ p}. There is a constant M1 > 1 such that, with

probability approaching to 1, |Ãf| ≤ M1q.

ii. If mn log(pmn))/n → 0 and  as n → ∞, then all the nonzero

additive components fkj, 1 ≤ j ≤ q, are selected with probability approaching to one.

iii.

, j ∈ Ã2.

Corollary 1 Suppose that Assumptions A and B hold. If  and mn ≍

n1/(2ϱ+1), we have

i. If n−2ϱ/(2ϱ+1) log(p) → 0 as n → ∞, then with probability approaching to one, all

the nonzero components fkj, 1 ≤ j ≤ q, are selected and the number of selected

components is no more than M1q.

ii.
, j ∈ Ã2.

Theorem 3 Suppose Assumptions A and B hold. If , mn ≍ n1/(2ϱ+1),

and λk2 ≤ O(n1/2) and satisfies  and , then P

(‖f̂kj − fkj‖2 > 0, j ∈ A1 and ‖f̂kj‖2 = 0, j ∈ A0) → 1, that is, the adaptive group LASSO

consistently selects the nonzero components. In addition,

.

All detailed proofs of Theorems 1–3, Corollary 1 are given in the Appendix.
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Remark 2. We note that, for the λk1, λk2 and mn given in Theorem 3, the number of zero

components can be as large as exp (o(n2ϱ/(2ϱ+1))), which is much larger than n. Thus, under

the conditions of the theorems, the proposed adaptive group LASSO estimator is selection

consistent and achieves the optimal rate convergence even when p is much larger than n.

Remark 3. All of these theoretical results (Theorems 1–3 and Corollary 1) can be extended

to the case of fixed design points t1, ⋯, tn, in which case we can assume that there exists a

distribution function Q(t) with a positive and continuous derivative density ρ(t) such that for

the empirical distribution Qn(t), . This assumption

was also adopted by Zhou et al. (1998) and Zhou and Wolfe (2000).

For the pseudo-sparse additive models derived from a set of nonlinear/nonparametric ODEs,

we have achieved similar theoretical results (Theorems 1–3 and Corollary 1) to those

obtained by Huang et al. (2010) for nonparametric additive regression models. To prove

these results, we develop an important lemma (Lemma A.1 in the Appendix) on the

convergence rate of the projection involving the weighted residuals of the derivative

estimate of the state variables in the ODEs. In addition, we used the weight functions, Dk1

and Dk2, in the group LASSO objective function (2.6) and the adaptive group LASSO

objective function (2.7), respectively. Under a parametric ODE model setting, Wu et al.

(2012) used the weighted function with similar boundary conditions for estimation of

constant coefficients in ODE models. They found that the parametric estimator has different

convergence rates for different boundary conditions of the weight function, that is, if the

weight function is zero at both boundaries, the standard root n rate for the constant ODE

parameter estimates can be achieved; otherwise, only an optimal nonparametric convergence

rate can be reached. In the situation of the pseudo-sparse additive models, we have achieved

the optimal nonparametric convergence rate for the adaptive group LASSO estimator

(Theorem 3) of the nonparametric functions in the SA-ODE model under the zero boundary

assumption for the weight function. If the zero boundary assumption of the weight function

does not hold, a lower than the optimal nonparametric convergence rate is expected although

we did not provide a detailed proof for this claim. Here we adopt similar ideas in the proofs

of Theorems 1–3 and Corollary 1 to those in Huang et al. (2010), but we have to tackle some

challenges in the detailed proofs due to the difference between the pseudo-sparse additive

model and the sparse additive regression model in Huang et al. (2010).

4. Simulation Studies

In this section, we design simulation experiments to validate the proposed variable selection

method for the SA-ODE model. We consider a true SA-ODE model with 8 coupled ODEs

as a dynamic network (a higher dimensional SA-ODE model is prohibited for simulation

studies due to the limitation of current computational power):

(4.1)

(4.2)
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(4.3)

and we set

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

We assume the measurement model as

(4.9)

Note that, to mimic the real data example in the next section, we also allow to have

replicates of measurements, j = 1, 2, ⋯, nk at each time point for the kth equation, and the

number of replicates may be different for different equations. In our simulation studies, we

assume the numbers of replicates for the 8 equations as (n1, n2, n3, n4, n5, n6, n7, n8) = (50,

