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Abstract

Glycoside hydrolases catalyze the selective hydrolysis of glycosidic bonds in oligosaccharides, polysaccharides, and their
conjugates. b-glucosidases occur in all domains of living organisms and constitute a major group among glycoside
hydrolases. On the other hand, the benzoxazinoids occur in living systems and act as stable b-glucosides, such as 2-(2,4-
dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one)-b-D-gluco-pyranose, which hydrolyse to an aglycone DIMBOA. Here,
we synthesized the library of novel 1,3-benzoxazine scaffold based aglycones by using 2-aminobenzyl alcohols and
aldehydes from one-pot reaction in a chloroacetic acid catalytic system via aerobic oxidative synthesis. Among the
synthesized benzoxazines, 4-(7-chloro-2,4-dihydro-1H-benzo[d][1,3]oxazin-2-yl)phenol (compound 7) exhibit significant
inhibition towards glucosidase compared to acarbose, with a IC50 value of 11.5 mM. Based upon results generated by in silico
target prediction algorithms (Naı̈ve Bayesian classifier), these aglycones potentially target the additional sodium/glucose
cotransporter 1 (where a log likelihood score of 2.70 was observed). Furthermore, the in vitro glucosidase activity was
correlated with the in silico docking results, with a high docking score for the aglycones towards the substrate binding site
of glycosidase. Evidently, the in vitro and in vivo experiments clearly suggest an anti-hyperglycemic effect via glucose
uptake inhibition by 4-(7-chloro-2,4-dihydro-1H-benzo[d][1,3]oxazin-2-yl)phenol in the starved rat model. These synthetic
aglycones could constitute a novel pharmacological approach for the treatment, or re-enforcement of existing treatments,
of type 2 diabetes and associated secondary complications.
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Introduction

Diabetes mellitus, particularly its subtype 2 (T2-DM), is

considered to be a major and increasing threat to human health

and accounts for an estimated more than 300 million cases of

diabetes worldwide [1,2]. Diabetes is associated with a significant

number of co morbidities, such as cardiovascular disorders, stroke,

diabetic retinopathy and kidney dysfunction, and long-term

complications may even lead to limb amputations, among other

consequences [2].

In addition to injectable insulin and analogs thereof, four

distinct classes of oral hypoglycemic agents are currently used for

the treatment of T2-DM. In addition to metformin as an oral drug

used for the early control of T2-DM, there are a number of

second- and third-line pharmacological agents available, such as

sulfonylureas, thiazolidinediones, incretin-based remedies, and a-

glucosidase inhibitors. Given the increased perception that

handling the early stages of diabetes is of crucial importance,

several recent studies and approaches are focusing on agents that

can delay or inhibit glucose absorption. Delaying glucose

absorption, such as by blocking glycoside hydrolases (particularly

a-glucosidases), allows extended time for b-cells to increase insulin

secretion, and thereby reduce circulatory glucose levels [3,4].

a-glucosidases are membrane-bound enzymes that catalyze the

selective hydrolysis of glycosidic bonds in oligosaccharides,

polysaccharides, and their conjugates to release glucose and the

respective monosaccharides. Although they occur throughout

living organisms, most of them are located in the brush border of

the small intestine to facilitate glucose uptake [4,5]. Thus, the use

of a-glucosidase inhibitors (AGIs) for the treatment of T2-DM

delays the release of glucose and halts glucose absorption, thereby

lowering the postprandial blood glucose level and improving pre-

diabetic conditions. The currently most prominent AGIs are

acarbose (Glucobay), a natural compound from an Actinoplanes

strain, and the N-hydroxyethyl analogue of 1-deoxynojirimycin,
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miglitol [4,6]. However, these compounds have been reported to

cause severe gastrointestinal complications.

Numerous efforts have hence been made to further develop

AGIs in order to improve treatment of pre-diabetic states [7,8].

Glycosides, the natural substrates for the glycoside hydrolases

which are composed of an aglycone and a glycan moiety, have

recently attracted particular attention in this field. Stable b-

glucosides such as 2-(2,4-dihydroxy-7-methoxy-2H-1,4-benzoxa-

zin-3(4H)-one)-b-D-gluco-pyranoside and desmethoxy derivatives

including 6,7-dimethoxy-benzoxazolin-2(3H)-one, 4-hydroxy-2H-

1,4-benzoxazin-3(4H)-one, and 4-acetylbenzoxazolin-2(3H)-one,

are found in living plants [9]. These glucosides are biologically

inactive, but enzymatically converted to active aglycones such as

DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-

one and the desmethoxy derivative DIBOA, by b-glucosidases

[10]. These products have diverse effects, that include anti-auxin,

anti-inflammatory, and powerful antibiotic activities. These

aglycones are further degraded spontaneously to the correspond-

ing benzoxazolinones, MBOA (6-methoxy-benzoxazolin-2(3H)-

one) and the desmethoxy derivative BOA. Degradation is faster if

the benzene ring and amide linkage bears electron donating or

hydroxyl groups [11], and these chemical variations are what we

explored in more detail in the current work. In addition to this,

our aim was to remove the relatively labile N-hydroxy amide

moiety via replacement by a suitable ring system, masking the

glycosylation site of glycoside (Fig. 1). These efforts have the goal

of increasing efficacy of the compounds in vivo, in order to lower

blood sugar levels by inhibiting glucosidase.

