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Abstract

Estimating viral diversity in infected patients can provide insight into pathogen evolution and

emergence of drug resistance. With the widespread adoption of deep sequencing, it is important to

develop tools to accurately calculate population diversity from very large datasets. Current

methods for estimating diversity that are based on multiple alignments are not practical to apply to

such data.

In this study, the authors report a novel method (Pairwise Alignment Positional Nucleotide

Counting, PAPNC) for estimating population diversity from 454 sequence data. The diversity

measurements determined using this method were comparable to those calculated by average

pairwise difference (APD) of multiply aligned sequences using MEGA5. Diversities were

estimated for 9 patient plasma HIV samples sequenced with Titanium 454 technology and by

single-genome sequencing (SGS). Diversities calculated from deep sequencing using PAPNC

ranged from 0.002 to 0.021 while APD measurements calculated from SGS data ranged

proximately from 0.001 to 0.018, with the difference being attributable to PCR error (contributing

background diversity of 0.0016 in a control sample). Comparison of APDs estimated from 100

sets of sequences drawn at random from 454 generated data and from corresponding SGS data

showed very close correlation between the two methods with R2 of 0.96, and differing on average

by about 1% (after correction for PCR error).

The authors have developed a novel method that is good for calculating genetic diversities for

large scale datasets from next generation sequencing. It can be implemented easily as a function in

available variation calling programs like SAM tools or haplotype reconstruction software for

nucleotide genetic diversity calculation.

A Perl script implementing this method is available upon request.
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1. Introduction

Nucleotide diversity is often used to measure the degree of genetic variation in a population.

In its original form proposed by Nei and Li, nucleotide diversity is defined by the average

nucleotide differences per site between any two sequences (Nei and Li, 1979), i.e.,

Hamming distance (Hamming, 1950) in a genetics sense. Since then, several models have

been developed, including Juke–Cantor, K80, and TN93, to allow for different nucleotide

substitution mechanisms (Kumar, 2000; Tamura et al., 2011).

Knowledge of pathogen genetic diversity is important for understanding evolution and

persistence of infections in vivo (Kearney et al., 2011). Numerous studies have investigated

the diversity of intrapatient HIV-1 populations (Kearney et al., 2011; Nowak et al., 1996;

Shankarappa et al., 1999; Troyer et al., 2005; Wolinsky et al., 1996). Shankarappa et al.

showed that during the asymptomatic interval of HIV-1 infection, three phases of population

genetics were observed. In phase 1, HIV-1 intrapatient population diversity and divergence

increased linearly; in phase 2, while divergence continued to increase, diversity either

declined or became stable; in phase 3, divergence and diversity were either stable or

declined (Shankarappa et al., 1999). Kearney et al. reported that antiretroviral treatment of

pigtail macaques infected with RT-SHIVmne did not reduce the viral diversity (Kearney et

al., 2011). Troyer et al. suggested that HIV-1 replication efficiency may be related to

genome diversity and that diversity may be a determining factor in AIDS disease

progression (Troyer et al., 2005).

Genetic diversity of viral populations can be calculated easily with software like Molecular

Evolutionary Genetics Analysis (MEGA5, version MEGA5.2.2) (Tamura et al., 2011).

MEGA5 is a widely used software for molecular evolution analyses and proximately

390,000 copies have been downloaded worldwide (http://www.megasoftware.net) likely due

to its wide array of molecular evolution functions, ease of use, and also its authors, who are

well known molecular evolution researchers. However, currently it cannot handle large

amounts of sequencing data produced by next generation sequencing. This issue motivated

the authors to develop a simple method to calculate genetic diversity from large data sets.

