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Purpose: Automatic prostate segmentation from MR images is an important task in various clinical
applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the
large appearance and shape variations of the prostate in MR images make the segmentation problem
difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy
on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ
follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a
sparse dictionary learning method to model the image appearance in a nonparametric fashion and
further integrate the appearance model into a deformable segmentation framework for prostate MR
segmentation.
Methods: To drive the deformable model for prostate segmentation, the authors propose nonpara-
metric appearance and shape models. The nonparametric appearance model is based on a novel dic-
tionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able
to capture fine distinctions in image appearance. To increase the differential power of traditional
dictionary-based classification methods, the authors’ DDD learning approach takes three strategies.
First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discrim-
inative features obtained from minimum redundancy maximum relevance feature selection. Second,
linear discriminant analysis is employed as a linear classifier to boost the optimal separation between
prostate and nonprostate tissues, based on the representation residuals from sparse representation.
Third, to enhance the robustness of the authors’ classification method, multiple local dictionaries are
learned for local regions along the prostate boundary (each with small appearance variations), instead
of learning one global classifier for the entire prostate. These discriminative dictionaries are located
on different patches of the prostate surface and trained to adaptively capture the appearance in differ-
ent prostate zones, thus achieving better local tissue differentiation. For each local region, multiple
classifiers are trained based on the randomly selected samples and finally assembled by a specific
fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned
from the shape statistics using a novel approach, sparse shape composition, which can model non-
Gaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it
within the observed shape subspace.
Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR
prostate images. For the first (internal) dataset, the classification effectiveness of the authors’ im-
proved dictionary learning has been validated by comparing it with three other variants of traditional
dictionary learning methods. The experimental results show that the authors’ method yields a Dice
Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-
the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI
2012 challenge dataset, the authors’ proposed method yields a Dice Ratio of 87.4%, which also
achieves better segmentation accuracy than other methods under comparison.
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Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on
the combination of deformable model and dictionary learning methods, which achieves more accurate
segmentation performance on prostate T2 MR images. © 2014 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4884224]

Key words: prostate segmentation, magnetic resonance image (MRI), sparse dictionary learning,
deformable segmentation

1. INTRODUCTION

Magnetic resonance (MR) imaging is increasingly considered
one of the best imaging modalities for prostate-related clinical
studies, particularly in assessing the extent and aggressive-
ness of prostate cancer.1 Due to the fact that the traditional
transrectal ultrasonography (TRUS)-guided biopsy has low
sensitivity and provides limited information on the prostate
anatomy, MR-guided transperineal prostate core biopsy2, 3 has
become a preferred alternative for prostate cancer detection.4

To place the needle accurately during biopsy, accurate detec-
tion, localization, and characterization of cancer in the un-
treated and treated gland must first be achieved.5, 6 Accord-
ingly, segmentation of the prostate gland is a fundamental step
for automatically measuring or tracking the prostate structures
in MR-guided prostate interventions.7 An accurate segmenta-
tion of the prostate gland8, 9 not only captures the volumetric
properties of the prostate gland, but also facilitates image-
based diagnosis and treatment tasks, such as prostate can-
cer staging and MR-guided radiotherapy planning.10 In the
past decade, a large number of methods have been proposed
for segmenting prostate MR images automatically.11, 12 How-
ever, the segmentation problem still remains a very challeng-
ing task especially in the prostate base and apex due to large
appearance and shape variations of these parts in MR images.
Accordingly, more extensive methods need to be developed
for the automatic and accurate segmentation of the prostate in
MR images.

1.A. Previous work and motivation

Among existing studies, multiatlas-based methods and de-
formable models are the two most popular approaches for MR
prostate segmentation. In multiatlas-based methods,13, 14 each
training image (atlas) is first registered to the target image
together with its label map. Then, the selected warped la-
bel images are fused to derive the segmentation for the tar-
get image. In addition to MR prostate segmentation, numer-
ous atlas-based segmentation methods have been applied in
the segmentation of single brain structures, such as the hip-
pocampus and ventricles,15, 16 as well as multiple brain re-
gions simultaneously.17, 18 For instance, Coupé et al.15 and
Rousseau et al.17 both proposed to use a patch-based nonlo-
cal mean strategy for label propagation. This approach is able
to avoid the use of computationally expensive nonrigid regis-
tration in the label propagation procedure, thus improving the
efficiency of multiatlas-based methods. Wang et al.16 first es-
timated the correlations between different atlases (known as a
linear appearance-label model) and then derived the optimal

weights for label fusion. Asman and Landman18 used regional
performance level estimations to formulate label fusion as a
statistical modeling problem, which allows atlas images to be
fused in a spatially varying manner. For MR prostate segmen-
tation, Klein et al.12 proposed to use localized mutual infor-
mation as the similarity measure for atlas alignment and then
compared the performance within majority voting and STA-
PLE frameworks for label fusion. Langerak et al.19 proposed
a method called SIMPLE that combines propagated segmen-
tations in atlas selection and performance estimation strate-
gies. Liao et al.20 proposed a hierarchical prostate MR seg-
mentation method that performs multiatlas-based sparse la-
bel propagation at the coarse level and then a domain-specific
semisupervised segmentation at the fine level. Furthermore,
Liao et al.21 adopted a deep learning framework to learn fea-
tures in a hierarchical and unsupervised way. The learned fea-
tures are used in the sparse label propagation to derive ac-
curate segmentations of the prostate in MR images. However,
one common limitation of these multiatlas-based methods is it
is difficult to perform atlas selection and label fusion if the tar-
get image is very different from all available atlases in terms
of both shape and appearance. In addition, nonrigid registra-
tion is usually required for accurate segmentation, thus the
computation time in the multiatlas-based methods increases
significantly with the number of atlases used.

On the other hand, deformable model approaches become
a natural choice for tackling the problem of prostate segmen-
tation, as they inherently capture shape and appearance varia-
tions across a population. For example, Tsai et al.22 proposed
to model the shape prior by principal component analysis on
a set of signed distance representations and used it to increase
the robustness of the model deformation. Martin et al.23 pro-
posed a 3D prostate MR segmentation method via multiatlas-
based deformable modeling. They first built a probabilistic
segmentation by atlas matching and then used the result to
drive the deformable segmentation. Toth et al.24 improved
the traditional Active Shape Model (ASM) to segment the
prostate from multiprotocol in vivo MRI/MRS by employing
an automated MRS-based model initialization scheme and a
multifeature appearance model to prevent the leaking prob-
lem on weak boundaries of MRI. Zhan and Shen25 trained
a set of Gabor support vector machines on different regions
around the prostate boundary and integrated the tissue label-
ing results with surface deformation to derive the segmen-
tation. To prevent boundary leakage, Kirschner et al.26 pre-
sented a probabilistic ASM (PASM) which can adapt a statis-
tical shape model to a larger subspace than the one spanned
by the principal eigenvectors used in the standard ASM. Maan
and Heijden.27 employed the 3D AAM method for prostate
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FIG. 1. Complicated non-Gaussian distribution of appearance features in MR prostate images. (a) A typical slice of a T2-weighted MR prostate image.
(b) Joint distribution of intensity and gradient of voxels within prostate regions across ten subjects. (c) The histogram of gradients within prostate regions across
ten subjects. (d) Prostate shape distribution along the two major shape variation modes, corresponding to the two eigenvectors with the largest eigenvalues by
PCA. (e) Shape models obtained for different patients, which demonstrates the large interpatient shape variations.

segmentation following shape-context-based nonrigid surface
registration. Finally, Toth et al.11 proposed a landmarkfree
AAM method based on level-set shape representations and
further created a deformable registration framework for fit-
ting a trained appearance model onto a new image by using
multiple image-derived attributes.

