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Abstract

GLUT proteins are encoded by the SLC2 genes and are members of the major facilitator

superfamily of membrane transporters. Fourteen GLUT proteins are expressed in the human and

they are categorized into 3 classes based on sequence similarity. All GLUTs appear to transport

hexoses or polyols when expressed ectopically, but the primary physiological substrates for

several of the GLUTs remain uncertain. GLUTs 1–5 are the most thoroughly studied and all have

well established roles as glucose and/or fructose transporters in various tissues and cell types. The

GLUT proteins are comprised of ~500 amino acid residues, possess a single N-linked

oligosaccharide, and have 12 membrane-spanning domains. In this review we briefly describe the

major characteristics of the 14 GLUT family members.
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1. Introduction

The transport of monosaccharides, polyols, and other small carbon compounds across the

membranes of eukaryotic cells is mediated by members of the GLUT family of integral

membrane proteins that are encoded by the SLC2 genes and are members of the major

facilitator superfamily (MFS) (see Table 1) [reviewed in (Augustin, 2010; Joost et al., 2002;

Thorens and Mueckler 2010; Uldry and Thorens, 2004)]. The 14 human GLUT proteins

possess various substrate specificities and are involved in the transport of several hexoses in

addition to myo-inositol (Uldry et al., 2001), urate (Bibert et al., 2009; Matsuo et al., 2008;

So and Thorens, 2010), glucosamine (Maher and Harrison, 1990), and ascorbate (Lee et al.,

2010). All of the members of the GLUT family are facilitative transporters with the

exception of HMIT, which is a H+/myo-inositol symporter (Uldry et al., 2001). It is highly

likely that the major substrates for several GLUT proteins have not yet been identified.
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The 14 GLUT proteins are comprised of ~500 amino acid residues and can be categorized

into 3 classes based on sequence similarity: Class 1 (GLUTs 1–4, 14); Class 2 (GLUTs 5, 7,

9, and 11); and Class 3 (GLUTs 6, 8, 10, 12, and HMIT). All GLUT proteins appear to

possess 12 transmembrane segments, a single site of N-linked glycosylation, a relatively

large, central, cytoplasmic linker domain, and exhibit topologies with both their N and C

termini positioned in the cytoplasm (Mueckler et al., 1985). The Class 1 and 2 GLUT

proteins are structurally distinguishable from the Class 3 proteins by virtue of the location of

their sites of N-linked glycosylation, which reside in the first exofacial linker domains of the

Class 1 and 2 GLUTs and in the fifth exofacial linker domains of the Class 3 proteins.

One or more GLUT proteins are expressed in virtually every cell type of the human body.

Eleven of the 14 members of the GLUT family are capable of transporting glucose under

experimental conditions, although in several cases the principal physiologic substrates for

the proteins have not been definitively identified (Thorens and Mueckler, 2010). The

physiological explanation for the redundancy of proteins that transport glucose is most likely

the critical nature of this sugar as a circulating fuel in humans and the consequent need for

multiple glucose transporters with different kinetic and regulatory properties that are

expressed in a cell-type specific fashion.

2. GLUT1

2.1 Transport Kinetics

GLUT1, encoded by the SLC2A1 gene, was one of the first membrane transporters to be

purified (Baldwin and Lienhard, 1989; Kasahara and Hinkle, 1977) and cloned (Birnbaum et

al., 1986; Mueckler et al., 1985) and is likely one of the most extensively studied of all

membrane transport systems. The kinetics of glucose transport via GLUT1 have been

explored since radioisotopic substrates became readily available in the early 1950s

[reviewed in (Carruthers et al., 2009; Lowe and Walmsley, 1986)]. Two prominent

characteristics of glucose transport have been observed in human erythrocytes. Firstly, the

apparent affinity (the Km or half-saturation concentration) for transport is, under certain

experimental conditions, higher at the outward substrate-binding site than at the cytoplasmic

binding site, and secondly, transport occurs at a faster rate when substrate is present on the

trans side of the membrane (the side of the membrane to which transport is being measured)

as compared to zero trans conditions where substrate is present only in the aqueous

compartment from which transport is being measured. The latter phenomenon is called trans

or exchange acceleration and suggests that a conformational change involving the unloaded

transporter is rate limiting for net transport to occur. Many investigators believe that most of

the available kinetic and biophysical data are consistent with an alternating conformation

mechanism for glucose transport whereby mutually exclusive substrate binding sites are

sequentially exposed to either the exoplasm or the cytoplasm (Gorga and Lienhard, 1981;

Lowe and Walmsley, 1989; Wheeler and Whelan, 1988) (see Figure 1). However, the

kinetics of glucose transport as measured in the erythrocyte are complex and some

experimental observations are not consistent with a simple asymmetric carrier type model

(Cloherty et al., 1996). This has led to the proposal of alternative mechanisms, including

fixed-site models in which multiple binding sites are simultaneously accessible from both
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sides of the membrane (Carruthers et al., 2009). It has been argued that asymmetric

transporter distribution under equilibrium conditions with the standard carrier model violates

energy conservation laws (Naftalin, 2008).

However, abandonment of the carrier model for glucose transport is premature, in large part

because of experimental difficulties associated with accurately measuring the kinetics of

transport in erythrocytes. Questions concerning the validity of the alternately conformation

model are based almost entirely on steady-state kinetic experiments. Glucose transporters

are present at a very high concentration in the erythrocyte membrane (up to 10% of total

integral membrane protein) (Gorga and Lienhard, 1982), and thus the rate of transport is

extremely high. True initial rates of transport are at best difficult to measure using traditional

methods, and the vast bulk of experimental findings that appear to contradict the alternating

conformation mechanism may be the result of procedural difficulties and/or the fact that

measurements were conducted at well below physiological temperatures. More sophisticated

approaches are consistent with a simple carrier model that does not violate the laws of

thermodynamics. For example, using a quenched-flow apparatus coupled with an automated

syringe system, Lowe and Walmsley (Lowe and Walmsley, 1986) found little if any

asymmetrical distribution of GLUT1 under equilibrium conditions at physiological

temperatures. Using the Millipore-Swinnex filtering technique and the rapid continuous flow

tube technique, which allow transport measurements within a fraction of a second, Brahm

(Brahm, 1983) found that the transport kinetics of D-glucose at physiological temperatures

in erythrocytes were consistent with that of a simple, symmetric carrier. The kinetics of

transport via GLUT4 are also completely consistent with that of a symmetric carrier.