The first step in calculating the nucleotide diversity of a population from a set of sequences

is generation of a multiple sequence alignment. Many multiple alignment methods have

been developed since the introduction of CLUSTALW in 1994 (Edgar and Batzoglou, 2006;

Thompson et al., 1994). But multiple sequence alignment is still computationally intensive

and can be very slow. One such program, MUSCLE is recommended for the task of aligning

>500 sequences (Edgar and Batzoglou, 2006). A newer version of MUSCLE has improved

accuracy but is only applicable to about 200 sequences (Katoh et al., 2005). Multiple

sequence alignments generated by these methods require manual review and editing (Nuin et

al., 2006) which is not possible with the large numbers of sequences obtained by deep

sequencing.
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With the widespread use of next generation sequencing technologies, including 454

pyrosequencing, Illumina, SOLiD, and others, large datasets of sequence information are

being obtained, making current methods for generating multiple sequence alignments and

then calculating genetic diversities impracticable. Many short sequence alignment methods

for next generation sequencing have been developed (Li and Homer, 2010). Also, methods

for reconstructing viral quasi-species or haplotypes and their frequencies in a population

have been reported, for example, ShoRAH (Zagordi et al., 2011), QuRe (Prosperi and

Salemi, 2012), QUASR (Watson et al., 2013), and ViSpA (Astrovskaya et al., 2011). Jabara

et al. (2011) recently published a study in which they used primer IDs – sequences of 8

random nucleotides to label each input HIV cDNA molecule – and built consensus

sequences from the 454 reads that shared an identical primer ID. Those consensus sequences

thus represented each member of the HIV-1 quasi-species. It will be interesting to compare

the result from this experimental study with the results from computational reconstructions

described above.

While certainly viral quasi-species or haplotype distribution is a good measurement of viral

population diversity, Hamming distance based viral genetic distance initially defined by Nei

and Li (1979) is also useful in measuring population diversities. Indeed, the authors reported

that average pairwise diversities of intra-patient HIV-1 populations were correlated with

days of post seroconversion in the patients the authors studied (Kearney et al., 2009).

Analysis to determine if this genetic diversity can be associated with the outcome of

antiretroviral therapy in a clinical trial is underway (data not shown).

To calculate sequence diversity in terms of APD with data obtained from next generation

sequencing technology, new methods will be useful. To date, the authors are not aware of

any reports of such methods. In this study the authors report a new method that the authors

call Pairwise Alignment Positional Nucleotide Counting (PAPNC), which allows calculation

of nucleotide sequence diversity from a nucleotide count matrix, which can be generated

easily and rapidly from large scale sequencing data.

2. Materials and methods

2.1. Samples and sequencing

Plasma samples were collected from 9 treatment-naïve, HIV-1 subtype B-infected patients

participating in a research study at the National Institutes of Health (protocol # 00-I-0110).

All participants provided written informed consent for viral genotyping.

HIV-1 RNA was extracted from patient plasma and cDNA was synthesized by reverse

transcription (RT) using 0.2 µM of a common gene specific primer (Supplement Table 1),

2.5 mM MgCl2 and 200 U of Superscript III (Invitrogen Cat# 18080–044). Each RT reaction

was allowed to proceed for 50 min at 50 °C. The resulting cDNA was quantified by qPCR

using SYBR green fluorescence (Core Kit, Applied Biosystems Cat# 4306736) to detect and

quantify the amplified products. A minimum of 20,000 copies of cDNA was used as

template to amplify a 531 base pair fragment for 25 cycles under the condition of low

recombination PCR (Shao et al., 2013) using unique 454 Titanium forward primers

(Supplement Table 1). Each forward primer contained a sequencing primer designated “A”,
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a “key” sequence defined by Roche, a unique multiplex identifier (MID) and an HIV target

specific sequence. A common reverse 454 Titanium primer that contained a sequencing

primer designated “B”, the same “key” sequence, and an HIV sequence specific target

sequence was also used. After amplification, all PCR products were gel purified and

quantified by qPCR using the KAPA Library Quantification Kit (product # KK4802). Equal

copy numbers of each sample were pooled, and sequenced with 454 Titanium according to

the manufacturer’s protocol. HIV plasma diversities obtained by 454 were compared to

those calculated by SGS of the same samples (Kearney et al., 2008; Palmer et al., 2005). For

control, HIV-1 BH10 RNA transcripts were reverse transcribed and amplified with either

standard PCR conditions (MID1) (Shao et al., 2013) or under low recombination PCR

condition (MID2) (Shao et al., 2013) as described above for patient samples.