Although the above-mentioned ASM/AAM-based meth-
ods have proved to be feasible approaches for automatic
prostate MR segmentation, they all are subject to an inherent
limitation: ASM/AAM assumes that both shape and appear-
ance statistics of the target object follow a Gaussian distri-
bution. Unfortunately, this assumption is not valid in prostate
MR images due to (1) the complicated neighboring structures
along the prostate boundary, (2) highly inhomogeneous mag-
netic fields, and (3) large interpatient variations, as shown
in Fig. 1. Figure 1(a) gives one slice of a T2-weighted MR
prostate image. Figures 1(b) and 1(c) show, respectively, the
joint distribution of two appearance features (intensity and
gradient) and the histogram of gradients for illustrating the
interpatient appearance variations. Here, both features are
normalized before computing their joint distribution. As we
can see, the appearance distribution is complicated and does
not follow a Gaussian distribution. This clearly explains the
limitation of ASM/AAM, since their inherent assumption no
longer holds. Figure 1(d) gives the interpatient shape varia-
tion, which does not follow Gaussian distribution. Figure 1(e)
further shows several typical prostate shapes, indicating large
interpatient shape variations. In this paper, we seek to avoid
this Gaussian assumptions by using sparse learning methods
for both appearance and shape modeling, which can better ac-
commodate the large appearance and shape variations found
in prostate MR images.

Our method is inspired by sparse learning theory, which
has been comprehensively studied in the field of computer
vision field for tasks such as face recognition28 and im-
age restoration.29, 30 Recently, sparse learning theory has also
gained high attention in the field of medical image analysis,

particularly in problems concerning image reconstruction31

and anatomical shape modeling.32 Instead of assuming any
parametric model, sparse learning aims to learn a parame-
terfree dictionary to represent signals of the same class, thus
opening a door to better model objects with complicated dis-
tributions of appearance, such as the prostate. However, dic-
tionary learning does not aim to distinguish one class from
others (i.e., prostate vs nonprostate), but simply represent all
classes (i.e., prostate and nonprostate). In this context, in order
to well differentiate prostate from nonprostate tissues, which
may eventually affect the final segmentation accuracy, we pro-
pose to learn a sparse dictionary with increased ability of dis-
crimination. In this way, we can relieve the assumption of
Gaussian distribution of appearance inherent to ASM/AAM
models, instead using sparse learning techniques to model
image appearance in a nonparametric and discriminative
manner.

1.B. Contributions of our work

In this paper, we improve the conventional sparse learn-
ing approach with discriminative techniques and further in-
tegrate it with deformable modeling for prostate segmenta-
tion. Specifically, the learned sparse dictionaries are used to
identify prostate tissue from nonprostate tissue and then pro-
vide appearance cues for driving our deformable model to the
prostate boundaries. To boost the discriminative power of the
conventional sparse learning method in tissue identification,
three strategies are proposed in our work. First, the dictionar-
ies for both prostate and nonprostate tissues are constructed
in a discriminative feature space by performing minimum re-
dundancy maximum relevance (mRMR) feature selection.33

Second, linear discriminant analysis (LDA) is further applied
to the representation residuals from different dictionaries for
optimal separation between prostate and nonprostate tissues.
Third, to further improve the robustness of the above sparse
representation-based classification, a set of local dictionaries
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is learned for tissue differentiation along the prostate bound-
ary. Compared to the global dictionary, these local dictio-
naries can achieve better tissue differentiation by indepen-
dently capturing small local appearance variations. Moreover,
multiple classifiers are further trained for each local region
to improve the overall classification performance. In the ap-
plication stage, a particular sequence of local dictionaries is
applied to each partition of the subject. Since multiple dic-
tionaries may contribute to the labeling of the same area
in the new subject image, a label fusion procedure is fur-
ther performed to integrate multiple probability maps into
the final labeling result, which provides effective appearance
cues to robustly drive the deformable model onto the prostate
boundary. Meanwhile, the deformed surface will be also con-
strained by the prostate shape prior built from sparse shape
composition.32 Evaluations on the T2-weighted prostate MR
images indicate that the proposed deformable model with
discriminative dictionary learning yields the best segmenta-
tion performance in term of both accuracy and robustness
when compared to both conventional deformable models and
multiatlas-based methods.

The remainder of the paper is organized as follows. In
Sec. 2, we give the details of our proposed method. The con-
ventional deformable model and its limitations regarding the
Gaussian distribution assumption are presented in Sec. 2.A.
To describe appearance and shape cues in a nonparamet-
ric way, we further propose our deformable model approach
based on distributed discriminative dictionary and ensemble
learning, outlined in Sec. 2.B. In Sec. 3, we will present the
evaluation results of our proposed method on prostate T2-
weighted MR images, with comparison to other state-of-the-
art methods. Section 4 will give the discussion about our
method as well as potential clinical analysis. Finally, we will
provide a conclusion to this work in Sec. 5.

2. METHOD

Our method aims to robustly segment the prostate gland in
3D T2-weighted MRI images by using both appearance and
sparse shape models to drive a deformable model for segmen-
tation. The appearance model is based on the proposed dic-
tionary learning method, which can distinguish prostate vox-
els from nonprostate voxels via voxelwise classification. It is
used as an external force to drive the deformable model. The
shape model is obtained by sparse shape composition, a novel
shape modeling method. It helps regularize the 3D surface de-
formation by constraining it to be always within the observed
shape subspace.

Figure 2 gives the schematic diagram of our deformable
model framework. Similar to many other deformable model
methods, it consists of two stages: a training stage and an ap-
plication stage.

� In the training stage, separate appearance and shape
models are learned from a set of annotated training sam-
ples. Specifically, a set of distributed discriminative dic-
tionaries is constructed using the method proposed in
Sec. 2.B.1 to capture spatially adaptive appearance char-

FIG. 2. The schematic description of our deformable segmentation frame-
work.

acteristics. In addition to the appearance model, a sta-
tistical shape model, introduced in Sec. 2.B.2, is also
learned upon the shape instances through sparse shape
composition.

� In the application stage, we first infer an initial surface
for the subject image using a landmark-based approach,
which will be detailed in Sec. 2.B.3. Then, this initial
shape is deformed with the guidance from the previ-
ously learned appearance and shape models. Multiple
learned classifiers are fused to act as appearance guides
to drive the deformable model onto the desired prostate
boundary. The SSC-based shape prior is utilized to re-
fine the deformable model at run-time. In the end, the
final segmentation is obtained by iteratively deforming
the model under guidance from both the appearance
model and the shape model until convergence.

Before introducing our proposed method, we briefly re-
view the conventional deformable model and especially its
limitation of a Gaussian distribution assumption. Then, to ad-
dress this limitation, we propose to represent both appearance
and shape distributions using a sparse learning algorithm.

2.A. Conventional deformable model

In deformable segmentation of the prostate, a deformable
model is often represented by a 3D shape or surface, i.e., with
a triangle mesh of N vertices {vi |i = 1, . . . , N}, where vi de-
notes the ith vertex on the 3D surface. Each vertex in the de-
formable model iteratively evolves by merging information
from both the image appearance model and the shape model.
With well-designed appearance and shape models, surface de-
formation will converge at the prostate boundaries.