Perhaps most importantly, the crystal structures of known members of the MFS are

consistent with the presentation of a single substrate-binding site within a cavity exposed to

only one aqueous compartment at a time (see below). An alternating conformation model

thus remains the most viable description for the mechanism of glucose transport.

2.2 GLUT1 Structure

GLUT1 is comprised of 492 amino acid residues and possesses a single site of N-linked

glycosylation at N45 (Mueckler et al., 1985). There are no other known post-translational

modifications of the protein. A topology with 12 transmembrane segments and with

cytoplasmic N and C termini is supported by hydrophobicity analysis and biochemical

studies (Blodgett et al., 2008; Hresko et al., 1994; Mueckler et al., 1985) (see Figure 2). A

low resolution, 2-dimensional model for the exofacial configuration of GLUT1 has been

proposed based on a series of mutagenesis and solvent accessibility studies (Mueckler and

Makepeace, 2009) (see Figure 3). GLUT proteins, like all eukaryotic members of the MFS,

have thus far proven recalcitrant to crystallization, but the crystal structures of 4 bacterial

members of the MFS have been determined to at least moderate resolution by x-ray

diffraction analysis (Abramson et al., 2003; Dang et al., 2010; Huang et al., 2003; Yin et al.,

2006). All 4 proteins share a common folding pattern with the first 6 transmembrane helices

in a pseudo symmetrical configuration relative to the last 6 helices. Helices 1, 2, 4, 5, 7, 8,

10, and 11 form an inner bundle that is stabilized by the outer helices 3, 6, 9, and 12. The E.

coli lactose permease (Abramson et al., 2003) and glycerol-3-P antiporter (Huang et al.,

2003) were crystallized in their endofacial orientations with aqueous cavities containing
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their respective substrate binding sites exposed to the cytoplasm and closed off at their

exofacial surfaces. No exoplasmic substrate binding sites have been identified in these

structures. The E. coli fucose/proton symporter (Dang et al., 2010) was crystallized in its

exofacial conformation with an aqueous cavity containing a single putative fucosedocking

site exposed to the exoplasm and closed off at the cytoplasmic face. No endofacial fucose

docking sites have been identified in the structure. Taken as a whole, these results strongly

support an alternating conformation transport mechanism for MFS proteins and are

inconsistent with any model in which multiple substrate binding sites that are exposed to

both aqueous compartments exist simultaneously. A homology-based model of GLUT1 in

its putative endofacial conformation is shown in Figure 4 (Salas-Burgos et al., 2004).

However, the accuracy of this model is uncertain because the protein used as the template

structure, the E. coli glycerol-3-P antiporter, shares little if any significant sequence identity

with GLUT1, making it impossible to evaluate the accuracy of the sequence alignment

(Forrest et al., 2006).

2.3. GLUT1 Tissue Distribution and Physiology

The principal physiological substrate of GLUT1 is clearly glucose but it is also capable of

transporting mannose, galactose, glucosamine, and reduced ascorbate, and its activity is

inhibited by cytochalasin B and phloretin (Carruthers et al., 2009). GLUT1 is expressed in

many cell types, often in conjunction with one or more additional GLUT isoforms. It is

expressed at its highest level in the human erythrocyte membrane, through which glucose

freely equilibrates between the serum and the red cell cytoplasm. The function of the high

level of GLUT1 expression in erythrocytes may be to effectively increase the glucose

carrying capacity of the blood. GLUT1 plays a critical role in cerebral glucose uptake as the

major GLUT isoform expressed in brain endothelial cells (Koranyi et al., 1991; Simpson et

al., 2001; Yeh et al., 2008). Under normal physiological conditions the brain is absolutely

dependent on glucose as a fuel source, and transport across the blood-brain barrier is rate

limiting for brain glucose metabolism (Simpson et al., 1994). GLUT1 is also expressed in

brain astrocytes, which have been proposed to supply glycolytically-derived lactate to

neurons as a major fuel source (Pellerin et al., 2002). GLUT1 is responsible for mediating

materno-placental transfer of glucose in the human and levels of placental GLUT1 are

altered under various pathological conditions that affect the fetus [reviewed in (Illsley,

2000)]. GLUT1 plays an important role in the survival of the pre-implantation embryo

(Moley, 2001; Moley et al., 1998) and throughout much of fetal development, and

consequently homozygous GLUT1 null mice do not survive beyond embryonic day 14

(Wang et al., 2006).

2.4 GLUT1 Pathophysiology

Haplodeficiency of SLC2A1 is the cause of an autosomal dominant genetic disease called

GLUT1 deficiency syndrome (GDS) [reviewed in (De Vivo et al., 2002)]. Several dozen

distinct de novo mutations in the SLC2A1 structural gene have been identified in patients

with this disorder. Patients with GDS experience seizures beginning in early infancy and

exhibit developmental delay, ataxia, and neurobehavioral symptoms during development.

The only current treatment for the disease is a rigid ketogenic diet, which supplies the

nervous system with an alternative fuel source. However, ketogenic diet therapy does not
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prevent or reverse all of the symptoms associated with GDS and there is a need to develop

alternative, more effective, therapies.

Upregulation of GLUT1 expression is observed in a wide variety of tumors and is likely to

be an essential process in tumor progression (Yamamoto et al., 1990; Younes et al., 1996).

Tumors almost universally become highly dependent on the substrate level generation of

ATP via aerobic glycolysis (the Warburg Effect), thus explaining the necessity for the

increased expression of glucose transporters (Bannasch et al., 2008). The isoform-specific

inhibition of glucose transport may be an excellent novel pharmacological approach to

cancer therapy.

3. GLUT2

GLUT2 was first characterized by cDNA cloning the Slc2a2/SLC2A2 gene from rat and

human liver cDNA libraries (James et al., 1988; Kayano et al., 1988). GLUT2 has the

unique characteristic among glucose transporters to have a low apparent affinity for glucose

(Km ~17mM). It can also transport galactose (Km ~ 92 mM), mannose (Km ~125 mM) and

fructose (Km ~76 mM) with low affinity. Interestingly, it has a very high affinity for

glucosamine (Km 0.8 mM) (Uldry et al., 2002). The high Km for glucose indicates that the

rate of glucose transport by GLUT2 varies as a function of glucose concentrations under

physiological and even diabetic conditions. Cellular GLUT2 expression is usually very high

and the rate of glucose uptake is not limiting for the process of glucose utilization.