Materials and Methods

Chemicals/ Reagents
Rat intestinal acetone powder was purchased from Sigma

Aldrich, St. Louis (USA), Acarbose was purchased from Glucobay

Bayer AG (Germany). Porcine pancreatic a-Amylase and Yeast a-

Glucosidase were purchased from SRL, Mumbai (India). Glucose

oxidase (GOD POD) kit was purchased from Piramal HealthCare

Ltd, Mumbai (India). All other chemicals used were of analytical

grade and purchased from Sigma Aldrich, St. Louis (USA) and

SRL, Mumbai (India). All IR spectra were obtained in KBr disc on

a Shimadzu FT-IR 157 Spectrometer. 1H and 13C NMR spectra

were recorded on a Bruker WH-200 (400 MZ) spectrometer in

CDCl3 or DMSO-d6 as solvent, using TMS as an internal

standard and chemical shifts are expressed as ppm. Mass spectra

were determined on a Shimadzu LC-MS. The elemental analyses

were carried out using an Elemental Vario Cube CHNS rapid

Analyzer. The progress of the reaction was monitored by TLC

pre-coated silica gel G plates.

Experimental animals
Adult Wistar rats weighing 150–180 g were collected from the

University Central Animal Facility and housed under a controlled

environment. All animal experiments were approved by the

Institutional Animal Ethical Committee (Order No : MGZ/2620/

2011-12 Dated 31-01-2012; UOM/IAEC/18/2011), Department

of Studies in Zoology, University of Mysore, Mysore and were in

accordance with the guidelines of the Committee for the Purpose

of Control and Supervision of Experiments on Animals

(CPCSEA).

Synthesis and characterization of 1,3-benzoxazine
derivatives

This work is based on the previous synthesis of an oxazine

derivative which was able to mimic the pyranoside structure of

glycans functionally [12]. In continuation of the glycobiological

aspects, the one-pot syntheses of a novel 1,3-benzoxazine scaffold

was carried out using 2-aminobenzyl alcohols and different

aldehydes in chloroacetic acid via aerobic oxidative synthesis

(Fig. 2).

General Procedure for the Synthesis of

benzoxazines. To a 50 mL round bottom flask, amino benzyl

alcohol (1.0 equiv), aldehyde (1.0 equiv), chloroacetic acid (1.0

equiv) and methanol (10 mL) were added. The reaction mixture

was then stirred at room temperature for 16 h. Water was added

to the reaction mixture, and extracted with ethyl acetate. The

organic layer was dried by using anhydrous sodium sulphate, and

then concentrated in vacuum to afford compound benzoxazine as

a crystalline solid. The compounds were then purified by column

chromatography and characterized via IR, 1H NMR, 13C NMR,

mass spectrometry and Elemental Analysis.

Synthesis of 4-(2,4-dihydro-1H-benzo[d][1,3]oxazin-2-

yl)phenol 1. The product 1 was obtained from 2-amino benzyl

alcohol (1.23 g,10 mmol), 4-hydroxy benzaldehyde (1.22 g,

10 mmol) and chloroacetic acid 0.94 g (10 mmol). This com-

pound was obtained as brownish solid in 83% yield. IR nmax

(KBR): 3277,2924, 1514, 1220 cm21, 1H NMR (400 MHz,

CDCl3 d in ppm) d 4.13(1H, s, NH) 4.80-4.90 (2H, s, CH2) 5.02

(1H, s, O-H) 5.28 (1H, s,-CH) 6.70-6.72(1H, d, Aromatic -CH)

6.9–7.2 (5H, m, Ar-CH) 8.06 (1H, s, Ar-CH); 13C NMR 70.05,

97.95, 114.64, 120.47, 126.08, 126.13, 129.13, 129.79, 130.22,

Figure 1. Scheme for the proposed strategy for the synthesis of 1,3-benzoxazine derivatives.
doi:10.1371/journal.pone.0102759.g001
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138.07, 147.90, 155.51. MASS; m/z found for C14H13NO2 228.2

([M+1]+).

Synthesis of 2-(1H-indol-3-yl)-2,4-dihydro-1H-

benzo[d][1,3]oxazine 2. The product 2 was obtained from

2-amino benzyl alcohol (1.23 g, 10 mmol), indole-3-carbaldehyde

(1.45g, 10 mmol) and chloroacetic acid 0.94g (10 mmol). This

compound was obtained as black color solid in 82% yield. IR

nmax (KBR): 3252, 2898, 1493, 1244 cm21, 1H NMR
(400 MHz, CDCl3 d in ppm) 4.25 (1H,s,NH), 4.70 (2H,s,- CH2-

) 5.12 (1H,s,-CH-), 7.07-7.50(5H,m, Ar-H), 8.01–8.64(4H,m, Ar-

H), 11.80 (1H,s,Indole-NH); Anal. Calcd.for C16H14N2O: C,

76.78; H, 5.64; N, 11.19; found C, 76.54; H, 5.51; N, 11.53 %.

MASS; m/z found for C16H14ClN2O 251.3 ([M+1]+).

Synthesis of 2-(2-methyl-1H-indol-3-yl)-2,4-dihydro-1H-

benzo[d][1,3]oxazine 3. The product 3 was obtained from

2-amino benzyl alcohol (1.23 g, 10 mmol), 2-methyl indole-3-

carbaldehyde (1.59 g, 10 mmol) and chloroacetic acid 0.94g

(10 mmol). This compound was obtained as black colour solid in

87% yield. IR nmax (KBR): 3212, 2788, 1462, 1238 cm21, 1H
NMR (400 MHz, CDCl3 d in ppm) 2.11(3H,s, -CH3-), 4.13

(1H,s,-N-H-), 4.83 (2H,s,-CH2-) 5.19 (1H,s-CH-); 7.26(3H,m,-Ar-

CH-) 8.06–8.22(5H,m,Ar-CH), 10.12(1H,s,N-H INDOLE) Anal.