Mathematically, the evolution of a deformable model can
be formulated as the minimization of an energy function E,
which contains the external energy Eext corresponding to the
appearance model, and also the internal energy Eint corre-
sponding to the shape model. Different deformable models
have different definitions for the external energy Eext and the
internal energy Eint. Here, we take ASM, for example, and
summarize its energy function as shown in Eq. (1),

E = Eext + λ0Eint, (1)
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where the external energy Eext attracts the surface toward
the object boundary, and the internal energy Eint ensures
the smoothness34 and shape regularity35 of the deformed
surface.

Specifically, to build the external energy Eext, each train-
ing image is first warped to the mean space for obtaining a
“shape-aligned” patch. Then, the line profile on each vertex
vi is scanned into vector yi , and principal component analy-
sis (PCA) is applied to build an appearance model for each
vertex. Since ASM assumes a Gaussian distribution of the ap-
pearance model, a statistical model of the line profile at each
vertex vi is estimated by its mean yi and covariance matrix
Cprofile

i . The formulation of ASM aims to minimize the line
profile differences between the mean model and the target
sample. The external function Eext is thereby given as the Ma-
halanobis distance between the target sample and the model
mean as below

Eext =
∑

i

( yi − yi)
TCprofile

i ( yi − yi). (2)

Here, ( yi − yi) measures the difference between profiles of
vertex vi on the current location and the mean appearance
model.

Similarly, to build the internal energy Eint, all N ver-
tices on each shape are concatenated as a long vector
v = [vT

1 , vT
2 , . . . , vT

N ]T. The statistical shape model is then
built by aligning all the training shapes into a common frame
followed by PCA.36 Specifically, the statistical shape model
of the shape vector is estimated by the mean vector v̄ and co-
variance matrix Cshape under the Gaussian assumption on the
shape distribution

Eint = (v − v̄)TCshape(v − v̄). (3)

Here, (v − v̄) measures the displacement of current shape v
from the mean shape v̄.

Since Eext and Eint measure the fitness on appearance and
shape, respectively, the previous success of ASM mainly
comes from the use of both appearance and shape priors.
However, due to large variations and complicated distribu-
tions of prostate appearances and shapes in MR images [as
shown in Fig. 1(b) with the non-Gaussian joint distribution
of intensity and gradient of voxels and also in Fig. 1(d) with
the non-Gaussian distribution of prostate shapes], the basic
assumption of a Gaussian distribution is invalid, and thus the
conventional ASM approach is not able to segment prostate
MR images accurately.

To avoid the shortcomings of the Gaussian assumption,
we propose to use sparse learning techniques to model both
shape and appearance in a nonparametric way. In Sec. 2.B,
we will first introduce how sparse learning is used in our
work to model the external energy Eext. Then, we will give our
formulation of internal energy Eint by adopting sparse shape
composition.32 Finally, our deformable model is summarized
in Sec. 2.B.3.

2.B. Deformable model via distributed discriminative
dictionary and ensemble learning

In this section, our aim is to develop a deformable segmen-
tation method that is not limited to the Gaussian assumption
of both appearance and shape models. We employ a dictionary
learning method for building appearance and shape models in
a nonparametric fashion. For the appearance model, we first
introduce a standard dictionary learning method (i.e., global
standard dictionary learning) as the basic model, which is less
discriminative on separating prostate and nonprostate tissues.
In order to improve the tissue differentiation power of the ap-
pearance model, we further use two other dictionary methods,
global discriminative dictionary learning and distributed dis-
criminative dictionary learning, for better discrimination be-
tween prostate and nonprostate tissue. For the shape model,
to fully capture large shape variations of prostates, we adopt
a recently developed sparse shape composition method32 for
nonparametric shape modeling in the deformable segmenta-
tion. In this way, the shape details, which may be not statis-
tically significant in the shape distribution, will be preserved,
thus improving the segmentation accuracy.

2.B.1. Appearance modeling by dictionary learning

2.B.1.a. Global standard dictionary (GSD) learning. In
sparse representation theory, data are modeled by a linear
combination of few elements, also called as atoms. Each atom
is chosen from an overcomplete dictionary, in which the num-
ber of atoms usually exceeds the dimension of the data space.
To build the dictionary, one common method is to simply
combine the repository of data. However, since the size of
data is usually very large, making the computation of a sparse
representation infeasible, the dictionary is usually learned by
approximative dictionary learning methods, such as the K-
SVD algorithm.37 Therefore, given a dictionary D ∈ RM×Q,
which has Q atoms (each with M dimensions), the goal of
sparse representation for a testing sample f ∈ RM is to select
a small number of atoms from D to best represent f. Mathe-
matically, the sparse representation problem is formulated as
the following minimization problem:

α = argminα‖ f − Dα‖2
2 + β0‖α‖1. (4)

Here, α ∈ RQ is a coefficient vector including the linear coef-
ficients for the atoms in the dictionary D. ‖α‖1 is an l1 norm
on α for guaranteeing the sparsity of α. β0 is the parameter
that controls the number of nonzero elements (or sparsity) in
α. The number of nonzero elements in α decreases with the
increase of the value of β0. By solving Eq. (4), the testing
sample f can be reconstructed by Dα. In our work, each train-
ing/testing sample f is represented by a 3D intensity patch
centered at the underlying sampled voxel.

Based on the sparse representation, a specific task such as
classification can be completed by properly learning the dic-
tionaries. This kind of method is known as sparse representa-
tion based classification (SRC). Different from the “one-class
representation” problem (i.e., describing the characteristics
of only the prostate) as solved in the sparse representation
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problem in Eq. (4), the goal of SRC is to “distinguish”
one class from others (i.e., prostate vs nonprostate). There-
fore, the dictionary used in SRC is the combination of both
positive and negative subdictionaries {DPR, DNPR}, where
DPR ∈ RM×QPR and DNPR ∈ RM×QNPR denote prostate and
nonprostate subdictionaries, respectively. Each subdictionary
is formed by grouping the intensity patches of training sam-
ples columnwise from each respective region (i.e., prostate
and nonprostate).

For classification, the subdictionaries {DPR, DNPR} are
jointly used to represent a new testing sample f ∈ RM . This
sample is labeled as the class that best reconstructs it through
sparse representation. By combining the subdictionaries
to form a single global dictionary D = [DPR, DNPR] ∈
RM×(QPR+QNPR), the sparse code of the new sample f can
be solved as α ∈ RQPR+QNPR according to Eq. (4). Here
α = [αT

PR,αT
NPR]T, where {αPR,αNPR} carries the elements

of α, corresponding to the indices of columns belonging to
{DPR, DNPR} in D.

Then the reconstruction residual of sample feature f with
respect to each class can be calculated as follows:

rPR = f − DPRαPR, rNPR = f − DNPRαNPR, (5)

where rPR ∈ RM and rNPR ∈ RM are the residuals with re-
spect to the prostate and nonprostate subdictionaries, respec-
tively. Intuitively, a sample feature f belonging to the prostate
should be better approximated by the atoms in DPR than those
in DNPR, i.e., ‖rPR‖2 < ‖rNPR‖2. Therefore, it is straight-
forward to simply compare ‖rPR‖2 and ‖rNPR‖2 to deter-
mine the prostate likelihood h ∈ [0, 1] for sample f, i.e.,
h = sigmoid(‖rNPR‖2 − ‖rPR‖2). If the voxel belongs to the
prostate, h is close or equal to 1; otherwise, h is close or equal
to 0 if the voxel is nonprostate. Using the standard SRC to
guide the deformable model, the external energy Eext can be
formulated as

Eext = −
∑

i

−→∇hi, �ni , (6)

where
−→∇hi denotes the 3D gradient vector of the prostate like-

lihood map at the ith vertex, and �ni denotes the normal vector
on the deformable model of the ith vertex. 〈−→∇hi, �ni〉 is the in-
ner product of vectors

−→∇hi and �ni . Since a neighborhood of
vertices is considered during the deformation, the matching of
the deformable model with the prostate boundary will be ro-
bust even if there is a wrong labeling on a few vertices. When
the ith vertex is located exactly on the prostate boundary, and
also its normal direction on the deformable model aligns with
the direction of prostate boundary, the local matching term
〈−→∇hi, �ni〉 is maximized. In that case, the external energy Eext

can be minimized.
Compared to the formulation of external energy Eext in

Eq. (2), we can observe that Eq. (6) builds an appearance
model in a nonparametric fashion, instead of assuming the
Gaussian distribution on image appearance as in the conven-
tional ASM. By using this sparse learning method, therefore,
the robustness of our deformable model to the complicated
appearance variations can be improved.

