
Congenital ectopia lentis (EL) is the most common form 
of lenticular dislocation and is a result of partial zonular 
dysplasia. EL can manifest mildly or severely, with symptoms 
ranging from refractive errors to amblyopia, complicated 
glaucoma, and retinal detachment, and can seriously impair 
visual quality. EL is the second most prevalent reason for lens 
surgery after cataracts, particularly in juveniles [1]. According 
to a nationwide survey in Denmark, the estimated prevalence 
rate is 6.4/100,000 [2]. Congenital EL can be broadly divided 
into two groups: isolated forms and syndromic forms. Isolated 
EL mainly includes simple dominant EL (ECTOL1; OMIM# 
129600) and EL et pupillae (ECTOL2; OMIM# 225200). 
Syndromic EL mainly includes Marfan syndrome (MFS; 
OMIM# 154700), homocystinuria (HCU; OMIM# 236200), 
Weill-Marchesani syndrome (WMS; OMIM# 277600), and 
sulfite oxidase deficiency (SOD; OMIM# 272300) [3].

The fibrillin-1 (FBN1; OMIM# 134797) gene is well-
known to be linked with MFS [4], and FBN1 mutations could 
be present in up to 60% of patients with congenital EL [5]. 
Furthermore, the transforming growth factor beta receptor 
II (TGFBR2; OMIM# 190182) gene has been identified as a 
pathogenic gene in Loeys-Dietz-syndrome type 2B (OMIM# 
610380), known as MFS type 2 (MFS2; OMIM# 154705), 
which causes serious cardiovascular problems but only mild 

ocular tissue problems [6]. Mutations in the ADAMTSL4 
gene (OMIM# 610113) were identified in 2009 in patients 
with autosomal recessive inherited EL et pupillae [7], which 
was defined as an ADAMTSL4-related eye disorder, and 
is the second most common cause of congenital EL in the 
Caucasian population [8,9]. Simple dominant EL is also due 
to FBN1 gene mutations but does not involve other organs 
[10]. In addition, WMS is either linked to FBN1 and inherited 
in an autosomal-dominant manner or to ADAMTS10 (OMIM# 
608990) in an autosomal-recessive manner [11,12]. HCU is 
linked to the cystathionine-beta-synthase gene (CBS; OMIM# 
613381) in autosomal recessive inheritance [13]. Molecular 
genetic studies have shown that congenital EL has a common 
pathological basis and is associated with defects in microfibril 
assembly [14,15]. The ocular zonule consists of microfibrils, 
with fibrillin-1 as the chief molecular component. Abnormal 
fibrinogenesis could result in zonular dysplasia caused 
by the FBN1 mutations. The ADAMTS protein promotes 
fibrillin-1 assembly including ADAMTSL6, ADAMTS10, 
and ADAMTSL4 [16], whereas homocysteine reduces the 
deposition of the fibrillin-1 network; thus, mutations in the 
ADAMTS and CBS genes might manifest as EL [15]. In addi-
tion, microfibrils regulate the bioavailability of TGFβ super-
family growth factors, such as TGFBR2, that are involved in 
this signaling pathway and rarely result in EL [17].

The Denmark survey for the nosologic characteristics 
of congenital EL showed that MFS accounted for 68.2% of 
patients who had an established clinical diagnosis, EL et 
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pupillae for 21.2%, simple dominant EL for 8.0%, HCU for 
1.1%, and SOD and WMS for 0.7% each [2]. However, the 
systemic evaluation of variants in these genes in a cohort of 
patients is rare, particularly in China. In our current study, 
five candidate genes were analyzed in 40 probands with 
congenital EL to identify the spectrum and frequency of 
candidate genes in Chinese patients with congenital EL.

METHODS

Patients: Forty consecutive and unrelated congenital EL 
patients were collected from the Pediatric and Genetic Clinic 
of Zhongshan Ophthalmic Center between June 1997 and 
August 2013. Written informed consent conforming to the 
tenets of the Declaration of Helsinki was obtained from 
the participants or their guardians before the study. Ethical 
approval was obtained from the Institutional Review Board 
of Zhongshan Ophthalmic Center. An ophthalmological 
examination including visual acuity assessment, intraocular 
pressure (IOP), slit-lamp biomicroscopy, ophthalmoscopic 
observation, and retinoscopy with cycloplegia was performed. 
The systemic examination included measurements of arm 
span and height and a skeletal examination. For each patient 
and affected relative, an echocardiography screen to detect 
cardiovascular diseases was suggested. Patients with trau-
matic and idiopathic lenticular dislocation were excluded.