60, 70, 40, 50, 30, 45, 35), respectively; and the number of measurement time points is taken

as n = 15 and 150 (equally-spaced), respectively. If the replicates are repeated measures or

longitudinal data as in our real data example in next section, we can use the nonparametric

mixed-effects smoothing approach (Wu and Zhang, 2006) for the first step nonparametric

smoothing, which is more efficient (Lu et al., 2011). In our simulation studies, we also

consider the case of longitudinal replicates. We first generated the mean trajectory of the

observational data, X̄
k (t), by numerically solving the ODE models (4.1)–(4.3) using the

initial values of the state variables (in log-scale), Xk (0) = Xk0, sampled from a normal

distribution with a mean 8 and a standard deviation 5. Then, assuming the real observational

data to have a random departure from the mean trajectory at time ti, bki, which is assumed to

follow a standard normal distribution. In addition, the measurement error εk(tij) is assumed

to follow a normal distribution with mean zero and variance σ2, and we took σ2 = 0.01 and

0.1, respectively in our simulation studies. In summary, the observational data were

generated as yk (tij) = X̄
k (tij) + bki + εk(tij). The number of simulation runs is taken as 100.

We evaluate the performance of the proposed adaptive group LASSO for the pseudo-sparse

additive models derived from a set of ODEs based on the simulated data that are described

above. In Step II, the number of basis functions for approximating the non-parametric

components was taken as 12 and the data augmentation strategy (D’Haeseleer et al., 1999;

Wessels et al., 2001; Bansal et al., 2006; Lu et al., 2011) was used (2000 data points were
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taken from the smoothed estimates in Step I). The simulation results are reported in Table 1.

From Table 1, we can see that, when the sample size is smaller (n = 15) and the

measurement error is larger (σ2 = 0.1), the true positive rate (TP) of the variable selection by

the proposed adaptive group LASSO method ranges from 51% to 84%, and the false

positive rate(FP) ranges from 33% to 45% for the eight ODEs respectively. However, when

the sample size is increased (n = 150), the minimum TP for the eight ODEs is increased to

74% and the FP is decreased to 17–30%. When the measurement error is reduced from σ2 =

0.1 to σ2 = 0.01 for the sample size n = 15, the minimum TP for the eight ODEs is 68% and

the FP is decreased to 25–36%. When both the sample size is increased (n = 150) and the

measurement error is reduced (σ2 = 0.01), the TP ranges 88–100% and the FP is further

decreased to 7–16%. These simulation results show that the proposed adaptive LASSO

method is reasonably good and tends to perform perfectly when the measurement error is

small and the sample size is large.

To illustrate the effect of Step V (the regular LASSO for shrinking basis coefficients) in the

proposed variable selection procedure in Section 2, we plot the estimated nonparametric

functions from Step IV (adaptive group LASSO) and Step V as well as the true function

from one simulation run in Figure 1. From this figure, we can see that, the two estimated

nonparametric functions have similar trends and can capture the complex non-linear

functions, but the adaptive group LASSO estimates from Step IV are too wiggly (dotted

lines), which is presumably due to too many basis functions included (under-smoothing).

That is why Step V is necessary to shrink some of the unnecessary basis coefficients to zero

using the regular LASSO, which produces better (smoother) estimates (dashed lines in

Figure 1). We can also see that Step V estimates perform better at boundaries and inection

points of the curves compared to Step IV estimates, although this observation is only based

on one simulation case. But in general, Step V estimates should be better for more smooth

functions compared to those of Step IV, since Step V is designed to correct the under-

smoothing problem for Step IV. To quantify the gains from Step V, a comparison of residual

sum of squares (RSS) between Step IV and V for each of 15 nonlinear functions are listed in

Table 2. The RSS for each function fij is defined as

, where  is estimated from Step IV or V

and fij(xnij) is the true function value. nss is the sample size (here we use 2,000). Table 2

shows that the RSS is reduced by Step V from Step IV in most cases. However, for two

functions, f22 and f51, out of 15 functions, the RSS from Step V is larger than that from Step

IV.

5. Application: Identification of Nonlinear Dynamic Gene Regulatory

Networks

In this section, we apply the proposed method to identify a nonlinear dynamic gene

regulatory network based on time course microarray data for T-cell activation. The central

event in generation of an immune response is the activation of T-lymphocytes (T-cells).

Activated T-cells proliferate and produce cytokines involved in the regulation of effector

cells such as B cells and macrophages, which are the primary mediators of the immune
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response. T-cell activation is initiated by the interaction between the T-cell receptor (TCR)

complex and the antigenic peptide presented on the surface of an antigen-presenting cell.