2.B.1.b. Global discriminative dictionary (GDD) learn-
ing. Although the GSD learning method is able to cap-
ture appearance characteristics in a nonparametric fashion,
there are still limitations regarding its discriminative power.
Particularly, in T2-weighted MR prostate images, prostate
and nonprostate samples tend to be very similar, especially
for points near the prostate boundary. Since two subdic-
tionaries {DPR, DNPR} are independently learned for each
class, the global dictionary D may include similar sam-
ples across different classes. In this case, DPR and DNPR

can both represent these samples well, leading to incorrect
classification results. This limited discriminative power of
GSD will eventually affect the performance of deformable
segmentation.

To boost the discriminative power of the above learned
GSDs, we propose in this paper a novel learning scheme,
namely, global discriminative dictionary learning. As shown
in Fig. 3, this approach involves two novel strategies:
(1) sparse dictionary learning with feature selection and

FIG. 3. Diagram of discriminative dictionary learning framework. Each discriminative dictionary is in charge of tissue differentiation in a subsurface of prostate.
Training a discriminative dictionary includes dictionary learning with mRMR feature selection followed by LDA learning.
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(2) discriminative integration of representation residuals by
LDA learning.

2.B.1.b.1. Sparse dictionary learning with mRMR feature
selection. In order to improve the discrimination between
two learned subdictionaries (DPR ∈ RM×QPR and DNPR

∈ RM×QNPR ), dictionary learning should be constrained in
a discriminative feature space, so that each atom in differ-
ent subdictionaries can be as distinctive as possible. In our
study, we propose to combine feature selection with dictio-
nary learning to learn the distinctive and compact subdic-
tionaries D̂PR ∈ RM ′×Q̂PR and D̂NPR ∈ RM ′×Q̂NPR , where M′

	 M, Q̂PR 	 QPR, and Q̂NPR 	 QNPR.
First, the minimal redundancy maximal relevance

algorithm33 is employed to build a discriminative feature
space. Compared to other feature selection methods38 that
only select individual features with the highest discrimi-
nation, mRMR minimizes the redundancy of the selected
features as well. Thus, the selected features span a dis-
criminative and compact subspace in which prostate and
nonprostate tissues are well separated.

For each voxel, we first extract the 3D intensity patch
centered at this voxel and then concatenate the patch as
a column vector. This vector is used as the feature vector
for each voxel. Assume that each sample is represented by
the feature vector f ∈ RM ; given Q training samples taken
from both prostate and nonprostate regions, a feature ma-
trix F = [ f 1, . . . , f q, . . . , f Q] is thus composed. f q(m), q
= 1, . . . , Q, m = 1, . . . , M denotes the mth feature of the
qth sample. The feature selection approach of mRMR aims
to find a set of discriminative and compact features indexed
by Popt = {pm′ |m′ = 1, . . . ,M ′, pm′ ∈ {1, . . . ,M}} and then
reduces feature vector f q of the qth training sample to f̂

q
,

which contains only the features indexed by Popt. The crite-
rion of the max-relevance and min-redundancy is formulated
as follows:

Popt = arg maxP (�1 − �2)

�1 = 1

M ′
∑
p∈P

MI
(
FT

p, g
)

�2 = 1

M ′2
∑
pa∈P

∑
pb∈P

MI
(
FT

pa
, FT

pb

)
, (7)

where �1 measures the relevance of selected features to the
class label (with, for example, class label “1” indicating a
voxel belongs to the prostate region and class label “0” indi-
cating a voxel belongs to a nonprostate region), �2 measures
the redundancy between selected features, M′ is the number
of selected features, Fp ∈ R1×Q returns the pth row of feature
matrix F, g ∈ RQ×1 is the label vector of Q training samples,
MI(FT

p, g) measures the mutual information between the pth
feature and class label, and MI(FT

pa
, FT

pb
) measures the mu-

tual information between the path feature and the pbth feature.
After mRMR feature selection, the feature vector f ∈ RM

of each training sample is now represented by a reduced fea-
ture vector f̂ ∈ RM ′

, which includes only the set of selected
features. Accordingly, we can obtain the respective subdic-
tionaries for prostate and nonprostate classes, each including

a set of dimensionality-reduced feature vectors, but with the
same number of samples as the original subdictionary. Finally,
we can further reduce the number of samples in each subdic-
tionary and obtain the final subdictionaries D̂PR and D̂NPR as
detailed below.

In our study, the K-means algorithm is employed to learn
these two subdictionaries {DPR, DNPR}. Different from stan-
dard dictionary learning,37 which aims to optimally represent
the training samples, the K-means algorithm learns a compact
dictionary for better preserving the discriminability between
training samples. Specifically, the K-means algorithm is ap-
plied to select QPR and QNPR clustering centroids from the re-
spective prostate and nonprostate training samples as dictio-
nary atoms. In contrast to most dictionary learning methods
that often focus on sample representation and thus may pro-
duce similar subdictionaries with high correlation, K-means
dictionary learning aims to preserve the discriminability ob-
tained through feature selection while simultaneously reduc-
ing the number of dictionary atoms.

For now, since the dictionary learning is constrained in a
discriminative space, the learned subdictionaries will contain
discriminative information. Consequently, D̂PR ∈ RM ′×Q̂PR

and D̂NPR ∈ RM ′×Q̂NPR encode distinctive appearance char-
acteristics, which can be used to classify prostate and non-
prostate tissues. By solving the sparse representation problem
of Eq. (4) using the combined dictionary D̂ = [ D̂PR, D̂NPR],
the reconstruction residual r̂ = [r̂T

PR, r̂T
NPR]T can be computed

from the sparse coefficients α̂PR and α̂NPRas below

r̂PR = f̂ − D̂PRα̂PR r̂NPR = f̂ − D̂NPRα̂NPR. (8)

2.B.1.b.2. Discriminative integration of representation
residuals. After the reconstruction residuals are obtained by
solving the sparse representation problem of Eqs. (4) and (8),
we can directly compare the norms to derive the prostate like-
lihood as in standard dictionary learning (GSD). However, the
residual elements from different features are not equally im-
portant. Features with more discriminative power are more
likely to provide informative residuals than those with less
discrimination. Therefore, we propose to learn the optimal
weights by Fisher linear discriminative analysis (Fisher-LDA)
for better utilization of reconstruction residuals for tissue sep-
aration.