Calcd.for C17H16N2O; C, 77.25; H, 6.10; N, 10.60; found C,

77.14; H, 6.11; N, 10.43%; MASS; m/z found for C17H16N2O

264.4 ([M+1]+).

Synthesis of 2-(1-(4-(2-cyanophenyl)benzyl-1H-indol-3-

yl),2,4-dihydro-1H-benzo(d)(1,3) oxazine 4. The product 4
was obtained from 2-amino benzyl alcohol (1.23 g, 10 mmol), 2-

(1-(4-(2-cyanophenyl )1-benzyl-1H-indole-3-carbaldehyde (3.36 g,

10 mmol) and chloroacetic acid 0.94 g (10 mmol). This com-

pound was obtained as brown colour solid in 86% yield. IR nmax

(KBR): 3182, 2918, 1473, 1294 cm21, 1H NMR (400 MHz,

CDCl3 d in ppm) 4.09 (1H,s, -NH), 4.7 (2H,s,-CH2), 5.4 (3H,s,-

CH), 5.4 (3H,s,-CH2) 7.26–8.35 (17H,m,-Ar-CH-) Anal. Calcd.for

C30H23N3O; C, 81.61; H, 5.25; N, 9.52; found C, 81.14; H, 5.11;

N, 9.43%. MASS; m/z found for C30H23N3O 442.4 ([M+1]+).

Synthesis of 3-(2,4-dihydro-1H-benzo[d][1,3]oxazin-2-yl)-

4H-chromen-4-one 5. The product 5 was obtained from 2-

amino benzyl alcohol (1.23 g, 10 mmol), 4-oxo-4H-chromene-3-

carbaldehyde (3.21 g, 10 mmol) and chloroacetic acid 0.94 g

(10 mmol). This compound was obtained as brownish solid in 89%

yield. IR nmax (KBR): 3302, 2918, 1463, 1215 cm21, 1H NMR
(400 MHz, CDCl3 d in ppm) 4.11 (1H,s,NH), 4.80 (1H,s,-CH-)

5.32 (2H,s,-CH2-), 7.07–8.32(7H,m, Ar-H) 8.55(H,s, Ar-O-CH);
13C NMR 70.1, 85.5, 110.6, 115.2,116.1, 119.6,122.0,127.6,

127,8, 129.2, 132.6, 133.6, 142.2, 149.1,155.6, 179.2; Anal. Calcd.

for C17H13NO3: C, 73.11; H, 4.69; N, 5.02; found C, 73.54; H,

4.51; N, 5.23 %; MASS; m/z found for C17H13NO3 278.3

([M-1]+).

Synthesis of 2-(2-butyl-4-chloro-1H-imidazol-5-yl)-2,4-

dihydro-1H-benzo[d][1,3]oxazine 6. The product 6 was

obtained from 2-amino benzyl alcohol (1.23 g, 10 mmol), 2-

butyl-4-chloro-1H-imidazole-5-carbaldehyde (1.86 g, 10 mmol)

and chloroacetic acid 0.94 g (10 mmol). This compound was

obtained as black colour solid in 86% yield. IR nmax (KBR): 3225,

2892, 1433, 1214 cm21 1H NMR (400 MHz, CDCl3 d in ppm)

0.90 (3H,t,CH3), 1.30 (2H,m,- CH2-) 1.60 (2H,m,-CH2-), 2.60

(2H,t,CH2), 4.30 (1H,s,- NH-) 4.60 (2H,s,-CH2-), 5.60 (1H,s,- CH-

) 6.60–7.60 (4H,m, Ar-H), 8.2 (1H,s, imidazole N-H) Anal.

Calcd.for C15H18ClN3O: C, 61.75; H, 6.22; N, 14.40; found C,

61.54; H, 6.51; N, 14.53 %. MASS; m/z found for C15H18ClN3O

292.2 ([M+1]+).

Synthesis of 4-(7-chloro-2,4-dihydro-1H-benzo[d][1,3]

oxazin-2-yl)phenol 7. The product 7 was obtained from 2-

amino-4-chloro benzyl alcohol (1.57 g, 10 mmol), 4-hydroxy

benzaldehyde (1.22 g, 10 mmol) and chloroacetic acid 0.94 g

(10 mmol). This compound was obtained as brownish solid in 87%

yield. IR nmax (KBR): 3258, 2897, 1487, 1269 cm21 1H NMR
(400 MHz, CDCl3 d in ppm) d 4.13(1H,s,NH) 4.80-4.90

(2H,s,CH2) 5.02 (1H,s,O-H) 5.28 (1H,s,-CH) 6.70-6.72(2H,d,

Aromatic -CH) 6.9–7.2 (4H,m,Ar-CH) 8.06 (1H,s,Ar-CH). 13C
NMR 68.97, 94.73, 110.80, 115.66, 119.08, 129.97, 130.40,

133.39, 134.24, 139.12, 149.38, 159.12. Anal. Calcd.for

C14H12ClNO2; C, 64.25; H, 4.62; N, 5.35; found C, 64.14; H,

4.21; N, 5.53%. MASS; m/z found for C14H12ClNO2 262.2 ([M+
1]+).