This event triggers a network of signaling molecules, including kinases, phosphatases and

adaptor proteins that couple the stimulatory signal received from the TCR to gene

transcription events in the nucleus (Iwashima et al., 1994; Ley et al., 1991).

In order to better understand the gene regulation network during T-cell activation, Rangel et

al. (2004) performed two experiments to characterize the response of a human T cell line

(Jurkat) to PMA and ionomicin treatment. In the first experiment, they monitored the

expression of 88 genes using cDNA array technology across 10 unequally spaced time

points (0, 2, 4, 6, 8, 18, 24, 32, 48, 72h) and each gene was replicated 34 times. In the

second experiment, an identical experimental protocol was used, but additional genes were

added to the arrays and each gene was replicated 10 times. Genes that displayed very poor

reproducibility between the two experiments were removed and the expression data for 58

genes were considered for final analysis by Rangel et al. (2004). Details of data collection

and preprocessing can be found in Rangel et al. (2004). Rangel et al. (2004) applied a linear

state space model (SSM) to identify the transcriptional network based on this highly

replicated expression profiling data. Beal et al. (2005) proposed a variational Bayesian

treatment for identifying suitable dimension of hidden state space in SSM. In this paper, we

intend to apply the proposed SA-ODE model and the proposed variable selection method in

the previous sections to establish a nonlinear dynamic regulatory network among 58 genes

for the T-cell activation process. Through this application example, we will demonstrate that

some of the gene regulation effects are essentially nonlinear and the linear network model

may not be sufficient to capture the nonlinear features of the dynamic network.

We consider the 58 T-cell activation genes that were identified as reproducible from the two

experiments by Rangel et al. (2004). For consistency, we only use the expression data from

the first experiment with each gene replicated 34 times at 10 time points. The 34 replicates

for each gene showed a similar expression pattern during the T-cell activation experiments.

It is legitimate to smooth the data for each of the genes using the nonparametric mixed-

effects smoothing splines technique (Wu and Zhang, 2006; Lu et al., 2011) to obtain the

estimates of the mean expression curves and their derivative curves for each gene,

respectively. At the second step, these estimates were plugged in ODE model (1.3) to form

the pseudo-sparse additive (PSA) model (2.3). The penalized pseudo-least squares methods,

the group LASSO and adaptive group LASSO approaches were used to identify significant

regulations (connections) among the 58 genes with potential nonlinear regulation effects.

We obtained the fitted curves for all genes by integrating 58 genes concurrently with

parameters estimated from the adaptive grouped LASSO approach in Step IV and after

shrinking the basis coefficients using regular LASSO in Step V, respectively.

We plot the fitted expression curves (dashed lines) for 9 genes from Step V of the proposed

procedure, overlaid with the raw data (dots) and the smoothed mean curves (solid lines)

from Step I in Figure 2. For comparison purpose, the estimation results from the linear ODE

model (Lu et al., 2011) were also obtained and plotted (dotted lines). From this figure, we

can see that the proposed nonparametric additive ODE models fit the data better (also closer

to the smoothed mean curves), compared to the linear ODE model fit. We also notice that
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the proposed SA-ODE models not only can fit the simple monotonic curves well, but also

can exibly fit complex nonlinear curves reasonably good. For each of 58 genes, we list the

regulatory genes, identified by the proposed method in Table 3. One important feature of the

identified GRN is that each of these 58 genes is regulated by only a few other genes (ranging

from 1 to 8 genes), which reects the fact of sparseness of the network connections.

In agreement with the findings from Rangel et al. (2004), our model identified the important

adaptor molecule in T-cell receptor signaling pathway, FYB (gene 45 in Table 3) as one of

the genes having the highest number of outward connections. In addition to the 6 genes,

found by Rangel et al. (2004), that are regulated by FYB, we identified three more FYB-

regulated genes which carry functions in proliferation (gene 2), interference (gene 44) and

apoptosis (gene 49). This is presumably due to that the proposed nonparametric additive

ODE model and the variable selection method allow us to identify significant nonlinear

regulation effects compared to the linear state space model (SSM) used by Rangel et al.

(2004). As another interesting finding based on the proposed model, we identified the direct

regulation of integrin (gene 15) by FYB, which has already been corroborated by the

experimental study (Peterson et al., 2001). On the contrary, the linear SSM used by Rangel

et al. (2004) only found the indirect regulation mediated by IL3Rθ (gene 55) and TRAF5

(gene 3). The estimated regulation functions of FYB (gene 45 in Table 3) to other genes are

shown in Figure 3. Our results show that the gene FYB always has a positive regulation on

genes 9, 18, 46 and 55, but a negative effect on gene 7, which agree with the findings from

Rangel et al. (2004). For gene 15 which was found to be indirectly regulated by FYB in

Rangel et al. (2004), we discover that the direct regulation effect is positive when the FYB

expression level is low and turns to be negative when the FYB expression level is high.