Specifically, we learn a linear classifier in the residual
space by Fisher-LDA. Thus, by combining the discriminative
dictionary learning and Fisher-LDA residual integration, the
external energy Eext of our deformable model can be reformu-
lated as below

Eext = −
∑

i
〈−→∇hi, �ni〉, hi = sigmoid

(
ωT

(
r̂PR

r̂NPR

)
−δ

)
,

(9)

where sigmoid( · ) denotes the sigmoid function. The parame-
ters of the classifier, ω ∈ R2M ′

and δ, are calculated as

ω = argmaxω

ωT �Bω

ωT �Wω
, δ = ωT · μPR + μNPR

2.0
, (10)
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FIG. 4. Illustration of distributed dictionary learning. (a) Diagram of distributed dictionaries: A schematic explanation of distributed discriminative dictionaries,
with each taking charge of tissue differentiation in a local region. (b) Surface parcellation: The partition of our deformable model, where different subsurfaces
are indicated by different colors.

where �B and �W are the interclass and the intraclass scatter
matrices in the residual space r̂ . μPR and μNPR denote average
prostate residuals r̂PR and average nonprostate residuals r̂NPR,
respectively.

In Eq. (9), elements in the residual vectors ( r̂PR
r̂NPR

) are as-

signed with different weights (by the corresponding elements
in ω) for optimally separating the prostate from nonprostate
tissues, which further improves the discriminative power of
standard dictionary learning.

2.B.1.c. Distributed discriminant dictionary (DDD) learn-
ing. Based on the aforementioned strategies, GDD learning
has been effectively exploited to separate the prostate from
other tissues. However, this method still encounters chal-
lenges from large appearance variations along the prostate
boundary [cf., Fig. 4(a)]. It is worth noting that the appear-
ance variations within local regions are relatively small [such
as the local regions indicated by different colors of dashed
curves in Fig. 4(a)]. Based on this observation, we design a
“divide-and-conquer” learning strategy, in which the global
surface is partitioned into a set of subsurfaces with consis-
tent appearance. Discriminant dictionary learning is applied
on these distributed subsurfaces to further improve the per-
formance of tissue differentiation.

Specifically, the deformable model is divided into L sub-
surfaces corresponding to L local regions along the prostate
boundary [cf., Fig. 4(b)]. This can be achieved using the
vertex clustering method proposed in Ref. 32, which en-
sures the appearance variation around each subsurface is
small. In this way, each subsurface l ∈ {1, . . . , L} can be

attached by a pair of distributed subdictionaries, D̂
l

PR and

D̂
l

NPR, learned from samples extracted around the lth sub-
surface. Due to smaller appearance variation around each
subsurface, these distributed dictionaries can better encode
local appearance characteristics than the global dictionar-
ies (such as GSD and GDD) and thus achieve more accu-
rate tissue classification. It is worth noting that the learn-
ing process for each distributed subdictionary in DDD is the
same as Fig. 3 except that it only targets to a local parti-

tion of the surface, instead of the entire surface as in GDD
learning.

Based on the learned set of distributed subdictionaries,
D̂

l

PR and D̂
l

NPR, and sparse coefficients, α̂l
PR and α̂l

NPR, the
reconstruction residual r̂ l = [(r̂ l

PR)T, (r̂ l
NPR)T]T for a testing

sample f̂ can be computed by the mapping functions r̂ l
PR

= f̂ − D̂
l

PRα̂l
PR and r̂ l

NPR = f̂ − D̂
l

NPRα̂l
NPR. Thus, the exter-

nal energy function Eext can be further reformulated as

Eext = −
L∑

l=1

∑
i∈Hl

〈−→∇hl
i, �ni

〉
,

hl
i = sigmoid

(
ωlT

(
r̂ l

PR

r̂ l
NPR

)
− δl

)
, (11)

where hl
i denotes the prostate likelihood of the ith vertex es-

timated by distributed dictionaries at the lth subsurface. This
equation has the same form as in Eq. (9) but with different dis-

tributed dictionaries D̂
l

PR and D̂
l

NPR. Hl is the index set for the
vertices contained in the lth subsurface, and �ni is the normal
direction of the ith vertex on the deformable surface. These
local tissue scores are used as appearance cues to guide sub-
surfaces onto the prostate boundary during deformable seg-
mentation. For overlapping regions between two neighboring
subsurfaces, the tissue scores are estimated by the minimum
distance criteria: each voxel is labeled by the subsurface
whose central point is the closest to the voxel.

2.B.1.d. Ensemble learning framework. According to
the proposed distributed discriminative dictionary learning
method, we can learn one dictionary for each subsurface.
Due to the large number of voxels around each subsurface,
typically we randomly select a subset of voxels to serve as
training data. However, this approach may lead to a low-
accuracy classifier if the sampled voxels are not representa-
tive. To relieve this phenomenon and increase the robustness
of sparse representation-based classification, we use the idea
of bagging39 in our DDD learning. Specifically, for each sub-
surface, we learn a set of classifiers, instead of one. Each
classifier is trained by randomly sampling voxels near the
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FIG. 5. Ensemble-classifier scheme of dictionary learning. In the training stage, by further dividing the entire training sample dataset into training and validation
sets, we can train Y classifiers by performing DDD learning and further test the performance of each.

corresponding subsurface. To filter out those bad classifiers,
we use tenfold cross validation. Specifically, each classifier
is trained with 90% of the training MR images, and then its
performance is tested on the remaining 10% of images. Only
those classifiers with above-average performance are retained
for the testing stage. Figure 5 shows the ensemble-classifier
scheme of our learning method.

Once multiple classifiers are learned per subsurface, we
use averaging to combine the response from different classi-
fiers. By integrating classification responses from the classi-
fiers trained with different training samples, the robustness of
final classification is improved.

2.B.2. Shape model

In Sec. 2.B.1, we propose to model the external energy
Eext in the deformable model by sparse learning techniques.
In this way, the appearance model is built in a nonparamet-
ric fashion, which relieves the limitation of the Gaussian as-
sumption in the ASM. Following the same idea, it is also im-
portant to build a nonparametric shape model. In deformable
segmentation, the shape model is incorporated by iteratively
minimizing the internal energy function Eint, which encodes
the geometric characteristics of the model. This model is de-
fined to prevent large irregular deformation and preserve the
geometric properties of the organ. Specifically, Eint can be
decomposed into two terms, Eshape and Esmooth, as shown in
Eq. (12),

Eint = Eshape + λ1Esmooth. (12)

The first term Eshape constrains the deformable model in a
learned shape subspace. The second term Esmooth ensures the
smoothness of the surface in order to prevent large discrepan-
cies between neighboring vertices.

In the shape term Eshape, we do not assume that the shape
variation of prostates follows the Gaussian distribution, which
is reasonable due to the large interpatient variability. Thus,
instead of using PCA for shape modeling as in Eq. (3), we
use a recently proposed method called sparse shape compo-
sition method40 to model the shape prior. Specifically, by de-
noting Ds as a large shape repository that includes the shape

instances of training subjects, the approximation of an input
shape vector v by Ds is formulated as the following optimiza-
tion problem in the SSC method:(

αopt
s , ψopt, eopt

) = argminαs,ψ,e‖ψ(v)

−Dsαs − e‖2 + β1‖αs‖1 + β2‖e‖1.

(13)

Here, ψ is an affine transformation matrix, which aligns sur-
face vector v to the mean shape vector. αs denotes the spar-
sity coefficient for linear combination, and e compensates the
large residual errors caused by a few mispositioned vertices.
Here, we set β2 = 0 during shape deformation, since we do
not expect to compensate for irregular large deformations of
few vertices. Minimization of Eq. (13) is a two-step iteration
scheme. At each iteration, the affine transformation ψ is first
estimated. Then, based on the current estimated ψ , Eq. (13)
can be solved as a sparse representation problem. These two
steps are iteratively performed until convergence.