GLUT2 is the major glucose transporter of hepatocytes. It is also expressed by intestinal

absorptive cells, by cells forming the kidney proximal convoluted tubule, by pancreatic beta-

cells (Thorens et al., 1990), and in a small number of neurons dispersed in many brain

structures and in astrocytes (Arluison et al., 2004; Mounien et al., 2010); it is also expressed

by tanycytes, special cells lining the bottom part and the floor of the third ventricle (Garcia

et al., 2003).

In hepatocytes GLUT2 is involved in glucose uptake and release in the fed and fasted states,

respectively. However, although it is indispensable for glucose uptake, glucose release from

hepatocytes does not require the presence of GLUT2 as an alternate, membrane-traffic based

system appears to release glucose in the case of stimulated hepatic glucose production

(Guillam et al., 1998).

In the intestine, GLUT2 is the major basolateral glucose transporter isoform. Glucose uptake

depends on the presence of the Na+/glucose co-transporter SGLT1 present in the apical

membrane (Hediger et al., 1987). This can transport both glucose and galactose; the uptake

of fructose is mediated by GLUT5 also present in the apical membrane. It has been shown

that the expression of GLUT2 is dispensable for normal intestinal glucose absorption.

Evidence has been presented that a similar membrane-based traffic system as described for

liver also operates in enterocytes that allows release of glucose on the serosal side of the

epithelial cells (Stumpel et al., 2001).

More recently, it has been shown that GLUT2 can be induced to translocate to the apical

membrane of enterocytes to participate in glucose absorption (Kellett et al., 2008). This
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mechanism depends on the presence of glucose in the intestinal lumen, its absorption by

SGLT1, which induces membrane depolarization and Ca++ entry, followed by

phospholipase ßII activation-dependent translocation of GLUT2. This process may be

important for maximizing glucose uptake in the presence of high luminal glucose

concentrations. Insulin has been reported to induce the internalization of apically expressed

GLUT2, a process that is impaired in insulin resistance, contributing to increased glucose

absorption (Tobin et al., 2008).

In the kidney, GLUT2 is present on the basolateral membrane of the epithelial cells involved

in glucose reabsorption. Its expression is required for glucose absorption. In contrast to the

situation in intestinal cells, suppression of GLUT2 expression by Slc2a2 gene knockout

induces massive glucosuria (Guillam et al., 1997) indicating this transporter is absolutely

required for the renal glucose reabsorption process.

In rodent pancreatic beta cells GLUT2 is the major glucose transporter, whereas in human

islets GLUT1 and GLUT3 are also expressed (De Vos et al., 1995; Thorens et al., 1988).

Glucose uptake is the first step in the metabolic-dependent signaling pathway that controls

glucose-stimulated insulin secretion (GSIS). The glucose transport rate is ~ 20–50-fold

greater than the rate of glucose phosphorylation by glucokinase, the rate-limiting step in

GSIS. Thus, under most conditions, glucose uptake is a permissive step in GSIS. The

expression of GLUT2 is, however, regulated by glucose and lipids in beta cells, and

glucolipotoxicity (high glucose and free fatty acid concentrations) reduce its surface

expression (Gremlich et al., 1997; Reimer and Ahren, 2002). In both mouse and human beta

cells, the cell surface expression of GLUT2 depends on its interaction with galectin 9, a cell

surface lectin that binds to a specific N-linked glycan structure (Ohtsubo et al., 2011;

Ohtsubo et al., 2005). Under glucolipotoxic conditions the glycosyltransferase involved in

generating this structure is down-regulated and prevents the normal formation of the GLUT2

N-glycan, leading to its internalization; the reduction in cell surface expression of GLUT2

may then be sufficient to impair GSIS.

Slc2a2 gene knockout prevents beta-cell glucose uptake in mice and suppresses GSIS,

leading to death of the newborn mice around the time of weaning. As transgenic expression

of Slc2a1 in Slc2a2 knockout mice normalizes GSIS and allows these mice to live and

reproduce normally, this indicates that if there is isoform specificity in GLUT2 function, it

may not be linked to its role in allowing glucose uptake for normal GSIS, but may be related

to a regulatory function that has not yet been elucidated.

Because GLUT2 as well as glucokinase are present in brain nuclei involved in the control of

energy homeostasis, such as different hypothalamic and brainstem nuclei, it has been

postulated that GLUT2 may be associated with glucose sensing mechanisms that control

feeding, energy expenditure, and counterregulation (Marty et al., 2007).

Studies with Slc2a2 knockout mice (with rescued beta-cell function) indeed showed that the

absence of GLUT2 resulted in abnormal feeding behavior during the fasting-to-fed

transition, or in response to intracerebroventricular injections of glucose or of the glucose

anti-metabolite 2-deoxy-D-glucose (Bady et al., 2006). Further experiments with these mice

Mueckler and Thorens Page 6

Mol Aspects Med. Author manuscript; available in PMC 2014 July 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



also indicated that central GLUT2-dependent glucose sensing is involved in glucagon

secretion in response to hypoglycemia (Marty et al., 2005) and in the control of

thermogenesis by brown adipose tissue, probably secondary to a regulation of the activity of

NPY and POMC neurons of the hypothalamic arcuate nucleus controlling the melanocortin

pathway and the sympathetic innervation of brown fat (Mounien et al., 2010). In two human

cohorts it has been shown that a mutation in the SLC2A2 gene is associated with a

preference for sugar feeding (Eny et al., 2008), indicating that GLUT2 may also control

processes related to food preference. Further studies are required to define in more detail the

exact GLUT2-expressing cells involved in these regulatory mechanisms.

In the human, SLC2A2 gene defects are the cause of Fanconi-Bickel syndrome (Fanconi and

Bickel, 1949; Foretz and Thorens, 2003; Santer et al., 1997). Patients suffering from this

disease show the same phenotype as Slc2a2 knockout mice. Intestinal glucose absorption is

not impaired, hepatic glucose production is normal but they display hepatomegaly and a

renal syndrome with glucosuria and aminoaciduria. In contrast to the knockout mice,

Fanconi-Bickel patients show only slightly impaired or normal insulin secretion, perhaps

due to the expression of GLUT1 and GLUT3 in human islets.