Synthesis of 7-chloro-2-(1H-indol-3-yl)-2,4-dihydro-1H-

benzo[d][1,3]oxazine 8. The product 8 was obtained from

2-amino-5-chloro benzyl alcohol (1.57 g,10 mmol), indole-3-

carbaldehyde (1.45 g, 10 mmol) and chloroacetic acid 0.94 g

(10 mmol). This compound was obtained as brownish solid in 85%

yield. IR nmax (KBR): 3213, 2978, 1448, 1236 cm21, 1H NMR
(400 MHz, CDCl3 d in ppm) 4.25 (1H,s,NH), 4.70 (2H,s,- CH2-)

5.12 (1H,s,-CH-), 7.07-7.50(5H,m, Ar-H), 8.01–8.64(3H,m, Ar-

H), 11.80 (1H,s,Indole-NH); Anal. Calcd. for C16H13ClN2O: C,

67.49; H, 4.60; N, 9.84; found C, 66.54; H, 4.51; N, 9.53%;

MASS; m/z found for C16H13ClN2O 285.8 ([M+1]+).

Synthesis of 6-chloro-2-(2-phenyl-1H-indol-3-yl)-2,4-

dihydro-1H-benzo[d][1,3]oxazine 9. The product 9 was

obtained from 2-amino-5-chloro benzyl alcohol (1.57 g, 10 mmol),

2-phenyl indole-3-carbaldehyde (2.21 g, 10 mmol) and chloroa-

cetic acid 0.94 g (10 mmol). This compound was obtained as

colourless solid in 89% yield. IR nmax (KBR): 3232, 2843, 1452,

1243 cm21, 1H NMR (400 MHz, CDCl3 d in ppm) 2.31(2H,s,

Figure 2. General procedure for the synthesis of novel benzoxazines.
doi:10.1371/journal.pone.0102759.g002
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-CH2-), 2.39 (3H,s,CH3), 5.11 (1H,s,-C-H), 4.2 (1H,s,-N-H-) 6.26–

8.41 (12H,m,Ar-CH-); 10.00 (1H,s,N-H) Anal. Calcd.for

C22H17N2OCl; C, 73.23; H, 4.72; N, 7.76; found C, 73.34; H,

4.31; N, 7.43%; MASS; m/z found for C22H17ClN2O 361.5

([M+1]+).

Synthesis of 3-(6-chloro-2,4-dihydro-1H-benzo[d][1,3]

oxazin-2-yl)-4H-chromen-4-one 10. The product 10 was

obtained from 2-amino -5-chloro benzyl alcohol (1.57 g,10 mmol),

4-oxo-4H-chromene-3-carbaldehyde (1.74 g, 10 mmol) and chlor-

oacetic acid 0.94 g (10 mmol). This compound was obtained as

brownish solid in 83% yield. IR nmax (KBR): 3219, 2797, 1488,

1285 cm21 1H NMR (400 MHz, CDCl3 d in ppm) 4.11

(1H,s,NH), 4.80 (1H,s,-CH-) 5.32 (2H,s,-CH2-), 7.77–8.55(7H,m,

Ar-H); Anal. Calcd.for C17H12ClNO3: C, 65.08; H, 3.86; N, 4.46;

found C, 66.54; H, 3.51; N, 4.23%; MASS; m/z found for

C17H12ClNO3 314.0 ([M+1]+).

Synthesis of 6-methyl-2-(2-methyl-1H-indol-3-yl)-2,4-

dihydro-1H-benzo[d][1,3]oxazine 11. The product 11 was

obtained from 2-amino-5-methyl benzyl alcohol (1.37 g,10 mmol),

2-methyl indole-3-carbaldehyde (1.59 g, 10 mmol) and chloroa-

cetic acid 0.94 g (10 mmol). This compound was obtained as light

yellow colour solid in 80% yield. IR nmax (KBR): 3219, 2818,

1513, 1284 cm21, 1H NMR (400 MHz, CDCl3 d in ppm)

2.40(3H,s, -CH3-), 2.5 (3H,s,-CH3), 4.6 (2H,s,-CH2), 5.25 (1H,s,-

CH) 6.67–7.32 (7H,m,-Ar-CH-) 10.15(1H,s,N-H), Anal. Calcd.for

C18H18N2O; C, 77.67; H, 6.52; N, 10.06; O, 5.75; found C,

77.14; H, 6.11; N, 10.43%. MASS; m/z found for C18H18N2O

278.2, 280.2 ([M+1]+).

Synthesis of 6-methyl-2-(2-phenyl-1H-indol-3-yl)-2,4-

dihydro-1H-benzo[d][1,3]oxazine 12. The product 12 was

obtained from 2-amino-5-methyl benzyl alcohol (1.37 g,

10 mmol), 2-phenyl indole-3-carbaldehyde (2.21 g, 10 mmol)

and chlor acetic acid 0.94 g (10 mmol). This compound was

obtained as colourless solid in 86% yield. IR nmax (KBR): 3210,

2817, 1433, 1224 cm21, 1H NMR (400 MHz, CDCl3 d in ppm)

2.31(2H, s, -CH2-), 2.39 (3H, s, CH3), 5.11 (1H, s, -C-H), 4.2 (1H,

s, -N-H-) 6.26–8.41 (12H, m, Ar-CH-); 10.00 (1H, s, N-H) Anal.

Calcd. for C23H20N2O; C, 81.15; H, 5.92; N, 8.23; found C,

81.34; H, 5.71; N, 8.43%; MASS; m/z found for C23H20N2O

341.2 ( [M+1]+).