With the help of SSC, we can easily represent the current
surface vector v by inverse affine transformation of its sparse
linear representation ψopt−1

(Dsα
opt
s ). So the shape prior for the

shape regularization can be formulated as the shape internal
energy below:

Eshape = ∥∥v − ψopt−1(
Dsα

opt
s

)∥∥2
2. (14)

Apart from the shape prior, the smooth constraint Esmooth is
further used to prevent large deviations between neighboring
vertices

Esmooth =
∑

i

∥∥∥∥∥vi −
∑

Ni
vj∑

Ni
1

∥∥∥∥∥
2

2

, (15)

where Ni denotes the vertex set in the neighborhood with a
certain radius around the vertex vi .

By combining Eqs. (14) and (15) into Eq. (12), the internal
forces at all vertices can be defined to ensure the nonparamet-
ric shape prior as well as the smoothness of the deformable
model.
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2.B.3. Summary

According to Secs. 2.B.1 and 2.B.2, we can construct both
an appearance model (with external energy Eext) and a shape
model (with internal energy Eint) for deformable segmenta-
tion. In the application stage, the surface model is deformed to
locate the prostate boundary by minimizing energy E defined
in Eq. (1). Specifically, the model deforms to fit the appear-
ance cues provided by DDD [Eq. (11)] and is also constrained
by a SSC-based shape prior [Eq. (14)]. In this subsection, we
summarize our proposed deformable segmentation algorithm
by giving more details to the initialization and optimization of
the deformable model.

2.B.3.a. Initialization strategy. Quickly and accurately
locating the position of the prostate in subject space is crucial
for deformable model segmentation.41 One simple solution is
to first detect the key landmarks on the subject image. Then,
a similarity transformation can be found between the detected
landmarks and the corresponding ones in the mean shape. Fi-
nally, the mean shape can be accordingly warped onto the
subject space for initialization. However, the mean shape may
be not a good initialization due to large prostate shape vari-
ations across subjects. Therefore, we employ a sparse shape
composition to infer a shape from the SSC shape space us-
ing the detected landmarks. First, seven landmarks (which
are located at the central, left, right, base, apex, anterior, and
posterior of the prostate) are detected on the prostate image
using a learning-based method.42 Then, a sparse shape com-
position method is used to infer an initial shape based on
the matching of detected landmarks. Specifically, by solving
Eq. (13), a sparse code is computed based on the seven de-
tected landmarks and their corresponding landmarks on the
training shapes. Particularly, for surface model initialization,
we set β2 = 1 for Eq. (13) to compensate the potential misde-
tected landmarks. Then, the obtained sparse codes are applied
to the corresponding training shapes to derive a refined shape.
Finally, the initial deformable model is obtained by transform-
ing the refined shape back to the subject image space.

2.B.3.b. Optimization strategy. Our deformable segmen-
tation algorithm via distributed discriminative dictionary and
ensemble learning is summarized in Algorithm 1:

ALGORITHM I. Deformable Segmentation Algorithm via Distributed Dis-
criminative Dictionary and Ensemble Learning.

Input: Testing image A0

Output: Segmented binary image B0

Initialization: t = 0
Estimate the initial shape parameter (α0

s , ψ
0, e0) and obtain the initial

deformable surface v0 by solving sparse learning problem in Eq. (13) with
β1 = 5 and β2 = 1.
while 1 ≤ t ≤ T and ‖vt − vt−1‖2

2 > 0.001 do
“M” Step:

Evolve the deformable model vt by minimizing the external energy
function Eext [Eq. (11)] and the smoothness internal energy function
Esmooth [Eq. (15)];

“E” Step:
a. Estimate the parameters (αt

s, ψ
t ) for the shape refinement by

solving optimization problem [Eq. (13)] with β1 = 5 and β2 = 0;

ALGORITHM I. (Continued.)

b. Refine the deformed shape vt by minimizing the shape internal
energy function [Eq. (14)] based on the computed parameters
(αt

s, ψ
t ).

t = t + 1
end while
Convert the output shape vT to a binary image B0

Return: Segmented binary image B0

To optimize Eq. (1) for the deformable model, the
expectation-maximization (EM) algorithm is applied to min-
imize both the external energy [Eq. (11)] and the internal en-
ergy [Eq. (12)] iteratively. The initial values of parameters
(αopt

s , ψopt, eopt) for building the initial shape v0 are first es-
timated as (α0

s , ψ
0, e0) by solving the sparse coding prob-

lem of Eq. (13). Then, the “M” step and “E” step are alter-
nately carried out until convergence. First, in the “M” step,
the external energy and smooth internal energy are used to
guide the deformable model toward the prostate boundary.
During deformation, each vertex of the deformable model is
updated via a local search along its normal direction on the
deformable model. That means the vertex location on the de-
formed surface is mainly updated according to the appearance
information. Second, in the “E” step, the parameters (αt

s, ψ
t )

in the tth iteration are estimated by finding a closest shape
in the SSC-based shape space to the current deformed shape.
Then, the deformed shape is refined using the estimated pa-
rameters (αt

s, ψ
t ). In this step, high-level shape information

is employed to constrain and regularize the deformed shape.
Therefore, the possibility of getting stuck in local minima
is reduced in the deformable segmentation. In this EM opti-
mization framework, the surface will iteratively deform to the
prostate boundary while preserving the shape characteristics
of the prostate.

3. EXPERIMENTS

3.A. Materials and parameter settings

Our method was evaluated on both internal and public
datasets. The internal dataset contains 75 T2-weighted MR
images with ground truth segmentations provided by a clin-
ical expert. These images were acquired from the University
of Chicago Hospital and scanned from different patients with
different MRI scanners. As shown in Fig. 6, this dataset in-
cludes large variations on both appearances and shapes. In
addition, the dimension and spacing are not constant for all
3D images. The image dimension varies from 256 × 256
× 28 to 512 × 512 × 30, and the image spacing varies
from 0.49 × 0.49 × 3 to 0.56 × 0.56 × 5 mm. For the
public dataset, we used the MICCAI 2012 challenge data,
which contains 50 T2-weighted MR images with correspond-
ing ground truth segmentations. In our application, histogram
matching is used to normalize the global histograms across
different images as a preprocessing step. In our study, pos-
itive samples are the voxels inside the prostate, and nega-
tive samples are the voxels outside the prostate. Each voxel

Medical Physics, Vol. 41, No. 7, July 2014



072303-11 Guo et al.: Deformable segmentation of prostate MRI via DDD learning 072303-11

FIG. 6. Five typical examples of T2-weighted MR prostate images. Due to the existence of partial volume effects and interpatient differences, there are large
variations on both prostate appearance and shape in the dataset.

is represented by the image features extracted from the local
patch centered at that voxel. During the training stage, we ran-
domly extract voxels near the prostate boundary as training
voxels. To avoid the imbalance in classification, we extract
the same number of positive and negative samples according
to the manually segmented prostate for each training image.

In terms of parameter settings of the algorithm, the trian-
gle mesh is composed of 2215 vertices and 4306 polygons in
the deformable model. The number of classifiers in the en-
semble learning is set as 10. Our algorithm was implemented
in MATLAB. The typical computational time for segmenting a
prostate is 1–2 min with parallel computing. We expect to fur-
ther improve the efficiency of our algorithm by implementing
it in C++.