4. GLUT3

The SLC2A3 gene encoding GLUT3 was first cloned from a human fetal skeletal muscle cell

line (Kayano et al., 1988). It shares ~64% sequence identity with SLC2A1. GLUT3 has a

higher apparent affinity (lower Km) and a higher maximum turnover number for glucose

than the other Class 1 GLUT proteins, and its principal physiological substrate is clearly D-

glucose (Manolescu et al., 2007). The kinetic characteristics of GLUT3 may explain its role

as the primary mediator of glucose uptake into neurons (Leino et al., 1997), as the

concentration of cerebral glucose is considerably lower than that in the blood. GLUT1 and

GLUT3 are thus critical delivery systems for the major fuel substrate utilized by

parenchymal cells of the brain. Although it has been proposed that lactate produced by

glycolysis in astrocytes is the primary fuel substrate for neurons, this hypothesis has been

seriously challenged (Simpson et al., 2007).

GLUT3 is also expressed in several other cell types, although in a species-specific manner.

It is abundantly expressed in the murine sperm flagellum (Urner and Sakkas, 1999), but is

absent in bovine sperm where GLUT5 is the most abundant GLUT transporter (Angulo et

al., 1998). This difference presumably reflects the concentrations of glucose versus fructose

in the seminal fluid of different species. GLUT3 is also critical for development of the

preimplantation mouse embryo (Pantaleon et al., 1997; Pantaleon and Kaye, 1998;

Pantaleon et al., 2008) as well as later in embryonic development (Ganguly et al., 2007), and

is a critical component, along with GLUT1, of the transplacental supply of glucose to the

fetus (Shin et al., 1997). Streptozotocin-induced maternal diabetes in the mouse results in a

down-regulation of GLUT3 in the preimplantation embryo resulting in abnormal apoptosis

and increased fetal resorptions (Wyman et al., 2008). Interestingly, GLUT3 is abundantly

expressed in human white blood cells, where in resting cells it is largely confined to

intracellular storage vesicles and translocates to the plasma membrane in response to various

proliferative stimuli [reviewed in (Simpson et al., 2008)].
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5. GLUT4

5.1 Tissue Distribution and Physiology

GLUT4 was first identified by a monoclonal antibody screen for proteins in rat adipocytes

that translocate from an intracellular membrane fraction to a plasma membrane fraction in

response to insulin (James et al., 1988). The Slc2a4 gene was cloned soon thereafter from rat

adipose tissue (Birnbaum, 1989; Charron et al., 1989; James et al., 1989) and shares ~65%

sequence identity with Slc2a1. GLUT4 is expressed most prominently in adipocytes, skeletal

muscle, and cardiomyocytes, where it functions as the so-called insulin-responsive glucose

transporter [reviewed in (Huang and Czech, 2007)]. Under basal (low insulin) conditions,

GLUT4 resides primarily in intracellular membrane compartments. When circulating insulin

levels rise after the ingestion of a carbohydrate meal, intracellular glucose transporters

redistribute to the plasma membrane, thus increasing glucose uptake and metabolism in

these tissues and preventing chronic elevations in blood glucose levels. A defect in this

insulin-mediated translocation of GLUT4 to the plasma membrane is known as peripheral

insulin resistance, which, in conjunction with a defect in insulin secretion from pancreatic

beta cells and insulin resistance in the liver, results in type 2 diabetes mellitus (Kahn, 1996).

Because the bulk of blood glucose is taken up by skeletal muscle in the presence of elevated

insulin and GLUT4 transport activity is rate-limiting for this process, GLUT4 plays a critical

role in the regulation of whole body glucose homeostasis (Mueckler, 1995). The results of

transgenic overexpression studies (Hansen et al., 2000; Marshall and Mueckler, 1994; Ren et

al., 1995) and adipose and/or muscle specific knock-out of Slc2a4 genes in mice (Abel et al.,

2001; Kotani et al., 2004; Zisman et al., 2000) confirm an important role for GLUT4

expression in both of these tissues. The results also suggest that GLUT4 in adipose and

muscle tissues plays an as yet poorly defined role in metabolic cross-talk among fat, muscle,

and liver tissues in the regulation of whole body glucose homeostasis. Consistent with these

animal models, enhanced insulin sensitivity in humans resulting from exercise is associated

with increased expression of SLC2A4 in skeletal muscle at the transcriptional level (Ren et

al., 1994), and insulin-resistant obese patients exhibit reduced GLUT4 expression levels in

adipocytes (Garvey et al., 1991). GLUT4 is a specific target of HIV protease inhibitors that

are essential components of combination drug therapy used to treat HIV infection (Murata et

al., 2000). HIV protease inhibitors appear to bind directly to and inhibit GLUT4 activity in

muscle and fat cells (Hresko and Hruz, 2011), thus causing acute peripheral insulin

resistance (Hruz et al., 2002; Vyas et al.). This effect likely contributes to the metabolic

syndrome and increased incidence of type 2 diabetes of patients treated with HIV protease

inhibitors.

GLUT4 is also expressed in a subset of neurons, especially in cholinergic neurons of the rat

forebrain, and is often co-expressed in conjunction with GLUT3 (Apelt et al., 1999). It has

been speculated that GLUT4 may function to rapidly increase glucose uptake into specific

neurons in response to an increased energy demand.

5.2 GLUT4 Subcellular Trafficking

In 3T3L1 adipocytes under basal conditions newly synthesized GLUT4 traverses the

endoplasmic reticulum, the Golgi, and the trans-Golgi network in a normal manner before it
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enters what appears to be a tortuously complex subcellular trafficking pattern that likely

involves the general endosomal pathway, specialized GLUT4 storage vesicles (GSVs), a

subdomain of the treans-Golgi network, and probably the plasma membrane [reviewed in

(Huang and Czech, 2007; Larance et al., 2008). The steady-state distribution of the protein is

determined by rate constants controlled by accessory proteins governing these steps that act

to retain GLUT4 in intracellular compartments. Insulin binding to its receptor, in an

unknown manner, changes the rate-constants of various steps presumably by altering the

activities of various proteins that in turn brings about a redistribution of about one-half of

the total intracellular GLUT4 to the plasma membrane (Muretta et al., 2008; Yeh et al.,

1995). This redistribution likely occurs through both the general endosomal pathway and via

direct fusion of GSVs with the plasma membrane, combined with a decrease in the rate of

endocytosis. A number of sorting and adaptor molecules have been implicated in GLUT4

trafficking and this subject has been recently reviewed in detail (Larance et al., 2008).