Mutation screening: Genomic DNA was extracted from the 
leukocytes of a peripheral blood sample from each partici-
pant as previously described [18]. Briefly, Genomic DNA 
was prepared from leukocytes of peripheral venous blood by 
whole blood lysis, followed by phenol-chloroform extraction 
and ethanol precipitation. The DNA pellet was dissolved in 
TE buffer (pH 8.0).The candidate genes in our analysis were 
evaluated in the following order: FBN1 (NM_000138.3), 
ADAMTS10 (NM_030957.2), ADAMTSL4 (NM_019032.4), 
TGFBR2 (NM_003242.5), and CBS (NM_000071.2). The 
primer pairs were designed using the primer3 online tool. 
The primer sequences of the five genes and their optimal 
annealing temperatures are listed in Appendix 1. The prod-
ucts from individual exons were sequenced using the ABI 
BigDye Terminator cycle sequencing kit v3.1 and an ABI 
3100 Genetic Analyzer (Applied Biosystems, Foster City, 
CA). The sequencing results were aligned with consensus 
sequences to identify variations using a sequencing program 
(Lasergene SeqMan II; DNAStar, Madison, WI). Every 
variant was confirmed through repeated sequencing, and its 
frequency was determined from the exome variant server 
(EVS) and 1000 Genomes database. Any variation detected in 
our patients was further evaluated as a control by sequencing 
96 normal individuals. The effect of a novel missense 

mutation on the encoded protein was predicted using the 
PolyPhen-2 [19] and SIFT [20] online tools. Splice-site muta-
tions were predicted using the Splice Site Prediction program 
by Neural Network [21]. Segregation analyses of mutations 
were performed on patients with available family members.

RESULTS

Fibrillin-1 mutations: The FBN1 gene screen identified 25 
pathogenic variants in 34 of the 40 congenital EL families. 
Among them, 22 had been previously reported, and three were 
novel (c.1955G>T, c.2222delA, and c.4381T>C; Appendix 
2). Five known variants (c.184C>T, c.364C>T, c.1916G>A, 
c.1633C>T, and c.5788+5G>A) were found repeatedly in 
14 unrelated families. The variants were evaluated using 
PolyPhen-2 and SIFT, and all were most likely pathogenic 
(Appendix 2). In addition, the novel variants were not found 
in the EVS and 1000 Genomes cohorts. The two novel 
missense mutations, c.1955G>T (p.Cys652Phe) in proband 
QT1252 and c.4381T>C (p.Cys1461Arg) in proband QT753 
resulted in missense mutations, both involving a change in 
highly conserved cysteine residues that form a disulfide 
bond in the cbEGF-like domain; these mutated alleles might 
lead to incorrectly folded monomers. The mother of QT1252 
carried this variant and manifested EL without cardiovascular 
symptoms. The QT753 proband was a sporadic case of EL, 
and his normal parents lacked this gene variant. When he was 
eight years old, his echocardiography was normal. However, 
five years later, echocardiography detected a serious aortic 
dilation (Figure 1). The other novel mutation, c.2222delA 
(p.Asn741Thrfs*31) in proband QT1228, was located in exon 
18 and resulted in a premature termination codon (PTC) in 
the next exon after coding 31 amino acids (Appendix 2). 
Proband QT1228 had only EL with mild valvular regurgi-
tation. His mother, brother, and cousin had no EL but had 
scoliosis. These four family members had mild regurgitation, 
but the uncle of the proband had an aortic replacement opera-
tion. None of the three novel mutations were present in the 96 
normal controls. The pedigrees and cosegregation analyses of 
the three families with novel mutations are shown in Figure 
2A.