3.B. Evaluation criteria

For quantitative evaluations, the Dice similarity coefficient
(DSC), sensitivity, positive predictive value (PPV), and aver-
age surface distance (ASD) are employed.43 DSC, sensitiv-
ity, and PPV are used as metrics to evaluate the spatial over-
lap agreement between manual segmentation and automated
segmentation, in which higher values indicate more accurate
segmentations. ASD is a surface-based performance measure
calculated as the average distance between the manually seg-
mented shape and the automatically segmented shape. Lower
values of ASD reflect more accurate segmentations. The fol-
lowing gives the formulas for the above four measurements:

DSC= 2TP
2TP+FP+FN , Sensitivity= TP

TP+FN , PPV= TP
TP+FP

ASD= 1
2

(∑
vi∈vSEG

d(vi , vMAN)∑
vi∈vSEG

1
+

∑
vi∈vMAN

d(vi , vSEG)∑
vi∈vMAN

1

)
,

(16)

where TP, FP, and FN are the number of true positives, false
positives, and false negatives, respectively. d(vi , vMAN) is the
minimum distance between vertex vi of the automatically seg-
mented prostate surface vSEG (vi ∈ vSEG) to the vertices of
the manually segmented shape vMAN. Similarly, d(vi , vSEG)
is the minimum distance between vertex vi of the manually
segmented shape vMAN (vi ∈ vMAN) to the vertices of the seg-
mented prostate surface vSEG.

∑
vi∈vSEG

1 and
∑

vi∈vMAN
1 de-

note the number of vertices on surfaces vSEG and vMAN, re-
spectively.

In our experiments, we validate our method by k-fold cross
validation. Specifically, the entire dataset is divided into k
folds. For each round of evaluation, onefold is used as test-
ing data and the other k-1 folds are used as training data.
Specifically, threefold cross validation is used for the inter-
nal dataset and fivefold cross validation is adopted for the
MICCAI challenge dataset. For each round of training, if
not explicitly mentioned, ten global/local classifiers are con-
structed by randomly selecting 90% of the training images as
training data and using the rest as validation images to mea-
sure the classification performance.

3.C. Experimental results on internal database

3.C.1. Evaluation on the proposed four variants
of dictionary learning methods

We first evaluate the tissue classification performance of
the proposed four variants of dictionary learning methods:
GSD learning, GDD learning, DSD, and DDD learning.

� GSD: a pair of global dictionaries learned by the stan-
dard dictionary learning method;

� GDD: a pair of global dictionaries learned by the pro-
posed discriminative dictionary learning method;

� DSD: a set of distributed dictionaries learned by the
standard dictionary learning method.

� DDD: a set of distributed dictionaries learned by the
proposed discriminative dictionary learning method.

In this experiment, we evaluate each component of our
method separately in order to demonstrate the effectiveness
of our proposed DDD learning approach. To exclude the in-
fluence from ensemble learning, we train only one classifier at
each subsurface for DSD and DDD, and one global classifier
for GSD and GDD.

A visual comparison of the classification results produced
by the above four dictionary learning methods is demon-
strated in Fig. 7. Figure 7(a) shows a slice of an original T2-
weighted image with the contour indicating the ground-truth
prostate boundary manually delineated by clinician. Figures
7(b)–7(e) demonstrate the corresponding classification results
from the GSD, GDD, DSD, and DDD learning methods, re-
spectively. Comparing (b) and (c), we can see that the rate of
misclassification is largely reduced when discriminative dic-
tionary learning is used. However, there are still classification
errors, especially in the local prostate regions (i.e., anterior)
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FIG. 7. A typical slice of a T2-weighted MR image with manual segmentation (a) and its classification results by four dictionary-learning methods, GSD (b),
GDD (c), DSD (d), and DDD (e), respectively.

that have similar appearance with neighboring tissues. In this
case, the distributed dictionary can be adopted to further im-
prove the classification result, since each classifier is only tar-
geting to a local prostate region and is thus more specific than
a global classifier. By combining both distributed classifiers
and discriminative dictionary learning, we finally obtain the
best classification result using DDD learning, as shown in Fig.
7(e).

To quantitatively compare the four different dictionary
learning methods, the ROC curves and corresponding area un-
der curve (AUC) for each approach are shown in Fig. 8. Just
as the performance demonstrated in Fig. 7, DDD achieves the
best tissue classification accuracy with an AUC of 0.93, while
the AUCs of GSD, GDD, and DSD are 0.72, 0.77, and 0.91,
respectively. It is worth noting that these four methods are dif-
ferent only in the “discriminative” and “distributed” learning
strategies, which shows the efficacy of our proposed strategies
in accurate tissue classification.

3.C.2. Evaluation on the ensemble learning

In this section, we will evaluate the contribution of the
ensemble learning framework for the above four dictionary
learning methods.

Figure 9 shows the corresponding classification results of
Fig. 7(a) by combing the GSD, GDD, DSD, and DDD with
ensemble learning. We observe that our methods show some
improvement on classification results when ensemble learning
is incorporated.

Similarly, the ROC curves of GSD, GDD, DSD, and DDD
with ensemble learning are presented in Fig. 10. Comparing
Fig. 10 with Fig. 8, we observe that the average increase in
AUC for the four methods is more than 4%, which supports
the notion that ensemble learning boosts the performance of
all dictionary learning methods. It is worth noting that our
proposed DDD learning approach still achieves the best per-
formance in the ensemble learning framework.

3.C.3. Evaluation on the deformable prostate
segmentation via DDD and ensemble learning

We further evaluated the segmentation accuracy of our de-
formable model via DDD and ensemble learning. Figure 11
shows the DSC, sensitivity, PPV and ASD measures of our
proposed deformable model method on the 75 T2-weighted
MR images. For 86% of images, our method obtains a DSC
higher than 0.85 (with an average DSC of 0.89). Of all the 75
images, only one has a DSC value below 0.8. These results
demonstrate the accuracy and robustness of our method in
prostate segmentation. Figure 12 shows the box and whisker
diagram of DSC, sensitivity, PPV, and ASD measures of our
proposed deformable model method on all 75 images. The
bottom and top of each box are the 25th and 75th percentiles,
and the band near the middle is the 50th percentile. According
to the distributions of these four measurements, our prostate
segmentation method achieves a median DSC of 89.6%, a me-
dian Sensitivity of 92.8%, a median PPV of 90.0%, and a me-
dian ASD of 1.56 mm.

FIG. 8. ROC curves of tissue classification using four different dictionary-learning methods. (Right) the complete ROC curves; (Left) A zoomed-in figure to
show the top part of the ROC, which is indicated by the small rectangle.
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FIG. 9. Classification results produced by four dictionary-learning methods with ensemble learning. (a) GSD. (b) GDD. (c) DSD. (d) DDD.

FIG. 10. ROC curves of tissue classification by integrating four different learning methods with ensemble learning. (Right) the complete ROC curves; (Left) A
zoomed-in figure to show the top part of the ROC as indicated by the small rectangle.

FIG. 11. Diagrams of DSC (a), sensitivity (b), PPV (c), and ASD (d) measures of our proposed deformable model on all 75 T2-weighted MR images.
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FIG. 12. The box and whisker diagram of (a) DSC, sensitivity, PPV, and (b) ASD measures of our proposed deformable model for all 75 images.