Supplementary material related to this article can be found, in the online version, at http://

dx.doi.org/10.1016/j.jviromet.2014.03.008.

Initial 454 sequencing data process and error handling were described previously (Shao et

al., 2013). Briefly any sequences less than 300 bases in length were discarded. Sequences

from patients were pairwise aligned with blastn in the BLAST program of the 2.2.25

package to the HIV subtype B consensus sequences with the default blastn setting except

that DUST filter was turned off, and both the gap opening and extension penalties were set

at 2 (-F F -G 2 -E 2; http://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html). A Perl

script pipeline was constructed to parse the alignments to produce a nucleotide count matrix

(Supplement Table 2) (Shao et al., 2013) that was used in diversity calculations. Indels and

ambiguous base calls (quality score < Q20) were not used in the analysis.

Supplementary material related to this article can be found, in the online version, at http://

dx.doi.org/10.1016/j.jviromet.2014.03.008.

2.2. Method description

PAPNC is a method based on parsing the nucleotide count matrix (Supplement Table 2),

which was produced by parsing pairwise alignment of sequencing reads with a reference

sequence for determining the genetic diversity from the number of different nucleotides at

each position. This nucleotide count matrix can be produced from an external program and

used in PAPNC as well.

Specifically, the nucleotide diversity at site j (Dj) is:

where Aj, Cj, Gj, Tj are the numbers of each base at position j.

In terms of gap (deletion) handling, the authors took the approach of pairwise deletion

instead of complete deletion (Tamura et al., 2011). That is, the authors only ignore the gaps

involved in the comparison (pairwise deletion), instead of ignoring all the nucleotides at a

site where there are gaps (complete deletion).
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Diversity at a site is defined as Average Pairwise Distance, as described in the following

section.

Perl scripts were written to implement this method to calculate diversity based on the

following distance models.

2.2.1. Diversity based on p-distance—Diversity based on the p-distance model is

expressed as Eq. (1):

(1)

where L is the length of the shorter sequence in a pair of sequences being aligned; J is

nucleotide position in an alignment and site_pairs is the number of compared pairs of

nucleotide sites in position j. Dj is the pairwise nucleotide distance at position j

where N is the number of total nucleotides at position j (ignoring gaps).

As Eq. (1) indicates, this method is implemented in the following way. Genetic distance

(Dj)/site_pairs for each site is calculated and APD is calculated as the sum of Dj/site_pairs of

all sites divided by the reference length. The distance models (Eqs. (2)–(4)) implemented as

shown below were described by Yang (2006).

2.2.2. Diversity based on Juke–Cantor distance—

(2)

where p = APD defined in Eq. (1)

2.2.3. Diversity based on K80 distance—

(3)

where S = transition rate of all nucleotide positions

V = transversion rate of all nucleotide positions
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Implementation: S and V are calculated for all aligned sites and used in Eq. (3) for diversity

based on K80 distance model.

2.2.4. Diversity based on TN93 distance—

(4)

where

S1 = transition rate of purine to purine of all nucleotide positions:

S2 = transition rate of pyrimidine to pyrimidine of all nucleotide positions:

V = transition rate of all nucleotide positions

πA, πC, πG, πT = rate of A, C, G, T of all nucleotide positions
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Implementation: parameters S1, S2, V, πA, πC, πG, πT, πR, and πY are the sum of all the

positions and used in Eq. (4) for diversity calculation based on TN93 model.

2.3. Sequencing error correction

It is known that 454 pyrosequencing of PCR products produce errors including both point

mutations and indels at high rates (Gilles et al., 2011; Shao et al., 2013). Indel errors do not

affect diversity calculations, but point mutation errors do. To minimize the impact of

sequencing error on diversity calculation, two measures were taken: (1) in each 454

sequencing run, a plasmid with the same fragment of a known HIV-1 clone (HIV-1 BH10)

identical to the samples was constructed and sequenced together with the samples. This set

of sequences MID2 served as a background control; (2) the authors noticed that 454

pyrosequencing produced particular neighboring double mutations that were the result of

consecutive insertion and deletion errors. For example,

Which can be interpreted to result from a consecutive indel error:

Double mutations that could be interpreted as the result of consecutive indels were not

counted as true differences in diversity calculations.