Structurally, several linear targeting motifs have been implicated in GLUT4 trafficking,

including a cytosolic N-terminal FQQI motif (Piper et al., 1993), and 3 distinct motifs within

the cytoplasmic C-terminal domain including a dileucine motif (Verhey and Birnbaum,

1994), an acidic motif (TELEY) (Shewan et al., 2000), and the so-called IRM (insulin-

responsive motif) motif (Song et al., 2008). A recent study (Blot and McGraw, 2008) in

3T3L1 adipocytes suggests that the FQQI and the TELEY motifs are involved in the

intracellular retention of GLUT4 in the basal state via recycling between endosomal

compartments and the trans-Golgi network and GSVs, respectively. Mutation of either motif

causes a partial redistribution of GLUT4 to the cell surface and thus blunts the relative

magnitude of insulin-induced redistribution to the cell surface. The di-leucine motif appears

to be involved in the rapid internalization of GLUT4 from the cell surface after insulin

withdrawal. The IRM appears to be involved in an early post-Golgi step because mutations

in the motif completely ablate insulin responsiveness and prevent GLUT4 from reaching the

cell surface under basal or insulin-stimulated conditions (see Figure 5). Furthermore,

expression of the IRM mutant in 3T3L1 adipocytes appears to cause the formation of a

novel membrane compartment consisting of large dispersed vesicles that are highly enriched

in Ras GTPase-activating protein binding proteins 1 and 2 (G3bp1 and 2) and Caprin-1

(Song and Mueckler, Unpublished). G3bp-1 and Caprin-1 are both mRNA-binding proteins

that are known to interact in cytoplasmic stress granules that represent large clusters of

messenger ribonucleoprotein particles that are induced by various types of cellular stress and

are not bounded by membranes (Kolobova et al., 2009; Solomon et al., 2007). The precise

role of stress granules and of G3pb and Caprin-1 in their formation is unclear. G3bps have

also been associated with the regulation of signaling by the Ras family of GTPases and have

been proposed to be involved in a variety of other cellular functions. One possible

explanation for the association of the IRM mutant with stress-granule associated proteins is

that the mutant is funneled into a pathway by which miss-folded or miss-targeted proteins

are sequestered in a specific membrane compartment, associated with stress granules, for

subsequent degradation.

5.3. Signaling Pathways Mediating GLUT4 Translocation

Upstream signaling to GLUT4 from either the insulin receptor or as the result of muscle

contraction appears to be mediated by at least 2 distinct pathways in adipocytes and skeletal
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muscle. These pathways have been extensively reviewed but are still far from being

completely understood (Herman and Kahn, 2006; Rose and Richter, 2005; Thong et al.,

2005; Watson et al., 2004). In adipocytes and skeletal muscle, insulin binding to its receptor

results in the dimerization and trans-phosphorylation of the receptor beta subunits, causing

the activation of intrinsic tyrosine kinase activity leading to the recruitment and tyrosine

phosphorylation of insulin receptor substrate-2 (IRS-2). The tyrosine phosphorylated SH2

domain of IRS-2 then binds to and activates PI 3-kinase, leading to the production of

phosphatidylinositol 3,4,5 triphosphate (PIP3) in the membrane. Increased PIP3 levels

recruit two distinct serine/threonine kinases, PDK1 and mTORC2 to the membrane, which

then activate the pivotal protein kinase Akt via phosphorylations within its catalytic and

hydrophobic domains. Akt exists at a central hub in the regulation of cellular growth,

survival, and fuel metabolism and has several known direct substrates. There are 3 Akt

isoforms and Akt2 appears to mediate, at least in part, the effect of insulin on GLUT4

translocation in adipocytes via the phosphorylation of AS160 (TBC1D4) (Eguez et al., 2005;

Kane et al., 2002). AS160 is a Rab GTPase activating protein that acts on several putative

downstream Rabs to convert them to their GDP-bound inactive forms. Thus, activated Akt

appears to inactivate AS160, which, in turn, presumably results in the activation of one or

more Rabs that are, at least in part (Gonzalez and McGraw, 2006), responsible for the

recruitment of GLUT4 to the plasma membrane. Rab10 has been specifically implicated in

this process, but its activation is unlikely to account fully for the redistribution of

intracellular GLUT4 to the plasma membrane (Sano et al., 2007). Atypical PKCλ/ζ have

also been implicated in insulin stimulated Glut4 translocation in adipocytes (Farese et al.,

2007), but their precise role remains elusive. Likewise, a PI 3-kinase independent pathway

involving APS, c-Cbl, CAP, CrkII, and TC10 has been proposed to be participate in GLUT4

redistribution to the plasma membrane in adipocytes (Saltiel and Pessin, 2003), but some

evidence appears to contradict this hypothesis (Mitra et al., 2004).

Contraction of skeletal muscle also induces translocation of GLUT4 from intracellular

membrane compartments to the plasma membrane and to transverse tubules (T-tubules),

possibly via both PI 3-kinase dependent and independent pathways (Jessen and Goodyear,

2005). Increased cytosolic Ca+2/calmodulin levels and an increase in the [AMP]/[ATP]

ratio have been implicated as upstream mediators of contraction-induced translocation. The

latter presumably occurs via the activation of AMPK kinase, which is believed to act as a

sensor for available intracellular energy stores. The former may be mediated by the tyrosine

kinase, ErB4.

6. GLUT5

GLUT5 was the first of the class 2 GLUT proteins to be identified and the SLC2A5 gene was

initially cloned from human small intestine (Kayano et al., 1990). It has a high specificity

for fructose (Burant et al., 1992) and one of its primary functions is to mediate the uptake of

dietary fructose across the apical membrane of the small intestine [reviewed in (Douard and

Ferraris, 2008)]. Fructose is then released into the bloodstream via GLUT2 in the intestinal

basolateral membrane. SLC2A5 expression in the intestine is regulated at the transcriptional

level by the presence of fructose in the gut (Jiang et al., 2001) and by diurnal rhythm

independent of fructose availability (Corpe and Burant, 1996). Even though fructose is
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consumed at high levels in many countries in the form of sucrose and high fructose corn

syrup, levels of circulating fructose are generally ~10–100 times lower than that of glucose.