To validate the performance of our method on segmenting
the different zones of the prostate, we show the segmentation
results of the apex, base, and central slices in Fig. 13, with a
comparison to segmentation via the ASM method. As we can
see, even though the appearance and shape is much more com-
plicated on the base and apex regions than in the central re-
gion, our method still achieves accurate classification results.
The average DSC of our segmentation method for the apex,
central, and base regions of the prostate is 84.9%, 93.6%, and
81.8%, respectively, compared to 59.2%, 83.3%, and 58.7%
obtained by the ASM method. Figure 14 shows the box and
whisker diagrams of DSC on the apex, central, and base re-
gions of the prostate by ASM and our proposed deformable
model on all 75 images. According to the distributions of
these three measurements, our prostate segmentation method
achieves a median DSC of 86.7%, 94.2%, and 84.2% on the
apex, central, and base regions of the prostate, respectively,
which are much higher than the median scores obtained by
the ASM method (67.5%, 86.6%, and 65.5%, respectively).

To demonstrate the effectiveness of our deformable model
in T2-weighted MR prostate segmentation, three other

state-of-the-art prostate segmentation methods are compared
with our method, including ASM and two multiatlas-based
methods.20, 21 We adopt the best quantitative results reported
in these works for our comparison. Table I reports the means
and standard deviations of DSC, sensitivity, PPV, and ASD
between automatic segmentations and manual segmentations
for our method and the three other methods. It should be noted
that our 75 images include 30 images used in Liao’s method21

and 66 images used in Ref. 20. According to Table I, our
method achieves the best performance among all methods un-
der comparison. Figure 15 gives several visual segmentation
results achieved by our method. It can be seen that despite the
large variation of prostate appearance and shape, our method
can still achieve accurate segmentation results.

3.D. Experimental results on public database

We further evaluate our deformable model with DDD
learning on the public MICCAI 2012 challenge database.
Comparing with four other state-of-the-art prostate

FIG. 13. Typical segmentation results for prostate apex (left), central (middle), and base (right) regions of two patients produced by (a) ASM and (b) our
proposed deformable model. The first row demonstrates the segmentation results for ASM, and the second row demonstrates the segmentation results for our
proposed deformable model. The three main columns show the segmentation results for the apex, central, and base regions of the two patients, respectively.
Light grey contours indicate the manual segmentations, and dark grey contours indicate the automatic segmentations.
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FIG. 14. The box and whisker diagrams of DSC, measured at the apex, central, and base regions of the prostate, by (a) ASM and (b) our proposed deformable
model for all 75 images.

segmentation methods,23, 26, 27, 44 Table II reports the means
and standard deviations of DSC, sensitivity, PPV, and ASD
between automatic segmentations and manual segmentations
for our method. Since all mentioned methods in Table II
were evaluated on the same dataset, the comparisons are
informative to show that our method achieves the best
performance among all methods under comparison.

4. DISCUSSION

In our work, we learn a linear LDA classifier on sparse
representation residuals for tissue classification. Another op-
tion is to learn a nonlinear classifier directly on the sparse
representation. However, since sparse codes (i.e., sparse rep-
resentations) are unstable, similar patches can have distinct
sparse codes, which can limit the performance of nonlinear
classifiers that are trained with sparse codes.45

After applying the learned appearance model for voxel-
wise classification of the new image, we can obtain a prostate
likelihood map, which is used for guiding deformable seg-
mentation by finding the boundary voxels with the largest ori-
ented gradient magnitude. The traditional deformable mod-
els (e.g., ASM and AAM), often use line profiles, which
are just MR intensities. Therefore, these methods could be
sensitive to MR inhomogeneity. Because we use an appear-
ance model to map the original MR image into the prostate

likelihood map, our deformable model largely avoids such a
limitation.

Compared with other learning-based methods, our dictio-
nary learning method has three main advantages. First, the
dictionary learning method is nonparametric and can be used
for nonlinear classification. This aspect is important for deal-
ing with large interpatient appearance variations found in
prostate MR images. Second, our approach requires less train-
ing time than other learning-based methods. In the training
stage, the dictionaries are built by clustering the selected train-
ing samples. No complicated learning procedure is required,
which makes the proposed method very easy to use and im-
plement for other similar applications. Third, the dictionary
learning method can also easily be extended to other multi-
class classification problems.

Regarding the clinical application of our method, the re-
sulting prostate segmentation is able to provide an accurate lo-
calization of the gland, which is required in many treatments
for prostate cancer. For example, radiation therapy can thus
be targeted to the prostate region with high precision, in or-
der to reduce the risk of radiation exposure to the surrounding
normal tissues. Additionally, estimating the prostate volume
based on the segmentation result can also reduce the clini-
cian’s manual work by helping to automatically evaluate the
treatment response.

However, our method still has some limitations, and
many improvements could be envisioned. First, instead of

TABLE I. Mean values and standard deviations (Std) of DSC, sensitivity, PPV, and ASD between automatic segmentations and manual segmentations for our
proposed method and three other methods on the internal dataset. NA in the table means the corresponding measurement was not reported in the literature. The
best performance of each measurement is shown in bold lettering.

Method Image No. DSC (in%) Sensitivity (in%) PPV (in%) ASD (in mm)

ASM 75 74.5 ± 11.3 75.7 ± 18.3 79.1 ± 11.8 4.16 ± 3.64
Liao et al. (Ref. 21) 30 86.7 ± 2.2 NA NA 1.90 ± 1.60
Liao et al. (Ref. 20) 66 88.3 ± 2.6 NA NA 1.8 ± 0.9
Our method 75 89.1 ± 3.6 89.9 ± 7.0 89.0 ± 6.2 1.67 ± 0.61
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FIG. 15. Typical segmentation results by our proposed deformable model. Each row shows the prostate of one subject automatically segmented by our method
(white) and manually delineated by an expert (grey). Different columns indicate different transversal slices from the apex (left) to the base (right) of the prostate.

separating the steps of feature selection and dictionary learn-
ing, we can combine them for joint discriminative dictio-
nary learning to further boost the discriminative power of
our method. Second, similar to the local appearance model,
the shape model can also be built based on the local subsur-

faces of the model. In this way, a sparse shape prior based
on each local subsurface with small shape variation can bet-
ter preserve the local shape details. Finally, a hierarchical
deformable segmentation framework can also be adopted for
improving the robustness and accuracy of the segmentation.

TABLE II. Mean values and standard deviations (Std) of DSC, sensitivity, PPV, and ASD between automatic segmentations and manual segmentations for our
proposed method and four other methods on the public dataset. NA in the table means the corresponding measurement was not reported in the literature. The
best performance of each measurement is shown in bold lettering.

Method Image No. DSC (in%) Sensitivity (in%) PPV (in%) ASD (in mm)

PASM (Ref. 26) 50 77.0 ± 23.0 NA NA 4.10 ± 7.81
AAM (Ref. 27) 50 81.0 ± 12.0 NA NA NA
Martin et al. (Ref. 23) 50 84.0 ± NA 87.0 ± NA 84.0 ± NA 2.41 ± NA
Birkbeck et al. (Ref. 44) 50 86.0 ± NA NA NA 1.91 ± NA
Our method 50 87.4 ± 3.8 82.6 ± 7.2 93.3 ± 3.5 1.92 ± 0.90
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5. CONCLUSION

In this paper, we have presented a novel method to seg-
ment the prostate in MR images. To address the challenges
presented by complicated appearances of the prostate, we
designed a novel (DDD learning method to extract appear-
ance characteristics in a nonparametric, discriminative, and
local fashion. This approach was further integrated within an
ensemble learning framework. A deformable model guided
by the learned dictionaries and sparse shape prior was then
developed to segment the prostate in T2-weighted MR im-
ages. Experimental results show that the proposed method
has superior discriminant power on classification and conse-
quently achieves the most accurate results compared to other
state-of-the-art methods.
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