
ARCHERRT – A GPU-based and photon-electron coupled Monte Carlo
dose computing engine for radiation therapy: Software development
and application to helical tomotherapy

Lin Su
Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York 12180

Youming Yang and Bryan Bednarz
Medical Physics, University of Wisconsin, Madison, Wisconsin 53706

Edmond Sterpin
Molecular Imaging, Radiotherapy and Oncology, Université catholique de Louvain, Brussels,
Belgium 1348

Xining Du, Tianyu Liu, Wei Ji, and X. George Xua)

Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York 12180

(Received 27 December 2013; revised 7 May 2014; accepted for publication 7 June 2014;
published 26 June 2014)

Purpose: Using the graphical processing units (GPU) hardware technology, an extremely fast Monte
Carlo (MC) code ARCHERRT is developed for radiation dose calculations in radiation therapy. This
paper describes the detailed software development and testing for three clinical TomoTherapy R©
cases: the prostate, lung, and head & neck.
Methods: To obtain clinically relevant dose distributions, phase space files (PSFs) created from opti-
mized radiation therapy treatment plan fluence maps were used as the input to ARCHERRT. Patient-
specific phantoms were constructed from patient CT images. Batch simulations were employed to
facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical
uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their
relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a ho-
mogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases,
dose volume histograms and isodose maps were produced from ARCHERRT and the general-purpose
code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses
obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20
GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer compari-
son of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and
tested on an Intel E5-2620 CPU.
Results: For the water phantom, the depth dose curve and dose profiles from ARCHERRT agree
well with DOSXYZnrc. For clinical cases, results from ARCHERRT are compared with those from
GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose
is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung
case, and head & neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to specific architecture
of GPU, modified Woodcock tracking algorithm performed inferior to the original one. ARCHERRT

achieves a fast speed for PSF-based dose calculations. With a single M2090 card, the simulations
cost about 60, 50, 80 s for three cases, respectively, with the 1% statistical error in the PTV. Using
the latest K40 card, the simulations are 1.7–1.8 times faster. More impressively, six M2090 cards
could finish the simulations in 8.9–13.4 s. For comparison, the same simulations on Intel E5-2620
(12 hyperthreading) cost about 500–800 s.
Conclusions: ARCHERRT was developed successfully to perform fast and accurate MC dose cal-
culation for radiotherapy using PSFs and patient CT phantoms. © 2014 American Association of
Physicists in Medicine. [http://dx.doi.org/10.1118/1.4884229]

Key words: Key words: radiation therapy, Monte Carlo, GPU, dose calculation, software

1. INTRODUCTION

Intensity modulated radiation therapy (IMRT) is designed to
deliver superior dose conformity and uniformity when com-
pared to traditional three-dimensional conformal therapy.1

However, few treatment planning systems (TPS) employ so-
phisticated dose calculation algorithms such as Monte Carlo

(MC) method. Approximate algorithms used in many TPSs,
including convolution/superposition method, are known to
be fast but only approximately correct in cases when the
treatment site involves complex and heterogeneous tissue
structures.2, 3 MC and grid-based Boltzmann solver (GBBS)
are two methods that can handle tissue heterogeneity in three-
dimensional objects and will yield accurate radiation dose

071709-1 Med. Phys. 41 (7), July 2014 © 2014 Am. Assoc. Phys. Med. 071709-10094-2405/2014/41(7)/071709/13/$30.00

http://dx.doi.org/10.1118/1.4884229
http://dx.doi.org/10.1118/1.4884229
http://dx.doi.org/10.1118/1.4884229
http://dx.doi.org/10.1118/1.4884229
http://crossmark.crossref.org/dialog/?doi=10.1118/1.4884229&domain=pdf&date_stamp=2014-06-26

071709-2 Su et al.: ARCHERRT: Fast radiotherapy MC dose calculation engine 071709-2

distributions in the human body for a range of medical physics
applications.4 Among these two methods, GBBS is much less
popular than MC. To date, MC methods remain the gold stan-
dard of radiation dose calculation. Although a few commer-
cial TPSs adopt MC methods, computation speeds of cur-
rent MC methods still prevent a widespread use for dose
calculations in radiation therapy. With advancements in the
ability to monitor inter- and/or intra-fraction variation of pa-
tient anatomy during the treatment, radiation oncology clinics
are exploring adaptive radiation therapy (ART) and real-time
replanning—modalities that require the integration of accu-
rate and fast dose calculation approaches.5–7 It is clear that
new methods of accelerating Monte Carlo calculations will
play an important role in future radiation oncology research.