Synthesis of 3-(6-methyl-2,4-dihydro-1H-benzo[d][1,3]

oxazin-2-yl)-4H-chromen-4-one 13. The product 13 was

obtained from 2-amino-5-methyl benzyl alcohol (1.37 g,

10 mmol), 4-oxo-4H-chromene-3-carbaldehyde (1.74 g, 10 mmol)

and chloro acetic acid 0.94 g (10 mmol). This compound was

obtained as yellow color solid in 88% yield. IR nmax (KBR): 3241,

2828, 1413, 1224 cm21, 1H NMR (400 MHz, CDCl3 d in ppm)

2.20(3H,s, -CH3-), 4.11-4.13 (1H,s,-N-H), 4.11-4.13 (1H, s, -C-H),

4.79 (1H, s, -CH2-) 5.26 (1H, s, -CH2-); 6.6–8.3 (7H, m, -Ar-CH-)

8.5(1H, s, O-CH), Anal. Calcd. for C18H15NO3; C, 73.71; H,

5.15; N, 4.78; found C, 73.14; H, 5.11; N, 4.43%; Mass; m/z

found for C18H15NO3 294.1 ([M+1]+).

Inhibitory activity against a-Amylase
The a-amylase inhibition assay was performed according to a

previous report [13]. Porcine pancreatic a-amylase (3 units/mL)

was dissolved in 0.1 M phosphate buffered saline, pH 6.9. The

various concentrations of 1,3-benzoxazine derivatives (0–100 mM)

were pre-incubated with enzyme independently for 10 min at

37uC. The reaction was initiated by adding substrate solution

(0.1% starch) to the incubation medium. After 10 min incubation,

the reaction was stopped by adding 250 mL dinitrosalicylic (DNS)

reagent (1% 3, 5-dinitrosalicylic acid, 0.2% phenol, 0.05%

Na2SO3 and 1% NaOH in aqueous solution) to the reaction

mixture. The reaction was terminated by keeping the reaction

mixture in boiling water bath for 10 min. Thereafter, 250 mL of

40% potassium sodium tartarate solution was added to the

mixtures to stabilize the colour. After cooling to room temperature

in a cold water bath, the absorbance was recorded at 540 nm

using a Varioskan multimode plate reader (Thermo Scientifics,

USA). Acrabose was used as positive control. The percentage of

inhibition was calculated using Abs Contol – Abs Sample 6100/

Abs Control. Where Abs Control was the absorbance without

sample, Abs sample was the absorbance of enzyme with

compound. Concentration-response assays were used to determine

the potency (IC50) of 1,3-benzoxazine derivatives based on the

logistic analysis of the concentration-response curve using Micro-

soft Excel.

Inhibitory activity against a-Glucosidase
The a-glucosidase inhibitory activities of synthesized com-

pounds were evaluated using the method developed by Tsujii et al.

[14]. Briefly, a-glucosidase was dissolved in phosphate buffer

(50 mM, pH 6.9) and pre-treated with various concentrations of

1,3-benzoxazine derivatives (0–100 mM) independently for 10 min

at 37uC. The reaction was initiated by the addition of 50 mL of

5 mM p-nitrophenyl- a -D-glucopyranoside solution in phosphate

buffer (50 mM, pH 6.9). The enzyme reaction was carried out at

37uC for 30 min. The reaction was terminated by the addition of

Na2CO3 (1 M). The enzymatic activity of a-glucosidase was

quantified by measuring the absorption at 405 nm using a

Varioskan multimode plate reader (Thermo Scientifics, USA).

The inhibitory effect of compounds was defined as inhibitory

activity (%) = (Abs Control – Abs Compound treated)/Abs

Control 6100. Concentration-response assays were used to

determine the potency (IC50) of 1,3-benzoxazine derivatives based

on the logistic analysis of the concentration-response curve using

Microsoft Excel.

Intestinal a-glucosidase inhibitory assay
Intestinal a-glucosidase activity was determined by measuring

the amount of glucose hydrolyzed from maltose or sucrose [15].

Briefly, rat intestinal acetone powder was homogenized in 0.9%

saline and the suspension was centrifuged at 10,000 g for 30 min

at 4uC and the supernatant obtained was used as enzyme source.

The enzyme solution was pre-incubated with various concentra-

tions of compound 7 (5–25 mM) or acarbose (5 mM) or combined

[5 mM acarbose with increasing concentrations of compound 7

(1–10 mM)] in 100 mM phosphate buffer pH 6.9 at 37uC for

10 min and the reaction was started by adding maltose (37 mM)

or sucrose (56 mM) and incubated at 37uC for 30 min (for

maltase) and 60 min (for sucrase). After the respective incubation

period, reaction was terminated by keeping the samples in boiling

water bath for 10 min. The concentration of glucose released from

the reaction mixtures was determined by using Glucose oxidase

(GOD POD) kit according to the manufacturer’s protocol. Results

were expressed as percentage inhibition of intestinal maltase/

sucrase activity.

Oral maltose and sucrose tolerance test
The experimental animals were randomly divided into 11

groups each consisting of 5 rats. Following overnight fasting,

animals were assigned to the following groups and treated with the

respective compounds through oral gavage: Group - I Saline

control (0.9% saline); Group - II Maltose control (3 g/kg); Group -

III Sucrose control (3 g/kg); Group -IV Acarbose (3 mg/kg) +
Maltose; Group - V Acarbose (3 mg/kg) + Sucrose; Group - VI

Compound 7 (50 mg/kg) + Maltose; Group - VII Compound 7

Novel Benzoxazines that Targets Glycosidases
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(100 mg/kg) + Maltose; Group - VIII Compound 7 (50 mg/kg) +
Sucrose; Group - IX Compound 7 (100 mg/kg) + Sucrose; Group

- X Acarbose (3 mg/kg) + Compound 7 (50 mg/kg) + Maltose;

Group –XI Acarbose (3 mg/kg) + Compound 7 (50 mg/kg) +
Sucrose. 5 minutes following compound 7 or Acarbose adminis-

tration either maltose (3 g/kg) or sucrose (3 g/kg) solution were

administered to the respective groups. Blood was collected from

the tail vein to the tubes containing anticoagulant (2.5% trisodium

citrate and 1.37% citric acid in the ratio 1:5; anti-coagulant: blood)

at time point 0 (just before sucrose/maltose administration), and

subsequently at 30, 60, 90, 120 and 180 min after substrate

(sucrose/maltose) administration. Plasma was separated by cen-

trifuging the samples at 2000 rpm for 10 min and stored at 220uC
until analysis. Plasma glucose concentration was determined by

using the Glucose oxidase (GOD POD) kit according to the

manufacturer’s protocol.