Similarly, for the three newly discovered FYB-regulated genes, genes 2, 44 and 49, by our

method, we found that the regulation effect changes from positive to negative when the FYB

expression is high. This demonstrates that the proposed nonparametric additive ODE model

may help us to discover not only nonlinear regulation effects, but also varying effects due to

the expression level of the regulator genes.

We use R function ‘igraph’ to plot the obtained GRN in Figure 4 in order to visualize the

complete network. From this figure, we can clearly see that there are 14 ‘big’ regulator

genes that regulate more than 5 other genes for each of them (see also Table 3). Due to space

limitation, we will report more detailed annotations and biological implications of this

established dynamic GRN for T-cell activation somewhere else. Notice that any statistical

methods and modeling approaches can only identify potential regulation effects in actual

GRNs. Usually some of these findings can be confirmed by existing literature and some

others may need new experiments to validate. We expect that the proposed SA-ODE model

and the variable selection methods provide a exible tool to explore and identify additive

nonlinear regulation effects in the GRNs.

6. Concluding Remarks

In this paper, we have proposed a sparse additive ordinary differential equation (SA-ODE)

model for dynamic gene regulatory networks (GRN) in order to capture the nonlinear

regulation effects. A five-step variable selection and estimation procedure by coupling the

Wu et al. Page 15

J Am Stat Assoc. Author manuscript; available in PMC 2015 April 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



two-step smoothing-based ODE estimation method and LASSO techniques is developed.

The asymptotic properties of the proposed methods are established. Simulation studies are

conducted to demonstrate the good performance of the proposed variable selection method.

We have successfully applied the proposed method to construct a nonlinear dynamic GRN

for T cell activation. We discovered additional new regulation effects in the complicated

nonlinear network consisting of 58 genes, compared to the existing linear network modeling

approach. The real data analysis results also show that the proposed SA-ODE model not

only can capture complex nonlinear regulation effects, but also it can identify the varying-

effects due to the expression levels of regulator genes.

In the theoretical development in Section 3, we have shown that the adaptive group LASSO

selects the correct model with probability approaching 1 and achieves the optimal

nonparametric convergence rate for the proposed SA-ODE model, which are similar to those

obtained by Huang et al. (2010) for a nonparametric additive regression model. Notice that

we convert the proposed SA-ODE model into a ‘pseudo’ sparse additive (PSA) model,

which is different from the additive regression model in Huang et al. (2010) in the sense that

both response variables and covariates in the PSA model are derived from the first step

nonparametric smoothing of state variables and their derivatives, instead of observed data,

and the error terms in the PSA model are not i.i.d. but dependent. To tackle the challenges in

this complex model, we used a weight function with boundary restrictions in the penalized

least squares (LASSO) criteria and established a critical lemma in order to achieve the

optimal convergence rate.

Alternative models for dynamic GRNs include boolean network, Bayesian network, hidden

Markov models among others (Liang et al., 1998; Akutsu et al., 2000; Shmulevich et al.,

2002; Martin et al., 2007; Murphy and Mian, 1999; Friedman et al., 2000; Hartemink et al.,

2001; Zou and Conzen, 2005; Song et al., 2009; Hirose et al., 2008; Kojima et al., 2009;

Shimamura et al., 2009; Gupta et al., 2007). It is interesting to compare these modeling

approaches with the proposed ODE modeling method from the perspectives of

computational cost and likelihood to recover the true network. But the computational cost

for this comparison is beyond the limit of our current computational power. We employed

the two-stage smoothing-based ODE estimation method for the SA-ODE model in order to

reduce the computational cost and simplify the implementation of LASSO-based variable

selection methods. One limitation of the two-stage smoothing-based ODE estimation

method is its requirement of direct observations of all state variables in the system. It is still

a challenging problem to perform variable selection for high-dimensional ODE models with

partially observed state variables. Some other more efficient estimation approaches for ODE

models such as the numerical discretization-based estimation method (Wu et al., 2012) and

generalized profiling approach (Ramsay et al., 2007) may also be considered for high-

dimensional ODE variable selection. We believe that it is worth future exploration along a

similar line, although the computational cost and implementation details need to be carefully

considered. In the proposed SA-ODE model (1.3), we only consider the nonparametric