A review of the history of Monte Carlo methods suggests
that vectorization schemes were proposed and proven by
Brown and Martin in 1980s as a revolutionary way to
accelerate MC calculations.8 However, little advance has
been made in the recent decades in adopting MC methods
as a clinical dose computation and treatment planning tool.
It is well known that MC algorithms are ideally suited
for parallel computing and certain MC algorithms are
considered as “embarrassingly parallelizable.” Now we
may have arrived at a tipping point in research, with recent
development of heterogeneous high-performance computing
hardware and software designs. The new “hardware accelera-
tor” technologies—the general-purpose Graphical Processing
Units (GPU) by NVIDIA and AMD and the Xeon Phi copro-
cessors by Intel—have high energy-efficiency and arithmetic-
throughput. The compute-intensive, but parallelizable
algorithms for particle tracking can now be offloaded to hard-
ware accelerators and be concurrently executed by hundreds
or thousands of threads. Such hardware-based acceleration
methods have become secure and affordable parallel com-
puting platforms for high performance computing.9 With
extensive thread-level parallelism and impressive energy
efficiency, such hardware accelerators are essential in the
so-called exascale computers that will arrive near the end of
this decade.10 In fact, on the Top-500 list as of June 2013, 4
out of the 10 most powerful supercomputers in the world had
adopted either the NVIDIA GPUs or Intel coprocessors.11

Accelerators such as GPUs have been used in medi-
cal physics MC dose calculations.12–16 Zhou et al. imple-
mented Monte Carlo convolution/superposition (MCCS) on
GPU platform to perform dose calculation of conventional
IMRT.17 Despite of what their paper title had implied, their
method did not involve MC based radiation transport. Jia et al.
developed a GPU MC code based on DPM and achieved 5.0–
6.6 speedup factors.18 Hissoiny et al. developed another code
GPUMCD, in which the MC implementation is tailored for
GPU, and reported 900 times speedup over EGSnrc.13 Jia
et al. later improved their code and observed the speedup of
69.1–87.2.12 Jahnke et al. ported part of GEANT4 functions
to GPU and reported a speedup factor of 6400.14 Jia et al.
also came up with a GPU based MC code for patient-specific
CT/CBCT imaging dose calculation and reported that it was
76.6 times faster than EGSnrc.19 Hissoiny et al. reported
a GPU based brachytherapy dose calculation tool using a

precalculated phase space file (PSF) as input and achieved
∼2 s speed for a preoptimized plan.20 However, electron
transport was absent from their MC code and they did not
consider external beam radiotherapy. Townson et al. reported
a GPU dose calculation engine for IMRT,21 in which they
used “phase-space-let” method to calculate dose distribution
from a patient-independent PSF. Townson et al. only consid-
ered a tongue treatment case and did not analyze performance
in terms of full phantom dose distribution and dose volume
histograms (DVHs).

Although the idea of using GPUs to accelerate MC cal-
culations is no longer new today, the methods are far from
being mature. In fact, several challenges can be readily
identified in the current research: (1) Considerable software
development is needed to truly optimize algorithms in new
hardware/software environments. (2) There is little or no
effort to understand the underlying challenges presented.
(3) Comparison against traditional CPU-based methods lacks
fairness, leading to false performance rating for GPUs.
(4) Clinical benefits have not been systematically evaluated.
(5) There is an uncertainty about the GPUs future as a parallel
computing technology because Intel Xeon Phi coprocessors
were adopted in the world’s #1 supercomputer (the Tianhe-2)
in 2013 and NVIDIA on longer dominates the market place.

To address some of the challenges mentioned above, we
have been developing a testbed under the framework called
ARCHER (Accelerated Radiation-transport Computations
in Heterogeneous EnviRonments). ARCHER is envisioned
as a suite of GPU-based and Xeon Phi-based MC codes
for diverse applications including X-ray CT imaging dose
calculations,16 nuclear reactor analysis,22 and medical ori-
ented electron-photon coupled transport.23 One study under
ARCHER framework compares the performance of multi-
thread CPU, GPU, and Xeon Phi coprocessor in the appli-
cation of CT dose evaluation. The Xeon Phi programming
models involved are offload OpenMP, Cilk (a C language
extension for multithreaded parallel computing),24 and hy-
brid MPI/OpenMP. This paper describes the development of
ARCHERRT for external bean radiation therapy based on
GPU and multicore CPU.

