Aurélie Méneret, MD*

Christel Depienne, PhD*
Florence Riant, PharmD

Oriane Trouillard
Delphine Bouteiller
Massimo Cincotta, MD
Pierre Bitoun, MD
Julia Wickert, MD
Isabelle Lagroua, MS

Ana Westenberger, PhD

Alessandra Borgheresi,
MD

Diane Doummar, MD

Marcello Romano, MD

Simone Rossi, MD, PhD

Luc Defebvre, MD

Linda De Meirleir, MD,

PhD
Alberto J. Espay, MD,
MSc, FAAN
Simona Fiori, MD
Stephan Klebe, MD
Chloé Quélin, MD
Sabine Rudnik-
Schéneborn, MD
Ghislaine Plessis, MD
Russell C. Dale, PhD
Susan Sklower Brooks,
MD
Karolina Dziezyc, MD
Pierre Pollak, MD
Jean-Louis Golmard,
MD, PhD
Marie Vidailhet, MD
Alexis Brice, MD
Emmanuel Roze, MD,
PhD

Correspondence to
Dr. Roze:
emmanuel.flamand-roze@psl.

aphp.fr

Supplemental data
at Neurology.org

Congenital mirror movements
Mutational analysis of RAD51 and DCC in 26 cases

ABSTRACT

Objective: We screened a large series of individuals with congenital mirror movements (CMM) for
mutations in the 2 identified causative genes, DCC and RAD51.

Methods: We studied 6 familial and 20 simplex CMM cases. Each patient had a standardized neu-
rologic assessment. Analysis of DCC and RAD51 coding regions included Sanger sequencing and
a gquantitative method allowing detection of micro rearrangements. We then compared the fre-
quency of rare variants predicted to be pathogenic by either the PolyPhen-2 or the SIFT algorithm
in our population and in the 4,300 controls of European origin on the Exome Variant Server.

Results: We found 3 novel truncating mutations of DCC that segregate with CMM in 4 of the 6
families. Among the 20 simplex cases, we found one exonic deletion of DCC, one DCC mutation
leading to a frameshift, 5 missense variants in DCC, and 2 missense variants in RAD51. All 7
missense variants were predicted to be pathogenic by one or both algorithms. Statistical analysis
showed that the frequency of variants predicted to be deleterious was significantly different
between patients and controls (p < 0.001 for both RAD51 and DCC).

Conclusion: Mutations and variants in DCC and RAD51 are strongly associated with CMM, but
additional genes causing CMM remain to be discovered. Neurology® 2014;82:1999-2002

GLOSSARY

CMM = congenital mirror movements; dbSNP = Single Nucleotide Polymorphism Database; DCC = deleted in colorectal
carcinoma; EVS = Exome Variant Server; MM = mirror movements; OMIM = Online Mendelian Inheritance in Man; RAD51 =
RAD51 recombinase.

Mirror movements (MM) are involuntary movements of one side of the body that mirror inten-
tional movements on the opposite side. MM predominate in the upper limbs, mainly involving
muscles controlling the fingers and hands. Isolated congenital MM (CMM [OMIM #157600])
constitute a rare disorder characterized by MM that persist throughout adulthood. It has been
described as a familial disorder with autosomal dominant inheritance, but simplex cases also exist.
MM impair the ability to perform tasks requiring skilled bimanual coordination and are associated
with pain in the upper limbs during sustained manual activities. MM result from various func-
tional and structural abnormalities of the motor network, including altered decussation of the
corticospinal tracts.” Recently, heterozygous mutations in DCC (deleted in colorectal carcinoma
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[OMIM *120470]) and RAD51 (RAD51
recombinase [OMIM *179617]) have been
identified, respectively, in 3 and 2 families
with autosomal dominant CMM.?”> DCC enc-
odes the receptor for netrin 1 (NTN1 [OMIM
*601614]), which promotes attraction and
guidance of developing axons across the body’s
midline.® RAD51 is mostly known for its role
in DNA repair through homologous recombi-
nation,” but its recent implication in CMM has
revealed its possible role in the development of
the motor system.>* So far, DCC and RAD51
seem to account for most CMM families, but
their implication has yet to be tested in simplex
cases. In this study, we screened 6 familial and
20 simplex CMM cases for mutations in DCC
and RAD51.