additive structure of related variables. It could be extended to a nonparametric structure

involving interactions (Radchenko and James, 2010) since co-regulations are very often in

gene regulatory networks. We are currently working on this problem and will report the

results elsewhere.
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APPENDIX

Proofs

We can prove the theoretical results in Theorems 1–3 and Corollary 1 similarly to Huang et

al. (2010). But there are more technical challenges that we need to deal with. The major

differences between the ‘pseudo’ sparse additive (PSA) model (2.3) and the additive

regression model in Huang et al. (2010) include: 1) both response variables and covariates in

the PSA model are derived from the first step nonparametric smoothing of state variables

and their derivatives, instead of observed data, and ii) the error terms, ϒki in the PSA model,

are not i.i.d. but dependent. To tackle these problems, we establish the following lemma. For

1 ≤ k ≤ p, let  for 1 ≤ j ≤ p, 1

≤ m ≤ mn (for notational simplicity, we suppress the dependence of k), and Tn =

max1≤j≤p,1≤m≤mn |Tjm|.

Lemma A.1 Under Assumptions A, B2–B4 and B6 in Section 3, we have

.

Proof: From (2.2), we know that Tjm can be expressed as follows.

with εk = (εk(t1), ⋯, εk(tn))T and gω(ti) being the ω-th component of the n-dimensional

vector . Under Assumption B3, εk(ti)’s are i.i.d. and

sub-Gaussian. Moreover, for given ti’s, the coefficient  of

εk(tω) is given. Therefore conditional on ti’s, Tjm’s are sub-Gaussian.

Let  and . Then by the maximal

inequality for sub-Gaussian random variables (Lemmas 2.2.1 and 2.2.2, van der Vaart and

Wellner, 1996), we have ,

where C1 > 0 is a constant. Therefore,
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(A.1)

Now we discuss the order of E(sn). Similar to Wu et al. (2012), we consider the integral

approximation of Tjm because of the boundary effects. By the strong law of large number,

we have

(A.

2)

From the integration by parts, it follows that

where  and the second equality holds because of the boundary

condition dk1(t0) = dk1(T) = 0. Denote  and

By the Hölder’s inequality, we have

(A.

3)

From the proof of Lemma 6 in Wu et al. (2012), we know that

(A.4)

for some positive constant C2. By the extremal equality, it follows that

, where L1(μ, μ)
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is the bi-variate Lebesgue function space with L1-norm. Continuing to apply integration by

parts and the boundary condition dk1(t0) = dk1(T) = 0, we have

Then  for some positive

constant C3. By the properties of B-splines, we have

(A.5)

for some positive constant C4. Combining (A.3)–(A.5) together, it follows that

 for some positive constant C. Then from (A.2), we have that

. Therefore  for some positive constant

C. Thus from (A.1), we have

for some positive constant C.

Proof of Theorem 1. The proof of part (i) is similar in spirit to the proof of Theorem 1 in

Huang et al. (2010). But some technical challenges have to be tackled since here we need to

consider the estimation errors of  and X̂
k(t) (involving the measurement error) and the

approximation error of the additive regression functions by splines. Specifically, from (2.3)

and Taylor expansion, we have

Wu et al. Page 19

J Am Stat Assoc. Author manuscript; available in PMC 2015 April 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



where Xji locates between X̂
j(ti) and Xj(ti).
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For Dk1 = diag{dk1(t1), ⋯, dk1(tn)}, we have . Let

, where Ξk = (Ξk(t1), ⋯, Ξk(tn))T, Πk = (Πk1, ⋯, Πkn)T and δk = (δk1,

⋯, δkn)T with

. For any integer m, let

where  for |A| = q1 = m ≥ 0 (here

the inverse matrix can also be replaced by the generalized inverse), ,

SAk = λk1UAk and ‖UAk‖2 = 1. Then from the expression of  and X̂
k(t), we have

with .