2.4. Other software used

MEGA5 (version 5.2.2) (Tamura et al., 2011) was used in calculating overall mean

distances. The model/method used is described in the text; pairwise deletion was selected for

Gap/missing data treatment; all other parameters were default. Welch T test implemented in
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the Graphpad online application (http://www.graphpad.com/quickcalcs) was used for

statistical analysis.

3. Results

3.1. Sequence data from 454 pyrosequencing and SGS

The authors performed both 454 pyrosequencing and single-genome sequencing (SGS) on

the HIV-1 RT region starting approximately at codon 52 from HIV-1 genomes isolated from

plasma of 9 patients. The number of SGS sequences obtained ranged from 12 (patient 1) to

46 (patient 3) (Table 1). The number of 454 sequences used for the analysis (longer than 300

bases) ranged from 1735 (patient 2, MID23) to 8097 (patient 1, MD22) (Table 1). The

numbers of 454 reads from those patients were low, most likely due to low viral loads in

those patients and due to the PCR conditions (25 cycles) used to reduce the artifactual

recombination rate mediated by PCR (Shao et al., 2013) (noting that the diversity

calculations are unaffected by recombination). In the same experimental run, 197,931

sequences from HIV-1 BH10 RNA transcripts (MID1) were obtained, which were prepared

using standard PCR conditions (Shao et al., 2013). To control for overall background error,

the same transcripts were amplified with low recommendation PCR conditions (identified as

MID2) (Shao et al., 2013) (Table 1). Sequences obtained from 454 pyrosequencing and by

SGS of the same samples were used to develop and validate PAPNC for calculating HIV

diversity in patient plasma samples. For diversity calculations in this study, all the sequences

from SGS and 454 were trimmed to 300 bases (from the last nucleotide of codon 51 through

the first 2 nucleotides of codon 151 of RT). The authors focus explicitly on calculating

genetic diversity with PAPNC which requires an input of nucleotide count matrix (an

example of the matrix is shown in Supplement Table 2) which can be obtained by parsing

pairwise alignment. But it can be also obtained by further transforming the variation

detection output produced by software like SAM tools (Li et al., 2009), or VarScan (Koboldt

et al., 2009).

3.2. Validation of PAPNC with SGS sequences

PAPNC was implemented as a part of a Perl script and used to calculate nucleotide sequence

diversities of the above described patient samples. Among various distance models used for

diversity calculations, average pairwise p-distance (APD) is the most commonly used. To

validate PAPNC, the diversities of HIV-1 sequences obtained by SGS from the 9 patients

were calculated firstly. Diversities were calculated both by using PAPNC method and using

MEGA5 based on a p-distance model (Table 2). Diversities obtained from PAPNC and

MEGA5 were well correlated. The differences between these two methods ranged from 0

(patients 1, 5, 6 and 9) to 0.002 (patient 7). Welch T test showed that there was no

significant difference between the numbers obtained with PAPNC and MEGA5 (p = 0.81).

The authors then used SGS results to compare the diversities based on Juke–Cantor, K80,

and TN93 models when calculated by PAPNC and MEGA5 (Table 3). Comparable

diversities for all patients regardless of the model used were obtained.
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3.3. Impact of sequencing errors on diversity calculation

The results shown above demonstrated that the diversities calculated with PAPNC are

comparable to the diversities calculated with MEGA5. It is known that SGS produces high

quality sequencing reads with low PCR error (Palmer et al., 2005). Sequencing errors affect

diversity calculations. It is also known that 454 pyrosequencing results in a high frequency

of sequencing errors (Gilles et al., 2011; Shao et al., 2013). To measure the effect of 454

sequencing errors on diversity calculations, the authors studied the types and distributions of

454 sequencing errors.

Generally, the authors observed that the majority of the point mutation errors were below

1% and the average point error was 0.18% per nucleotide position (Fig. 1). However, there

were some positions with point error rates higher than 1%. The highest error rate was 6.5%

at codon 103, which is in an A-rich region (AAAAAGAAAAAA) (Shao et al., 2013).