METHODS Patients. We studied 26 consecutive index cases
with CMM including 6 families (total of 13 affected subjects) and
20 simplex cases. Each patient, as well as available family mem-
bers, had a standardized neurologic assessment and DNA sam-
pling. The severity of MM was scored with the Woods and
Teuber scale.® Familial history, MM location, associated disor-
ders, and reported functional disability were collected. A total
of 658 unrelated healthy controls (348 Caucasians, 222 North

Africans, 88 Turks) were also included to test for new variants.

Standard protocol approvals, registrations, and patient
consents. Written informed consent was obtained from the pa-
tients (or the parents of minors) before genetic analyses. The study
was approved by the ethics committee of the Pitié-Salpétriere
Hospital, Paris.

Genetic analyses. The coding and flanking intronic regions of
DCC and RADS51 were amplified as previously reported.** For-
ward and reverse sequencing reactions were performed with the
Big Dye Terminator Cycle Sequencing Ready Reaction kit (PE
Applied Biosystems, Foster City, CA), and the products were
analyzed on an ABI 3730 automated sequencer (PE Applied
Biosystems). Quantitative multiplex PCR of short fluorescent
fragments analysis was performed for all exons of DCC and
RAD51 and results were analyzed using GeneMapper analysis
software version 4.0 (Applied Biosystems). To look for abnormal
splicing, RNA was extracted from lymphocytes of patient 4 using
the RNeasy Mini Kit (Qiagen, Venlo, Netherlands), and RAD51
cDNA was amplified and sequenced following reverse transcrip-

tion with the Superscript IIT kit (Invitrogen).

Statistical analyses. We listed all sequence variants detected in
RAD51 and DCC in 4,300 controls of European origin on the
Exome Variant Server (EVS).” We compared, for each gene, the
frequency of rare (frequency <2%) missense variants predicted to
be pathogenic by either the PolyPhen-2 or the SIFT algorithm in
our patients (excluding the ones with truncating mutations) and in
the controls, using the Fisher exact test. Computations were performed

using SAS version 9 statistical software (SAS Institute, Cary, NC).

RESULTS The characteristics and genetic results of the
patients are summarized in table e-1 and figure e-1 on

the Neurology® Web site at Neurology.org.
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Two novel nonsense mutations (c.823C>T/p.
Arg275X; ¢.377C>A/p.Ser126X) and 2 novel mutations
leading to a frameshift (c.2871_2875dup/p.Pro960-
GlyfsX8;  ¢.1366_1337insAGCC/p.Argd46GInfsX27)
were identified in DCC in 4 of the 6 families and
one simplex case. They were present in all available
affected family members and absent in 150 controls,
confirming that they were responsible for MM in these
families. A deletion of exons 4 and 5 of DCC was
found in one simplex case (figure 1).

Five missense variants (c.527A>G/p.Asn176Ser,
c.1409G>A/p.Gly470Asp, ¢.2407G>A/p.Gly803Asp,
c.2000G>A/p.Arg667His, and  c.2105A>G/p.
Asn702Ser) were identified in DCC in 4 simplex cases
(one individual had 2 variants) (figure 2A). All variants
alter highly conserved amino acids and are predicted to
be deleterious by both the PolyPhen-2 and SIFT
algorithms (table e-2). Four of them (p.Asnl76Ser,
p.Gly470Asp, p.Arg667His, and p.Asn702Ser) are
referenced in the Single Nucleotide Polymorphism
Database (dbSNP). The p.Asn176Ser variant was trans-
mitted by a healthy parent. The p.Arg667His variant
was found at the heterozygous state in both healthy
parents, who were first cousins, and a healthy brother.
The variants p.Gly470Asp and p. Gly803Asp were pre-
sent each on one allele in the same individual (z7ans
configuration): the first one was transmitted by the pa-
tient’s healthy mother, while the latter was absent from
both parents, indicating its de novo occurrence. Two
novel missense variants (c.140A>G/p.His47Arg and
c.409A>T/p.Jle137Phe) were identified in RAD51 in
2 simplex cases (figure 2B). These variants alter con-
served amino acids and are predicted to be deleterious
by at least one of the 2 algorithms (table e-2). Both
variants were inherited from the patients” healthy moth-
ers, and one of them (p.His47Arg) was also present in a
healthy brother. A variant located next to a splice site
(¢.778-5A>G) was found in an additional simplex case.
Although it was predicted to modify splicing, the study
of the RADS5] transcript in the patient’s l[ymphoblasts
revealed no abnormality, suggesting that it constitutes a
rare benign variant.