Other gene mutations: The ADAMTS10 gene screen revealed 
a novel compound heterozygous variant, c.1586G>A 
(p.Gly529Glu) and c.2485T>A (p.Trp829Arg) in a family 
with WMS. Bioinformatic analysis demonstrated that 
both variants are pathogenic and that neither is present in 
EVS and 1000 Genomes. The mutation cosegregated with 
the disease, as shown in Figure 2B. No variations were 
observed in the normal controls with direct sequencing. The 
clinical phenotype of the family showed that the proband is 
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Figure 1. Clinical phenotype in a proband with MFS. The picture shows the ocular, skeletal and cardiovascular features of the proband in 
family QT753. (A) shows the ectopia lentis. (B) shows the arachnodactyly. (C) show the cubitus valgus and the pectus carinatum. D: The 
echocardiography of this patient was normal when he was 8 years old. But five years later, when the he was 13 years old, echocardiography 
showed an aortic diameter of 5.8 cm at the sinuses of Valsalva with severe aortic valve insufficiency.

Figure 2. Novel mutations identified in FBN1 and ADAMTS10 genes. A: Sequence chromatography of the novel mutation in FBN1 and the 
corresponding normal sequence is shown in the left column; the genotype analysis of the pedigree is shown in the right column. B: Sequence 
changes of QT401 in ADAMTS10 are shown in the left column; the genotype analysis of the pedigree is shown in the right column.

http://www.molvis.org/molvis/v20/1017
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a 14-year-old boy who was only 1.36 m tall, and his affected 
sister is 12 years old and only 1.25 m tall. Both siblings have 
microspherophakia, brachydactyly, and elbow joint stiffness. 
However, his normal brother is 1.43 m tall at 10 years old 
and lacks these abnormities. The parents of the proband have 
brachydactyly without other abnormities (Figure 3). For the 
remaining five patients, no pathogenic variants were detected 
in the FBN1, ADAMTS10, ADAMTSL4, TGFBR2, and CBS 
genes (Appendix 3).

Clinical data: Detailed family histories and clinical data were 
analyzed for the 40 unrelated patients with congenital EL, 
showing that 27 had a family history, and 13 were sporadic 
cases. More than half of the probands (21/40) had poor vision 
from early childhood or under the age of 5 years, and all of the 
patients exhibited bilateral congenital EL (Appendix 2). The 

mean age of referral for ophthalmology, genetics consultation, 
and EL diagnosis in our patient group was approximately 8.0 
years old (ranging from 2 to 33 years). When the FBN1 gene 
mutation is considered [22], 34 patients might be diagnosed 
with MFS, including five mutation-negative patients; three 
patients with c.188A>G or c.1916G>A were isolated EL, two 
patients with c.1955G>T or c.3083A>G were incomplete 
MFS, and one was WMS (Appendix 2 and Appendix 3).

DISCUSSION

In this study, we detected 34 FBN1 mutations in 40 congenital 
EL families, including 22 known and three novel mutations. 
Thirty-four of the 40 patients had MFS, two patients mani-
fested incomplete MFS, and three patients had isolated EL. 
Interestingly, the c.2413T>C mutation was reported to be 

Figure 3. Clinical phenotype of the Weill-Marchesani syndrome family. Clinical phenotype of family QT401 with Weill-Marchesani 
syndrome (A) ectopia lentis in QT401 II:1; (B) normal finger in QT401II3 and brachydactyly in QT401I:1, I:2, II:1, and II:2; (C) microsphe-
rophakia in QT401 II:1 and II:2 as shown by anterior segment optical coherence tomography; (D) short stature in QT401 II:1.
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associated with incomplete MFS and to manifest only as an 
aortic aneurysm [23]. However, the clinical phenotype in our 
study found that the mutation involved the eyes and skeleton 
but not the cardiovascular system and that the diagnosis could 
be classical MFS. This finding suggests that there is high 
variability among different families. According to the revised 
Ghent nosology, a diagnosis of MFS could be obtained in 71% 
of patients after the mutation was identified in the FBN1 gene; 
in contrast, only 59% of patients were diagnosed using the 
older criteria [24]. Our study showed that most of congenital 
EL was FBN1-associated (34/40) and fulfilled the revised 
Ghent criteria (34/40) in Chinese patients. This percentage is 
much higher than in Caucasian individuals [2,9]. In our study, 
the genetic screening was performed with Sanger sequencing, 
and therefore, large-scale genomic rearrangements could 
not be excluded due to the limitations of this method, so 
the FBN1 gene mutation is not excluded in the patients with 
FBN1-negative EL. In addition, we found a novel compound 
heterozygous mutation (c.1586G>A and c.2485T>A) in 
the ADAMTS10 gene. The family members QT401 I 1 and 
QT401 I 2, who carried only a single heterozygous mutation, 
presented with certain mild clinical manifestations of WMS 
such as brachydactyly but lacked other significant abnormali-
ties. Before the ADAMTS10 mutation was identified, there 
had been reports that some heterozygotes with recessive 
WMS presented with certain mild clinical manifestations of 
the disease [25], although no pedigrees with a definite gene 
mutation have been reported. Because ADAMTS10-associated 
WMS is inherited in an autosomal-recessive manner, the 
brachydaktly in the affected individual in the parental genera-
tion is probably a phenocopy.