For a sufficiently large constant C1 > 0, Define

and

where m0 ≥ 0. Similar to the proof of Theorem 2.1 of Wei and Huang (2010), it can follow

that (Z, Ξk) ∈ Ωq ⇒ |Ã1| ≤ M1q for a constant M1 > 1 and

(A.6)

By the triangle and Cauchy-Schwarz inequalities,

Wu et al. Page 21

J Am Stat Assoc. Author manuscript; available in PMC 2015 April 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(A.7)

Since  for mn = n1/(2ϱ+1), we have that, for all m ≥ q

and n sufficiently large,

(A.8)

for some constant C2 > 0. From Lemma 1(i) of Wu et al. (2012) and Theorem 2(a) of

Claeskens et al. (2009), we have 

and E[X̂
k(t)]−Xk(t) = O(κν+1)+O(λkn−1κ−2) = O(n−(ν+1)/(2ν+3)) for κ = n−1/(2ν+3) and λk =

O(nν/(2ν+3)). Then Πki = O(qn−ν/(2ν+3)). Under Assumption B5, it follows that 3/(4ν + 6) ≤

1/(4ϱ + 2). Then for all m ≥ q and n sufficiently large, we have

(A.

9)

for some constant C3 > 0. Finally, it follows from (A.6)–(A.9) that P(Ωq) → 1. This

completes the proof of part (i) of Theorem 1.

Before proving part (ii), we first prove part (iii) of Theorem 1. By the definition of

,

(A.

10)

Let A2 = {j : ‖βkj‖2 ≠ 0 or ‖β̃
kj‖2 ≠ 0} and dk2 = |A2|. By part (i), dk2 = Op (q). By (A.10) and

the definition of A2,

(A.

11)

Let  and . Write

. We have

. (A.11) can therefore be

expressed as . Note that

. These two

expressions indicate that

(A.12)
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Let  be the projection of ηk on the span of ; i.e.,

. By Cauchy-Schwarz inequality and ab ≤ a2 +

b2/4, we have that

(A.13)

From (A.12) and (A.13), we have

(A.14)

By the definition of Dk1, we know that  is a nonnegative definite matrix and

its smallest positive eigenvalue cn* exists. Under Assumptions A5 and B3, by Lemma 3 in

Huang et al. (2010) and part (i), we have  with probability converging to one.

Since  and 2ab ≤ a2 + b2, from (A.14), we have

It follows that

(A.15)

Let

and  with f* (․) Defined by (2.4). For each component ηi of

ηk, we have
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Since |μk − H̄
k|2 = Op(n−1) and , we have

(A.16)

where  and  are projections of Гk = {Гk(t1), ⋯, Гk(tn)}T and Λk = {fkA2(X̂ (t1)), ⋯, fkA2

(X̂ (tn))}T on the span of , respectively. We have

. Now

where jm = {ψm(X̂
j (t1)), ⋯, ψm(X̂

j(ti))}T. By Lemma A.1, we have

It follows that,

(A.17)

Combining (A.15)–(A.17), we get
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Since dn2 = Op(q),  with probability converging to one, we have

(A.

18)

This completes the proof of part (iii).

We now prove part (ii). Under Assumption B2, ‖fkj‖2 ≥ cf, 1 ≤ j ≤ q,

and , we have  for n sufficiently large. By a

result of de Boor (2001), see also (12) of Stone (1986), there are positive constants c1 and c2

such that . It follows that

. Therefore, if ‖βkj‖2 ≠ 0 but ‖β̃
kj‖2 = 0, then

, which contradicts part (iii) since  and

 as n → ∞.

Proof of Theorem 2. By the definition of kj, 1 ≤ j ≤ p, parts (i) and (ii) follow from parts (i)

and (ii) of Theorem 1 directly. Now, consider part (iii). By the properties of spline (de Boor,

2001), there exist positive constants c1 and c2 such that

 Thus

(A.19)

By Assumption B3, . Part (iii) follows.

Corollary 1 follows from Theorem 2 directly. The proof of Theorem 3 essentially follows

the proof of Corollary 2 in Huang et al. (2010) by similar changes to those given in the proof

of part (iii) of Theorem 1, and we omit it here.
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Figure 1.
Simulation example: A comparison of the true functions (solid lines) and estimated

functions from the adaptive group LASSO in Step IV (dotted lines) and from Step V after

further basis coefficient shrinking (dashed lines) from one simulation run.
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Figure 2.
Real data analysis for T cell activation experimental data (dots): the estimation results for

gene FYB (gene 45) and 9 genes regulated by gene FYB which include nonparametric

smoothing estimates of mean expression curves from Step I (solid lines), the estimated

curves (dashed lines) based on the proposed SA-ODE model from Step V of the proposed

procedure, and the estimated curves (dotted lines) using the linear ODE model fit from Lu et

al. (2011).
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Figure 3.
Estimated regulation functions of genes inuenced by gene 45 (FYB)
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Figure 4.
Graph of T cell activation GRN formed by 58 genes. Each gene is represented as a node.

Arrow stands for the direction of inuence. The 14 “big” regulators are in blue.
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