Glucose uptake study
Porcine diaphragm was purchased from a slaughter house, and

cleaned using ice cold 0.9% saline several times to remove blood

stains. This diaphragm was used for glucose uptake and inhibition

by compound 7. Diaphragm (100 mg) was suspended in a 24 well

culture plate containing 500 mL saline. In order to initiate the

reaction, 5 mM glucose was added to each well. To enhance the

glucose uptake by the diaphragm, 1 unit of insulin was used in

each well, and the volume was made up to 1 ml with saline. For

inhibition studies, compound 7 at a concentration of 50 & 100 mM

was used. From each well 100 mL of the assay mixture was

aspirated at different time intervals (0, 5, 10, 20, 30 and 60 min).

From this, glucose concentration was measured using Glucose

oxidase (GOD POD) kit according to the manufacturer’s protocol.

Molecular docking studies
The software Insight II/Discovery Studio 2.5 from Accelrys was

used for docking and visualization of the results as described

earlier [16]. The crystal structure of amylase was retrieved

(PDBID: 3TOP). Before performing the Ligand fit protocol of

Discovery Studio, the protein was cleaned, and the size and spatial

orientation of the active site was identified. All energy calculations

were performed using the CHARMM force field. Each energy-

minimized final docking position of the ligands was evaluated

using the interaction score function in the Ligand Fit module of

Discovery Studio as reported previously [17].

Chem-informatics analysis
Utilizing the available amount of bioactivity data, we also

rationalized the modes-of-action for the experimentally tested

benzoxazines using in silico target prediction approaches. To this

end, the Parzen-Rosenblatt Window classifier was employed with

the smoothing parameter set to 0.9, using approximately 190,000

bioactive compounds covering 477 human protein targets as the

training dataset. For details on the method, dataset and validation

see reference 15.

Statistical analysis
Results are expressed as mean values 6 SEM of three

independent experiments. Data were compared by analysis of

variance (ANOVA) followed by the Tukey ‘‘honestly significantly

different’’ (HSD) post hoc analysis. Significance was accepted at

p,0.05 (*), p,0.01 (**) and p,0.001 (***).

Results and Discussion

This work is based upon the previous synthesis of an oxazine

derivative which was able to mimic the pyranoside structure of

glycans functionally [12]. In continuation of the glycobiological

aspects, the one-pot syntheses of novel 1,3-benzoxazine scaffold

was carried out using 2-aminobenzyl alcohols and different

aldehydes in chloroacetic acid via aerobic oxidative synthesis

(Fig. 2). The above design principles led to the synthesis of 13

compounds (Table 1) whose a-glucosidase inhibitory activity was

validated both in vivo as well as in vitro, and supported by

computational approaches as described below. The synthesized

aglycones inhibited both a-glucosidase and a-amylase activity,

with overall relatively similar IC50 values between 11 mM and

60 mM (Table 1). Among the tested derivatives, compound 7{(4-

(7-chloro-2,4-dihydro-1H-benzo[d][1,3]oxazin-2-yl)phenol} ex-

hibiting strong inhibition of both glucosidases, with an IC50 values

of 11 mM and 11.5 mM for a-amylase and a-glucosidase respec-

tively. The addition of phenolic and halogen substituents to the

1,3-benzoxazine ring was found to increase the inhibitory potency

(compound 7), whilst the incorporation of a flavone moiety

decreases the inhibitory potency (compounds 5, 10, and 13). 1,3-

benzoxazines bearing an electron withdrawing chlorine substituent

were found to be more potent against a-glucosidase (compound 7),

whereas the electron donating methyl group was not particularly

favoured (compound 11). Introduction of an imidazole ring

(compound 6), to give 1,3-benzoxazine, resulted in an enhanced

inhibition (IC50 = 16 mM), while a chromene moiety decreased the

activity (compound 13).

To study the efficacy of the potent a-glucosidase inhibitor,

compound 7 was tested for in vivo maltose and sucrose tolerance

test on overnight fasted experimental rats by taking acarbose as

positive control as well as glucose uptake by porcine diaphragm by

using insulin as enhancer. It can be seen that acarbose (3mg/kg)

significantly reduced the plasma glucose concentration at 30, 60,

90 min time intervals in starved rats treated with maltose as

substrate compared to maltose control (Fig. 3A). In sucrose fed

rats differences are less pronounced and were only significant at 60

and 90 min time points (Fig. 3B). At a concentration of 50 mg/kg

body weight, compound 7 inhibited glucose uptake in rats fed with

maltose, which was similar to acarbose treatment at 30 and

60 min. However, compound 7 significantly reduced plasma

glucose concentration at the 90 min time point compared to

acarbose, indicating a different Pharmacokinetic/Pharmacody-

namic (PK/PD) profile of compound 7 on between these

substrates. Furthermore, compound 7 significantly reduced the

plasma glucose concentration throughout all time points (0–

180 min) compared to the acarbose treated group when sucrose

was used as a substrate (Fig. 3B). At a concentration of 100 mg/

kg bodyweight, compound 7 was significantly more effective than

the acarbose standard at all time points. In order to establish

possible synergistic effects between compound 7 and acarbose,

plasma glucose levels were measured in starved rats fed

individually with maltose and sucrose at different time points up

to 180 minutes. In both cases, synergistic activity of compound 7

(50 mg/kg bodyweight) and acarbose (3 mg/kg bodyweight)