The fibrillin-1 gene contains 65 exons encoding a glyco-
protein of 2871 amino acids. To date, almost 1,500 mutations 
in the FBN1 gene have been included in HGMD (The Human 
Gene Mutation Database). Epidermal growth factor-like 
(EGF) domains, the most frequent motif in fibrillin-1, have 
six highly conserved cysteine residues that form disulfide 
bonds with each other. Creating or eliminating these cysteine 
residues leads to incorrect folding of the EGF-like domain 
structure [26]. An international study of 1,013 MFS cases 
with known FBN1 mutations revealed an association between 
cysteine mutations and EL. Moreover, missense mutations 
in the 5′ region had a higher probability of combined EL. 
Premature termination codon mutations are more frequent in 
patients with major skeletal involvement [27]. In a summary 
of the FBN1 mutations identified in our study, loci in exons 
1–21 accounted for 60.0% (15/25), loci in EGF domains 
for 72.0% (18/25), and cysteine changes for 76.0% (19/25). 
Our results are in line with earlier reports and may point an 
important role of the cysteine residues in maintaining the 

function of the suspensory ligaments. The clinical features of 
family QT1228, which has a PTC mutation, confirm that PTC 
mutations are mainly associated with skeletal involvement 
and suggest high variability even within the same family. 
Various mutations have been shown to cause a phenotypic 
continuum. For example, patients with isolated EL or EL 
syndrome (ELS) have milder findings. Phenotype–genotype 
correlations regarding FBN1 mutations would be helpful in 
determining the appropriate medical management.

The diagnosis of MFS in young children is difficult, 
especially in sporadic cases, because of the great variability 
in the expression of the disease and because the phenotype 
evolves over the lifetime. EL, the only ocular manifestation 
considered a major diagnostic criterion, is present in 60% 
of patients with MFS. Lens dislocation usually occurs early 
in life with MFS and is best assessed by an ophthalmologist 
with a slit-lamp examination with dilated pupils. Our study 
shows that more than half of patients with MFS acquired EL 
before the age of 5 or during early childhood and that all 
of these patients visited our clinic with poor vision as the 
initial symptom. The detection of FBN1 mutations in these 
patients was 85.0% (34/40), much higher than in patients with 
aortic aneurysms or dissections [28]. A previous study of the 
MFS phenotype evolution during childhood showed that the 
prevalence of EL remained stable from early childhood and 
that aortic root dilatation remained stable when receiving 
β-blocker therapy, whereas the prevalence of skeletal features 
changed with age [29]. These findings suggested that EL 
has a stronger correlation with FBN1 mutations than aortic 
diseases in young patients with MFS. Therefore, congenital 
EL as one of the primary symptoms has important signifi-
cance for diagnosing MFS. In addition, the early diagnosis of 
MFS is essential to establish specific management.

In summary, we analyzed five candidate genes in 
Chinese congenital EL patients and expanded the mutation 
spectrum of these genes. We found that most congenital EL 
cases are associated with FBN1 and could be diagnosed as 
MFS. Congenital EL remains stable from early childhood and 
is strongly associated with FBN1 mutations, which strongly 
supports the MFS diagnosis and can be used to provide 
preventive treatment for atypical and childhood patients with 
MFS.

APPENDIX 1.

Primers used for amplification and sequencing. To access the 
data, click or select the words “Appendix 1.”
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APPENDIX 2.

Summary of clinical findings and Mutations in patients with 
FBN1 and ADAMTS10 mutations [23,30-43]. To access the 
data, click or select the words “Appendix 2.”

APPENDIX 3.

Clinical features of the five probands without mutation. To 
access the data, click or select the words “Appendix 3.”
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