Three of the variants identified in patients with
CMM (p.Asn176Ser, p.Gly470Asp, and p.Asn702S-
er in DCC) were found in controls, at a low fre-
quency. The 5 remaining variants were not found
in at least 150 ethnically matched controls (see details
in table e-1).

Statistical analysis showed that the frequency of
variants predicted to be deleterious was significantly
different between patients with CMM and the EVS
controls (2/20 vs 7/4,300, p = 0.0007 for RAD5I;
5/20 vs 140/4,300, p = 0.0004 for DCC).

DISCUSSION We report 4 novel truncating muta-
tions and one exonic deletion in DCC in 6 unrelated
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[ Figure 1 Deletion of exons 4 and 5 of DCC in a simplex case
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The quantitative multiplex PCR of short fluorescent fragments profiles of the deletion carrier (in red) and of a normal control (in blue) are superimposed. They
are normalized using HMBS as a control amplicon. A 2-fold reduction of exons 4 and 5 is observed in the patient's profile. DCC = deleted in colorectal
carcinoma; HMBS = hydroxymethylbilane synthase; RAD51 = RAD51 recombinase.

CMM families. We also describe 5 DCC and 2
RADS51 missense variants predicted to be damaging
in 6 individuals. In total, 12 of the 26 probands (4/6
families and 8/20 simplex cases) had at least one var-
fant in DCC or RADS5]I that certainly, probably, or
possibly contributes to CMM.

Pathogenicity of these variants is supported by the
statistical analysis showing that the frequency of rare
missense variants predicted to be damaging was signif-
icantly higher in affected individuals than in the EVS
population. Strikingly, the 8 mutations reported so
far in CMM families (2 in RAD51 and 6 in DCC)
were all truncating mutations,?> whereas 7 of the 9
variants found in simplex patients were missense.

Penetrance associated with truncating mutations in
either gene was previously estimated to be 50% in
CMM families,’* and the most probable consequence
of these mutations is haploinsufficiency resulting from
the degradation of the mutated messenger RNA by
nonsense-mediated RNA decay.>® Missense variants
possibly have different consequences at a molecular
level since the mutated protein is theoretically
expressed. Of note, some DCC variants are located
within or in the vicinity of the netrin-binding domain,
and might thereby alter axonal guidance. We hypoth-
esize that missense variants could induce “apparently
simplex” CMM by being associated with a lower pen-
etrance than truncating mutations—which indicates

[ Figure 2 Distribution of all the identified variants and mutations throughout the DCC and RAD51 proteins ]
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(A) DCC. (B) RAD51. AAA+ = ATPase domain; DCC = deleted in colorectal carcinoma; FN3 = fibronectin type Ill-like domain; HhH = helix-hairpin-helix
domain; IgC2 = immunoglobulin-like type C2 domain; P1, P2, P3 = conserved domains of the cytoplasmic region; RAD51 = RAD51 recombinase; TM =

transmembrane domain.
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that examination of a very large number of family
members would have led us to detect more affected
individuals. In keeping with this hypothesis, 4 of the 5
missense variants for which segregation data were avail-
able were inherited by an asymptomatic parent and
also found in 2 siblings, whereas only one occurred
de novo. Furthermore, 4 of the 7 missense variants
were referenced in the dbSNP, and present at a low
frequency in controls. Instead of representing mono-
genic mutations with reduced penetrance, missense
variants may rather constitute susceptibility factors
for CMM. Genetic or environmental factors might
provide a second hit to induce the MM phenotype.
Finally, we failed to identify mutations or rearrange-
ments of DCC and RADS5] in 2 familial and 12 sim-
plex cases, implying that additional genes are involved
in CMM and remain to be identified.
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