prevented substrate utilization, and the plasma glucose concen-

tration remained unchanged when compared to the saline treated

group. The inhibitory efficacy of compound 7 on rat intestinal

glucosidases (maltase and sucrase) was also evaluated. The

compound showed both maltase and sucrase inhibitory activities

in a dose-dependent manner (Fig. 4A and 4B). Acarbose

inhibited both the intestinal glucosidases activity with an IC50

value of 3.5 mM (maltase) and 4 mM (sucrase), while compound 7

Novel Benzoxazines that Targets Glycosidases

PLOS ONE | www.plosone.org 5 July 2014 | Volume 9 | Issue 7 | e102759



was found to be two-fold selective for maltase (IC50 = 10 mM) over

sucrase (IC50 = 20 mM). Furthermore, acarbose and compound 7

synergistically inhibited intestinal maltase more efficiently com-

pared to intestinal sucrase (Fig. 4C and 4D).

Further, porcine diaphragm was used in order to understand

the effect of compound 7 on insulin mediated glucose uptake via
GLUT4. The glucose transporter isoforms GLUT4 and GLUT1

are highly expressed in muscle cells, with GLUT4 being more

abundant in an intracellular compartment from which it is quickly

translocated to the plasma membrane as a response to insulin

challenge. Both insulin-dependent and non-insulin-dependent

diabetes were shown to reduce glucose utilization in muscle either

due to a defective expression or dysregulation in GLUT4

translocation [3,18]. In the present study, glucose uptake was

found to be normal in the control group treated with no insulin.

However as expected, significant increased glucose uptake was

observed in diaphragm treated with insulin (1 U) compared to

control. We found that compound 7 at a dose of 50 and 100 mM

significantly blocked the glucose uptake both in control and insulin

treated diaphragm in a dose-dependent manner (Fig. 5).

In addition to in vivo and in vitro experimental validation of the

intended target of a-glucosidase shown above, in silico target

prediction [19,20] was performed with the full set of 13

synthesized compounds, in order to obtain a more comprehensive

impression of the bioactivity profile of the synthesized 1,3-

benzoxazine derivatives. It was found that only compound 7, the

most active in the series, is predicted to target the sodium/glucose

co transporters 1 and 2, which may contribute to the in vivo
efficacy of this compound. However, no experimental validation of

this additional target has been performed.

In order to hypothesize a binding mode, molecular docking has

been performed between compound 7 and maltase-glucoamylase

(Fig. 6).The crystal structure of MGAM-C (Human maltase-

glucoamylase C terminal domain) in complex with its inhibitor

Acarbose (PDB ID: 3TOP) was used as a model to determine the

molecular interaction between enzyme and the synthesized 1,3-

Table 1. Physical characteristics and inhibitory activities (a-glucosidase and a-amylase) of novel 1,3-benzoxazines.

Sl No. Benzoxazines Yield
Melting
Point

a-Glucosidase
IC50 (mM)

a-Amylase
IC50 (mM)

1 4-(2,4-dihydro-1H-benzo[d][1,3]oxazin-2-yl)phenol 83% 160-162uC 17.160.1 20.460.2

2 2-(1H-indol-3-yl)-2,4-dihydro-1H-benzo[d][1,3]oxazine 82% 65-67uC 32.060.2 59.261.0

3 2-(2-methyl-1H-indol-3-yl)-2,4-dihydro-1H-benzo[d][1,3]oxazine 87% 70-72uC 21.660.1 10.660.3

4 2-(1-(4-(2-cyanophenyl)benzyl-1H-indol-3-yl),2,4-dihydro-1H-benzo(d)(1,3) oxazine 86% 122-124uC NS NS

5 3-(2,4-dihydro-1H-benzo[d][1,3]oxazin-2-yl)-4H-chromen-4-one 89% 142-144uC NS 23.360.5

6 2-(2-butyl-4-chloro-1H-imidazol-5-yl)-2,4-dihydro-1H-benzo[d][1,3]oxazine 86% 80-82uC 16.761.0 18.560.1

7 4-(7-chloro-2,4-dihydro-1H-benzo[d][1,3]oxazin-2-yl)phenol 87% 139-141uC 11.560.1 11.060.3

8 7-chloro-2-(1H-indol-3-yl)-2,4-dihydro-1H-benzo[d][1,3]oxazine 85% 125-127uC 27.761.0 26.460.5

9 6-chloro-2-(2-phenyl-1H-indol-3-yl)-2,4-dihydro-1H-benzo[d][1,3]oxazine 89% 220-222uC 27.860.2 22.260.1

10 3-(6-chloro-2,4-dihydro-1H-benzo[d][1,3]oxazin-2-yl)-4H-chromen-4-one 83% 141-143uC 31.960.8 NS

11 6-methyl-2-(2-methyl-1H-indol-3-yl)-2,4-dihydro-1H-benzo[d][1,3]oxazine 80 % 102-104uC 23.860.1 NS

12 6-methyl-2-(2-phenyl-1H-indol-3-yl)-2,4-dihydro-1H-benzo[d][1,3]oxazine 86% 220-222uC 20.560.5 17.660.3