This is because most dietary fructose is rapidly metabolized after absorption by the intestine,

liver (via GLUT2 uptake) and kidney (also via GLUT2 uptake) (Douard and Ferraris, 2008).

GLUT5 is also expressed in the kidney, fat, skeletal muscle, brain, and the sperm of certain

species. Because of the very low levels of fructose in peripheral blood coupled with the

relatively low apparent affinity of GLUT5 for fructose, the physiological significance of

GLUT5 expression in these other tissues is uncertain, and it is even questionable whether

fructose crosses the blood/brain barrier. The possibility remains that GLUT5 transports one

or more additional physiological substrates other than fructose that might explain its tissue

distribution and response to diabetes.

There has been much interest generated about fructose metabolism since correlations

between increased consumption of dietary fructose and the rising incidence of type 2

diabetes mellitus, metabolic syndrome, and obesity in many countries became apparent

(Havel, 2005). However, a cause and effect relationship between fructose consumption and

these pathological states has not been established, and the correlation between the incidence

of obesity and type 2 diabetes is just as strong when one compares it to total caloric intake

and a sedentary lifestyle. Interestingly, GLUT5 levels are significantly upregulated in

skeletal muscle and intestine of type 2 diabetic patients (Dyer et al., 2002; Stuart et al.,

2007), but the physiological significance of these observations is not known.

7. GLUT8

Sequences for human, rat and mouse GLUT8 (also initially called GLUTX1), encoded by

the SLC2A8/Slc2a8 gene, were first identified by database mining, cloning and functional

characterization (Carayannopoulos et al., 2000; Doege et al., 2000; Ibberson et al., 2000).

This transporter is only expressed in an intracellular compartment and to study its transport

characteristics, surface expression was induced by mutating a dileucine internalization or

intracellular retention motif (Ibberson et al., 2000). This mutated form of GLUT8 is entirely

expressed at the cell surface of Xenopus oocytes or of mammalian cells. GLUT8 has a high

affinity for glucose (Km ~2mM); fructose and galactose compete with glucose transport

activity, which is also inhibited by cytochalasin B.

SLC2A8 mRNA is expressed at high level in the testis and at lower levels in the cerebellum,

adrenal gland, liver, spleen, brown adipose tissue, and lung. In the testis, GLUT8 is

expressed in differentiating spermatocytes at stage 1 (Ibberson et al., 2002) and has also

been reported to be present in the acrosome of mouse and human mature spermatozoa (Joost

et al., 2002). In the brain, GLUT8 is found in hippocampus, in dentate gyrus, amygdala and

primary olfactory cortex, hypothalamic nuclei and the nucleus of the tractus solitarius

(Ibberson et al., 2002; Reagan et al., 2002). High GLUT8 levels are present in the

supraoptico-hypohyseal tract where it has been localized to synaptic vesicles and to

vasopressin-containing secretory granules in the posterior pituitary. GLUT8 is also present

in blastocysts, where it may play a crucial role in glucose metabolism since its suppression

by antisense oligolucleotides leads to increased rates of apoptosis (Pinto et al., 2002).
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Slc2a8 knockout mice display a very mild phenotype. In one study, an increase in the

proliferation of hippocampal neurons and a small increase in heart P-wave duration was

observed (Membrez et al., 2006). A reduction in sperm motility and in mouse locomotor

activity were also reported in Slc2a8 knockout mice (Schmidt et al., 2009). As GLUT8 is

only found in intracellular compartments and since there is no evidence for any significant

intracellular free glucose concentration in most cells, glucose may not be the primary

physiological substrate for this transporter.

8. GLUT9

GLUT9 is a type II transporter isoform that is expressed from two alternatively spliced

variants of the SLC2A9 gene, which encode different amino-terminal cytoplasmic tails (Phay

et al., 2000) (Augustin et al., 2004; Keembiyehetty et al., 2006). Human GLUT9a is 540

amino acids in length and is encoded by 12 exons whereas GLUT9b is comprised of 512

amino acids and is encoded by 13 exons. In both humans and mice GLUT9b is expressed

only in the liver and kidney whereas Glut9a is present in many more tissues, including liver,

kidney, intestine, leukocytes, and chondrocytes (Mobasheri et al., 2005). The different

amino-terminal tails are important for the differential targeting of GLUT9 to opposite poles

of epithelial cells. Whereas GLUT9a is expressed in the basolateral membrane, GLUT9b is

targeted to the apical pole (Augustin et al., 2004). In kidney, GLUT9 is expressed in the

proximal tubule (Augustin et al., 2004), whereas in mice it is present in the basolateral and

apical membranes of distal convoluted tubules (Mounien et al., 2010).

Although initially considered a glucose or fructose transporter (Carayannopoulos et al.,

2004) (Manolescu et al., 2007), it is now established that GLUT9 is a urate transporter

(Anzai et al., 2008; Bibert et al., 2009). GLUT9a and GLUT9b transport urate with the same

kinetics (Km for urate ~0.6 mM), and transport is not competed for by the presence of

excess glucose or fructose. Transport is electrogenic and depends on membrane potential

(Bibert et al., 2009). Urate transport can be inhibited by the uricosuric agents

benzbromarone and losartan, and marginally by pyrazinoate. Transport can be partially

inhibited by phloretin but not by cytochalasin B.

8.1 GLUT9 and the control of uricemia and gout

GLUT9 substrate specificity was revealed from genome wide association studies aimed at

finding gene loci associated with uric acid levels. These studies found that SLC2A9 was the

major locus, explaining up to 3.5% of serum uric acid level variations (Li et al., 2007)

(Caulfield et al., 2008; Dehghan et al., 2008; Doring et al., 2008; Vitart et al., 2008; Wallace

et al., 2008). This locus was also found to be significantly associated with gout (Doring et

al., 2008). As uric acid levels have been associated with the metabolic syndrome, genetic

studies have searched for association between SLC2A9 and the different components of this

syndrome, i.e., insulin resistance, body mass index, hypertension, and coronary heart

diseases. No strong associations have yet been established for coronary artery disease (Stark

et al., 2009) or hypertension (Caulfield et al., 2008) although using Mendelian

randomization analysis, a possible link between SLC2A9 variants and blood pressure has

been established (Parsa et al., 2012).
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Inactivating mutations in SLC2A9 have been identified in rare patients with hypouricemia

(Anzai et al., 2008; Dinour et al., 2009). Such mutations also cause the large excretion of

urate, often associated with renal uric acid crystals and nephropathy that characterizes the

Dalmatian dog (Bannasch et al., 2008; Simkin, 2005).