In addition to point mutations, which were controlled by using a control run (Shao et al.,

2013). The authors also observed frequent “double mutations”, illustrated by the example in

Fig. 2A. An “A” in the reference sequence at position 46 became a “G” in the sample

sequence, and a “G” at position 47 in the reference sequence became an “A” in the sample

sequence. Careful examination revealed that this double mutation was very likely caused by

a deletion and an insertion in homopolymer runs flanking the affected bases, in this case, a

deletion after position 45 and an insertion between positions 46 and 47 (Fig. 2B). Very few

double mutations were observed in SGS sequences but they were frequently observed in 454

sequences. The diversities of SGS sequences calculated without discounting double

mutations and the diversities of SGS sequences calculated after discounting double

mutations were the same (compare Table 2 and Table 4). This analysis implies that the

double mutations in 454 sequences were artifacts produced in the 454 sequencing process

and did not occur in vivo. The authors found that such double mutation errors were

generated at high frequencies by 454 sequencing. For example, in MID2, approximately

10% of sequences had such errors. Interestingly, these double mutations had symmetric

patterns, for example, AT became TA, GA became AG (Fig. 3A). The most frequent double

mutations the authors studied were TA → AT or GA → AG in an A-rich region of RT (Fig.

3B). It should be noted that while our method does not count the difference between a

sample sequence and a reference sequence for diversity calculation, the selection of the

reference may slightly affect nucleotide mapping in regions with indels and also this double

mutation error detection. In this study, the authors used the consensus sequence of HIV-1

subtype B as the reference sequence. The diversity calculated using the consensus sequences

of each patient produced by SGS was not identical, but the difference is very small, for

example, the diversity of patient 1 (MID22) is 0.0100 (Table 4) with HIV-1 subtype B

consensus and 0.0088 (data not shown) with the consensus of SGS sequences from this

patient.

Table 4 shows the effect of sequencing errors on the diversity calculation. For each patient

sample, SGS and 454 sequencing was performed and the viral diversity calculated with

PAPNC without correcting for the 454 sequencing errors. The results show that there were

differences between diversities calculated using 454 sequences and single-genome
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sequences for many of the patients even when both were calculated with PAPNC. For

example, for patient 1, the diversity obtained from 454 sequences was 0.0100 and the

diversity from SGS was approximately half of that at 0.0043. However, in some cases the

differences were smaller. For example, for patient 9, the diversity from 454 was 0.0179 and

from SGS was 0.0120. A Welch T test shows that the difference between the diversities

obtained with 454 and with SGS when sequencing errors was not accounted for was not

significant (p = 0.064). Nevertheless, in all cases the APD estimated from the 454 sequences

were higher than that for SGS.

3.4. Diversity calculated from 454 sequences after sequencing error correction

As a part of the PAPNC method, the two types of errors that were identified in the 454

sequences were corrected. First, the authors eliminated the double mutations errors from the

difference counting in the diversity calculation by replacing them with gaps. This correction

reduced the diversities calculated from the 454 sequences (Table 4). For example, without

any error correction, the diversity of 454 sequences from patient1 was 0.0100 (Table 4),

dropping to 0.0082 after the double mutation correction (Table 4). Similarly, the uncorrected

diversity from 454 sequences in patient 5 was 0.0127 (Table 4) and it became 0.0125 after

the double mutation correction (Table 4). The authors next corrected the diversity estimated

from 454 sequencing for point mutation errors arising during PCR and sequencing. The

authors calculated the APD derived from transcripts prepared from the control HIV-1 BH10

clone (MID2). Any diversity in this sample must be due entirely to reverse transcription,

PCR and/or sequencing errors and this value was used as our “background diversity”. After

correcting for the background diversity (0.0016, Table 4), the in vivo diversities calculated

from 454 and SGS generated data became closer, dropping from 20% to 7.8% averaged over

all samples. A Welch T test showed that there were no significant differences between the

454 diversities and SGS diversities when sequencing errors were so corrected (two tailed p =

0.400).