13 3-(6-methyl-2,4-dihydro-1H-benzo[d][1,3]oxazin-2-yl)-4H-chromen-4-one 88% 202-204uC NS 51.060.3

Acarbose 4.360.04 4.460.02

NS-not significant.
doi:10.1371/journal.pone.0102759.t001

Figure 3. In vivo effect of compound 7 {4-(7-chloro-2,4-dihydro-1H-benzo[d][1,3]oxazin-2-yl)phenol} and acarbose on plasma
glucose concentration by oral (A) maltose and (B) sucrose tolerance test. Values are presented as mean 6 SEM (n = 5). *p,0.05, **p,0.01,
***p,0.001 significant compared to respective maltose/sucrose alone treated groups.
doi:10.1371/journal.pone.0102759.g003
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Figure 4. In vitro effect of compound 7 and its synergistic effect with acarbose on rat intestinal maltase and sucrase activities.
Percentage inhibition of compound 7 on intestinal (A) maltase and (B) sucrose. Percentage inhibition of intestinal maltase (C) and sucrase (D) induced
by the compound 7 in presence of acarbose. Percentage inhibition is presented as mean 6 SEM of three independent experiments. *p,0.05, **p,
0.01, ***p,0.001 significant compared to acarbose.
doi:10.1371/journal.pone.0102759.g004

Figure 5. Effect of compound 7 on glucose transport across porcine diaphragm in the presence and absence of insulin. Values are
presented as presented as mean 6 SEM of three independent experiments. ***p,0.001 significant compared to insulin alone treated diapharagm.
doi:10.1371/journal.pone.0102759.g005
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benzoxazine derivatives [21]. In MGAM, both the N- and C-

terminal domains (MGAM-N and MGAM-C) carry out the same

catalytic function with different substrate specificities. The

MGAM-C hydrolyzes linear a-1,4-linked oligosaccharide sub-

strates and plays a pivotal role in the production of glucose in the

human lumen and considered as an efficient drug target for T2-

DM. Since, there is no information regarding the co-crystal

structure of murine glucosidase and acarbose, we have used the

co-crystal structure of MGAM-C and acarbose for docking studies.

The synthesized 1,3-benzoxazine derivatives have relatively

similar IC50 values, Dock Score (column ‘DS’) in particular seems

to show higher scores for the more active compounds (7, 1 and 6)

as opposed to less active compounds (2, 8, 9 and 10) (Table 2).

Structurally, the most active compound 7, binds deep in the

MGAM catalytic domain (Fig. 7), in which the chloro-

benzoxazine ring stacks into the hydrophobic cluster of

Tyr1251, Trp1355, Trp1369, Tyr1427, Phe1559, and Phe1560,

along with the phenolic ring stacked to Tyr1251, His1584,

Trp1418, and Trp1523. The terminal hydroxyl group of the

phenolic component of compound 7 shows hydrogen bonding

with Asp1279 and Ile1280, which are also involved in hydrogen

bonding with the terminal hydroxyl group of Acarbose in the co-

crystal. In addition, the exposed oxygen atom in the benzoxazine

ring of compound 7 appears to show ionic interaction with

Asp1526 and Arg1510, which is also crucial in the Acarbose-

MGAM co-crystal. These results clearly suggest that both acarbose

and compound 7 shares similar binding pattern towards MGAM-

C.

Finally, we applied a metabolite prediction software, namely

MetaPrint2D-React [22], to bioactive compound 7 and found the

most likely metabolic site to be a glucuronidation site with a

(significant) normalised occurrence ratio of less than 0.33 and but

greater than 0.15. Hence, this study for the first time demonstrated

the design, synthesis, and characterization of novel 1,3-benzox-

azine aglycones and their validation in vitro and in vivo.

Compound 7 significantly inhibited rat intestinal glucosidases,

namely maltase and sucrase, in a dose-dependent fashion and led

to decreased blood sugar levels in starved rat model. In addition to

Figure 6. Interaction map of MGAM-C domain co-crystallized with acarbose. The labelled key amino acids are represented as a stick model
with the carbon atom as green, and other atoms in their parent colours. The binding of acarbose, whose carbon atom is coloured in pink and other
atoms with their parent colour. The hydrogen bonding is represented as dark dotted line.
doi:10.1371/journal.pone.0102759.g006
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this, compound 7 acts synergistically with Acarbose in lowering the

blood sugar levels to that of the saline control alone.

Summary

This study demonstrated the novel synthesis of benzoxazine

glycones and their effective inhibition towards glucosidases. The

newly synthesized 1,3-benzoxazine derivatives showed better IC50

values for both a-glucosidase and a-amylase, ranging from 11–

60 mM, and are found to be effective when compared to natural

substrate aglycones, such as BOA and derivatives that deteriorate

fatter in aqueous solution. The in silico molecular docking studies

revealed that benzoxazines bind to the catalytic domain of

MGAM-C, correlating with a high DS for the most active

compound 7. The docking score of compound 7 and binding poses

were found to be similar with the anti-diabetic drug acarbose.

Furthermore, studies of in silico target prediction algorithms

showed that compound 7 potentially targets the sodium-glucose

cotransporter 1. Both in vitro and in vivo experimental results

suggested an anti-hyperglycemic effect of compound 7, which

significantly inhibits glucose uptake in starved rat model by

blocking intestinal maltase and sucrase. Evidently, compound 7

was determined to possess the glucuronidation site, which

potentially converts it into a stable glycoside in vivo. The

aglycones synthesized in this study could hence constitute a novel

pharmacological starting point for the treatment or alleviation of

T2-DM and its secondary complications. However, further studies

elucidating interaction between compound 7 and specific glucose

transporters would be highly exciting.
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