In mice, genetic inactivation of Slc2a9 induces moderate hyperuricemia and massive renal

excretion of urate (Preitner et al., 2009). This is associated with early-onset nephropathy,

characterized by obstructive lithiasis, tubulointerstitial inflammation, and progressive

inflammatory fibrosis of the cortex. Adult mice with liver-specific inactivation of GLUT9

(Mounien et al., 2010) display severe hyperuricemia associated with a urine concentration

defect but with only a small increase in urine volume. Together these data indicate that liver

GLUT9 is required for urate access to hepatic uricase and conversion to allantoin and for

urate reabsorption in the kidney.

9. HMIT

HMIT is a H+/myo-inositol co-transporter encoded by the SLC2A13 gene (Uldry et al.,

2001). Ectopic expression in Xenopus oocytes and in mammalian cells has been used for

functional studies. However, for maximal plasma membrane expression two internalization

motifs and one ER retention signal had to be mutated. Transport activity is specific for myo-

inositol and strongly activated by acidifying the extracellular medium; this increased Vmax

without changing the Km for myo-inositol (~100μM). Transport is inhibited by phloretin,

phlorizin and cytochalasin B. No glucose transport activity could be measured.

SLC2A13 transcripts are expressed predominantly in the brain, with high expression in the

hippocampus, hypothalamus, cerebellum and brainstem and at a low level in white and

brown adipose tissues and in kidney. In brain, HMIT is found both in neurons and glial cells.

In neurons HMIT is present in intracellular vesicles that can be induced to translocate and

fuse with the plasma membrane to increase myo-inositol uptake. HMIT translocation occurs

at growth cones and synapses and is triggered by neuronal activation and increased Ca++

influx or by activation of protein kinase C (Uldry et al., 2004). These data suggest a possible

role of HMIT in regulating processes that require high levels of myo-inositol or its various

phosphorylated derivatives, such as membrane recycling and growth cone dynamics and

synaptic vesicle exocytosis.

10. GLUT Family Members Whose Physiological Roles Remain Unclear

GLUTs 6, 7, 10, 11, 12, and 14 were all ultimately identified as a result of the sequencing of

the human genome and are encoded by the SLC2A6, SLC2A7, SLC2A10, SLC2A11,

SLC2A12 and SLC2A14 genes respectively. Although they are all capable of transporting

hexoses with varying efficiencies when expressed ectopically in Xenopus oocytes

(Manolescu et al., 2007), the primary physiological substrates for most of these proteins

have not been definitively identified.

GLUT14 is a class 1 protein whose gene (SLC2A14) shares 95% sequence identity with the

SLC2A3 gene and therefore appears to be encoded by a gene duplication (Wu and Freeze,

2002). Its expression is largely confined to the testis and it has no rodent orthologue.
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GLUTs 7 and 11 are class 2 proteins that share ~40–50% sequence identity with the fructose

transporter, GLUT5. GLUT7 is most prominently expressed in the apical membranes of the

small intestine and colon (Cheeseman, 2008). When expressed in Xenopus oocytes it

displays a fairly high apparent affinity (Km ~ 0.3 mM) for both fructose and glucose, but

turnover rates are low, thus calling into question whether these hexoses represent the true

physiological substrates of this protein. Like GLUT7, GLUT11 (Doege et al., 2001) also

transports both glucose and fructose with a fairly low Km and low turnover activity when

expressed in Xenopus oocytes (Manolescu et al., 2007) and has no rodent orthologue. It is

expressed as 3 sequence variants that differ at their N-termini and that probably result from

differential promoter usage. The 3 GLUT11 variants are differentially expressed in heart,

skeletal muscle, kidney, adipose tissue and pancreas (Sasaki et al., 2001).

GLUTs 6, 10, and 12 are class 3 proteins that share ~35% sequence identity. GLUT6

[originally named Glut9 (Phay et al., 2000)] is expressed primarily in spleen, brain, and

leukocytes and displays an intracellular localization that may be due to the presence of a

dileucine motif (Lisinski et al., 2001). It displays low glucose transport activity when

reconstituted into proteoliposomes. The function of this protein may be to transport hexose

molecules or related compounds across intracellular organellar membranes.

GLUT10 exhibits a very wide tissue distribution and is expressed in pancreas, placenta,

heart, lung, liver, brain, fat, muscle, and kidney (McVie-Wylie et al., 2001). When

ectopically expressed in Xenopus oocytes it exhibits a relatively low Km for 2-deoxyglucose

transport (0.3 mM) but also exhibits very low intrinsic transport activity (Dawson et al.,

2001). The GLUT10 gene, SLC2A10, lies within a possible susceptibility locus for type 2

diabetes mellitus (Ji et al., 1997), but no polymorphisms in the gene have yet been reported

that are linked to the disease. Homozygous mutations in the SLC2A10 gene appear to be the

cause of a rare genetic disorder called arterial tortuosity syndrome (ATS) (Coucke et al.,

2006). Symptoms of the disease include extensive morphological abnormalities in arteries

including elongation, aneurysms, and tortuosity.

GLUT12 is also widely distributed and is expressed in heart, skeletal muscle, prostate, and

small intestine (Rogers et al., 2002), and is highly upregulated in breast ductal cell

carcinoma (Rogers et al., 2003). It exhibits low glucose transport activity when expressed in

Xenopus oocytes that is inhibited by cytochalasin B, fructose, and galactose. GLUT12

appears to localize to the Golgi apparatus and to the plasma membrane when ectopically

expressed in Chinese Hamster Ovary cells (Flessner and Moley, 2009), and its subcellular

targeting is influenced by a dileucine motif within its N-terminal cytoplasmic domain

(Aerni-Flessner et al., 2011). Insulin has been reported to acutely stimulate the translocation

of GLUT12 from intracellular membrane compartments to the plasma membrane in human

skeletal muscle (Stuart et al., 2009), and transgenic overexpression of the protein enhances

insulin sensitivity in mice (Purcell et al., 2011). However, what role GLUT12 plays in

glucose homeostasis under normal or pathophysiological conditions remains unknown at

present.
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11. Concluding Remarks

A summary of the role of various Glut proteins in the regulation of glucose delivery and

metabolism is provided schematically in Figure 6. The early studies on the glucose

transporters GLUT1-4 revealed many facets of their involvement in the control of glucose

homeostasis and provided molecular tools to understand some of the defects associated with

insulin sensitivity and insulin secretion, two cardinal features of type 2 diabetes. Subsequent

studies have revealed that several rare congenital disorders are due to mutations in various

SLC2 genes. However, there is still much to be learned about the physiological functions of

GLUT family members. Additionally, the precise mechanism of transport via these proteins

has yet to be determined and awaits the resolution of three-dimensional structures for at least

one of these transporters in multiple conformational states.