To study the diversity correlation between SGS and 454 further, the average diversity from

100 rounds of randomly picked 454 sequences for each sample were determined. The

number of sequences chosen for each round was exactly the same as the number of SGS

sequences obtained from that patient. For instance, there were 12 SGS sequences from

patient 1; the authors calculated the average of diversities from 100 sets of 12 randomly

selected 454 sequences. The results showed that there was good correlation between the

average diversities from randomly picked 454 sequences and those from SGS (R2 = 0.9514,

Fig. 4).

3.5. Diversity calculation from large numbers of sequences

Finally, the sequencing reads from MID1, a large scale dataset were used for diversity

calculation (Supplement Table 1). MID1 was 100% wild type HIV-1 BH10 transcript RNA

that was prepared with standard PCR conditions. From this sample, 197,931 sequencing

reads with the length equal or longer than 300 bases were obtained. In this sample, 19,684

reads had at least one double mutation, accounting for approximately 10% of all the

sequencing reads of this sample, similar to that in MID2. Table 5 shows the diversities

calculated based on the 4 different distance models. After correcting for double mutations,
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diversities of 0.0027 based on p-distance and Juke–Cantor models, and 0.0025 based on K80

and TN93 models were obtained. Because this sample was a 100% wild type HIV-1 BH10

clone, this diversity was entirely contributed by background PCR and sequencing errors.

Additionally, the authors also calculated diversity without correcting for double mutations.

The authors obtained a value of 0.0040 based on p-distance and Juke–Cantor models and

0.0037 from K80 and TN93 models (Table 5). Therefore, double mutation errors alone

contributed about 30–40% of the background diversity (0.0015 for p-distance and Juke–

Cantor models, and 0.0012 for K80 and TN93 models), far in excess of what would be

expected from the single point mutation frequency.

4. Discussion

Nucleotide diversity defined initially by Nei and Li (1979) has been used to measure the

genetic variations in viral populations (Kearney et al., 2011). Nucleotide diversities of

sequences up to hundreds or thousands can be calculated easily with software like MEGA5

(Tamura et al., 2011). However, with wide usage of next generation sequencing including

454, Illumina, and SOLiD, the currently available software are not able to handle the huge

number of the sequences those new technologies produce. To this end, the authors

developed this new method PAPNC. The authors conclude that that the results from PAPNC

are comparable to those calculated using MEGA5. The small differences between the results

of PAPNC and MEGA5 are likely due to the calculation procedures. Normally, average

pairwise diversity (APD) is calculated by firstly comparing every pair of sequences and

counting the nucleotide differences based on multiple alignments. The sum of all the

differences is then divided by the number of comparison pairs and then by the sequence

length. With PAPNC, the authors calculated APD firstly by calculating diversity at each

nucleotide site j (Dj) based on pairwise alignments to a reference sequence. Dj is then

divided by the total number of pairs of nucleotides at position j. The sum of Dj is then

divided by the sequence length (see Section 2.2.1 for details). Additionally, gap handling

may be different. Notice that the nucleotide site-pairs at position j exclude gaps from this

position. Therefore, the value of nucleotide site-pairs may vary at different positions. This

probably is not true with MEGA5. Additionally, there might be sampling errors using SGS

because fewer genomes were sequenced. Larger sets of data are much more accurate.

In terms of computation time, for PAPNC itself, the input is a nucleotide count matrix

derived from sequencing reads (Supplement Table 2). The time needed to compute and

process this matrix and calculate genetic diversities is less than one second for the matrix

from a dataset of 197,931 sequences. The authors implemented it as a function in a 454

script pipeline. However, nucleotide count matrix needed for PAPNC can be easily obtained

from transforming the output of mpileup function of SAM tools (Li et al., 2009) and SNP

calling software like VarScan (Koboldt et al., 2009), or it can be added as an additional

function for viral quasi-species reconstruction software to calculate not only the frequencies

of individual members of a viral population quasi-species, but also the nucleotide genetic

diversity of the population. However, precautions need to be taken if using SNP calling

programs that are not specifically designed for retrovirus sequences because many of the

SNP calling programs including SNPMix (Goya et al., 2010) treat a third allele at a given

position as an error and discard it. The third allele in HIV can be biologically important. For
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example in codon 103 of HIV-1, the wild type is usually AAA (K), and the two common

drug resistance mutations AAC and AAT (both encoding N), are often found together (Boltz

et al., 2010). Additionally, the conventional definition of SNP being at least 1% is not

suitable for HIV-1 studies because rare drug resistance mutation can be very important

(Boltz et al., 2010).