This transporter family has now been expanded to include 14 members in the human. It is

clear that many of these newly identified transporters have physiological substrates other

than glucose, such as urate for GLUT9 and myo-inositol for HMIT (SLC2A13). The

physiological substrates and functional roles for most of the other transporters still need to

be discovered. What has been fascinating so far in the study of glucose transporters is that

their careful study has generated new knowledge in various fields of research, from

transporter function, cellular biology, integrated physiology, and molecular mechanisms of

various diseases. Further study of these transporters will undoubtedly yield many more

exciting discoveries in the years to come.
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Figure 1. Simple carrier model for the mechanism of glucose transport
Co and Ci represent the transporter in the outward and inward-facing conformations,

respectively, G is glucose, and a–h are the fundamental rate constants governing the

conformational changes or the glucose binding and release steps. Estimates for rate

constants c,d,g, and h at 20° C were calculated from the data of Lowe and Walmsley (Lowe

and Walmsley, 1989).
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Figure 2. Amino acid sequence and membrane topology of human GLUT1
Amino acid residues are designated by the single letter code. The transmembrane segments

are numbered 1–12. The linkage of the N-linked oligosaccharide at N45 is shown. Positions

that have been analyzed by site-directed mutagenesis are in green. Residues that are believed

to play a direct role in substrate binding are shown in red. Residues that are accessible to

pCMBS from the external solvent are shown in purple. Residues that appear to be critical for

transport activity are shown in yellow. Adapted from (Mueckler and Makepeace, 2009).
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Figure 3. Model of the exoplasmic substrate-binding site of GLUT1 (Mueckler and Makepeace,
2009)
Glucose is not drawn to scale. The arrangement of helices is shown in a simplistic fashion

for clarity. Amino acid residues that are in contact with solvent in the aqueous cavity are

numbered and identified by the single-letter code. Dotted lines represent putative hydrogen

bonds.
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Figure 4. Localization of pCMBS-reactive and putative substrate-binding residues in a homology
based model of GLUT1
The molecular diagrams were created using DeepView (Swiss Institute of Bioinformatics)

based on the coordinates published in (Salas-Burgos et al., 2004). The homology model is

based on the crystal structure of the glycerol-3-P antiporter of E. coli in its cytoplasmic-

facing conformation. The 12 transmembrane helices are drawn as blue ribbons and non-

helical regions as gray lines. pCMBS-reactive side chains are shown in green. The 3 side

chains near the exoplasmic face of the membrane that were identified as a putative glucose

docking site are shown in yellow. Possible substrate-binding side chains based on

mutagenesis experiments are presented in green and identified by the single letter amino

acid code. A) View perpendicular to the membrane from inside the cell. B) Transverse view.
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Figure 5. Colocalization of GFP-tagged wild type GLUT4 and HA-tagged IRM mutant GLUT4
by immunofluorescence laser confocal microscopy
3T3L1 adipocytes were co-infected with recombinant adenoviruses encoding the GFP-

tagged wild-type GLUT4 and a HA-tagged IRM mutant (see text). 48 h later the cells were

serum-starved for two hours, and then either exposed to insulin for 30 min or maintained in

the basal state. Tagged wild-type GLUT4 is shown in the middle panels in green, the tagged

mutants are shown in the left panels in red, and the merged images are shown in the right

panels with colocalization between the two coexpressed proteins presented in yellow. The

scale bars represent 10 μM. Note the redistribution of wild-type GLUT4 to the plasma

membrane after insulin treatment and the lack of redistribution in the IRM mutant.

Additionally, the mutant and wild type transporter are largely present in distinct intracellular

membranes in the absence or presence of insulin. Adapted from (Song et al., 2008).
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Figure 6. Role of GLUT Proteins in the Maintenance of glucose homeostasis
Glucose enters the hepatic portal system by transport across the gut via SGLT1 and GLUT2.

In humans about one-third of blood glucose is carried within the red cell cytoplasm due to

the very high level of expression of Glut1 and subsequent equilibration that occurs across

the red cell membrane. Fructose crosses the gut via GLUT5. Most absorbed glucose escapes

permanent catabolism by the hepatic system (which it enters via GLUT2) except when

hepatic glycogen levels are low. Dietary fructose is mostly metabolized in the gut and liver

and consequently circulating levels are very low. In the resting state most circulating

glucose is oxidized by the central nervous after crossing the blood brain barrier via GLUT1

and enters parenchymal cells of the brain via GLUT3 (neurons) and GLUT1 (astrocytes).

HMIT transports inositol against its concentration gradient in many brain cells. Other Glut

proteins are expressed at lower levels and/or in smaller numbers of brain parenchymal cells

and some, such as GLUT2 and GLUT4, may participate in fuel sensing by individual

neurons. During exercise skeletal muscle consumes the bulk of circulating glucose via

uptake by Glut1 in the endothelium and hence via Glut4 into muscle fibers. Glucose entering

resting muscle is mostly converted to glycogen. Most glucose taken up into fat depots (via

GLUT4) provides the glycerol moieties for the synthesis of triglycerides. Adipose tissue is
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also a critical endocrine organ with respect to glucose homeostasis and secretes numerous

adipokines and cytokines that regulate this process. The most important organ of all with

respect to the regulation of whole body glucose homeostasis is the endocrine pancreas,

especially the insulin-secreting beta cells that sense blood glucose levels after initial uptake

via GLUT1 (humans) or GLUT2 (rodents). Glucose is efficiently retained by the human

body and very little is lost to urinary excretion, due to the combined actions of SGLT2 and

GLUT2. (Figure is courtesy of Ernest Wright, UCLA Medical School).
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