In conclusions, the authors have developed a novel computational method, PAPNC, for

determining population diversity from large scale next generation sequencing data. The

authors have validated this method by comparing diversities calculated from single-genome

sequences and those from 454 sequences using PAPNC. Accurate calculation requires that a

background control using a cloned version of a related sequence be included for each 454

pyrosequencing run to correct for the contribution of diversity introduced by RT, PCR and

454 sequencing errors, and that sources of system-specific error, such as double mutations

introduced by nearby 454-specific indel pairs, be determined and corrected. Only with such

appropriate corrections can next generation sequencing data be used to provide accurate

estimates of diversity of populations of sequences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Point mutation error distribution in 454 sequences derived from cloned BH10 transcripts

(MID1). The X-axis gives the nucleotide position of the sequences, with position 1

corresponding to the last nucleotide of codon 51 of RT. The Y-axis shows the percentage of

point mutation errors at each position on a log scale.
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Fig. 2.
Double mutation errors caused by nearby indels. (A) A double mutation; (B) interpretation

of the double mutation. The apparent double mutation is in italics and underlined.
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Fig. 3.
Double mutation distribution in cloned BH10 (MID2). (A) Double mutation patterns in

MID2. The numbers are the nucleotide position of the inner mutation. The nucleotides

before the position numbers are two nucleotides in MID sequences. The nucleotides after the

position numbers are two corresponding nucleotides in the reference sequence; (B) examples

of double mutations in a homopoly A region; and (C) examples of double mutations in a

non-homopoly A region.
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Fig. 4.
Correlation between SGS and corrected 454 diversities. Both X-axis and Y-axis are APD.

The series represented by triangles is corrected 454 diversity vs. SGS diversity; the series

represented by circles is 454 diversity corrected from double mutations vs. corrected

diversity estimated from the average from 100 random sampling from 454. 454 observed

APD and corrected 454 APD are on X-axis, and random sampling 454 APD and SGS APD

are on Y-axis. The error bars are the standard deviations of random sampling 454 APD.
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Table 1

Numbers of SGS and 454 sequences obtained and analyzed.

PID Number of SGS
sequencesb

454 ID Number of 454
sequencesc

Controla MID2 976

1 12 MID22 8097

2 22 MID23 1735

3 46 MID24 4895

4 37 MID25 7168

5 23 MID26 2997

6 23 MID28 1811

7 23 MID29 5176

8 22 MID30 3997

9 24 MID31 1975

a
Control: 100% wild type transcripts from cloned HIV-1, BH10 strain.

b
Number of SGS sequences obtained from each patient plasma sample.

c
Number of 454 Sequences obtained from each sample.
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Table 2

Comparison of p-distance based diversities of single-genome sequences (SGS) measured by p-distance with

Mega5 and with PAPNC.a,b

PID MEGA5 APD PAPNC Difference

1 0.0043 0.0043 0.0000

2 0.0113 0.0107 0.0006

3 0.0065 0.0057 0.0008

4 0.0202 0.0183 0.0019

5 0.0111 0.0111 0.0000

6 0.0015 0.0014 0.0000

7 0.0115 0.0094 0.0021

8 0.0041 0.0038 0.0003

9 0.0120 0.0120 0.0000

a
Same SGS sequence data calculated with both Mega5 and PAPNC.

b
Welch T test, two-tailed P = 0.81.
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Table 5

Diversities of MID1 using different distance models and the effect of double mutations on diversity

calculation.

Diversity by different
distance models

Without double
mutations

With double mutations

p-Distance 0.0027 0.0040

Juke–Cantor 0.0027 0.0040

K80 0.0025 0.0037

TN93 0.0025 0.0037
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