The novelty of this paper: (1) it focuses on GPU-based
tomotherapy dose calculations and evaluates three clinical
cases in terms of dose contours, DVHs, and gamma analy-
sis. (2) It reports for the first time the evaluation of the “het-
erogeneous architecture” involving a host CPU and different
GPUs as “devices” including NVIDIA M2090 (six cards),
K20, and K40 cards, thus providing valuable insight into
emerging computer hardware technologies. (3) To achieve a
fair comparison, this study develops the MC code for both
the CPU and GPU platforms using the multithreaded CPU
code in OpenMP to maximize the use of CPU computing
power. (4) It implements a variance reduction technique on
GPU and discusses the efficiency discrepancies on different
hardwares.

The structure of the paper is as follows: Section 2 describes
the MC modeling of ARCHERRT and other software develop-
ment details. Section 3 demonstrates the dosimetric and tim-
ing results of our code, compared with established MC codes.

Medical Physics, Vol. 41, No. 7, July 2014

071709-3 Su et al.: ARCHERRT: Fast radiotherapy MC dose calculation engine 071709-3

Section 4 delivers some useful discussions and Sec. 5 con-
cludes this paper.

2. METHODS

2.A. Hardware specification

Two heterogeneous systems are used for testing and run-
ning ARCHERRT. The first is a generic desktop with Intel
Xeon E5-2620 CPU (6 cores 2.0 GHz) and 8 GB RAM, host-
ing one GPU card. The second is a specialized GPU work-
station, consisting of an Intel Xeon 5650 CPU with 16 GB
memory and multiple PCI-E slots which host as many as six
GPUs concurrently. The GPU cards employed in this study
are as follow: six Fermi-based NVIDIA M2090 GPUs, each
with 512 streaming processors (SP), 1.33 TeraFlOPS floating
point capability and 6 GB global memory; one Kepler-based
NVIDIA K20 GPU, with 2496 SPs, 3.52 TeraFlOPS floating
point capability, and 5 GB global memory; one state-of-art
Kepler-based NVIDIA K40 GPU, with 2880 SPs, 4.2 Ter-
aFlOPS floating point capability, and 12 GB global memory.
Figure 1 shows the system with 6 M2090 cards. It resembles a
slice of the RPI’s Blue Gene supercomputer or the Oak Ridge
National Lab’s Titan supercomputer.

2.B. Software design for GPU and multithread
CPU codes

ARCHERRT GPU code is developed using NVIDIA
CUDA C.25 The code has two major parts: host code that
runs on the CPU and the device code (also called kernel) that
runs on the GPU. The general code structure follows a typ-
ical CUDA execution pattern: first the host code is executed
to read in data and transfer data from host memory to device
memory. Then the kernel code is called by the host code and
it is executed on the GPU in parallel with multiple threads.

The overall workflow of ARCHERRT is shown in Fig. 2.
As will be discussed in Sec. 2.D, batch simulation is em-
ployed. The PSF, which contains the source information, is
partitioned into smaller part (sub-PSF). The host code first
reads in cross section data, CT phantom, the first batch of sub-
PSF, and stores them in the host memory. Then it allocates
device memory on the GPU and copies data needed for trans-
port to the device. Afterward, a pseudorandom number (PRN)

FIG. 1. The specialized GPU workstation used in this study, consisting of
one Intel Xeon 5650 CPU and 6 NVIDIA M2090 GPUs.

kernel initiates a unique random number stream for each
thread to make sure simulations in different threads are sta-
tistically uncorrelated. In this study we employed the CU-
RAND library provided by NVIDIA for generating high
quality PRNs with fast speed. After the PRN initiation, the
transport kernel is invoked and executed by a large number
of threads in parallel with each thread in charge of a number
(e.g., 400) of particles. The number of threads is determined
by the total number of particles to simulate. As will be de-
scribed in Sec. 2.D, once the kernel is launched, the CPU be-
gins to read sub-PSF for the next batch. This implementation
enables concurrent execution of both particle transport and
reading PSF, thus the total execution time is reduced. After
each batch simulation, the results are sent back to host side;
after all batches are completed, the dose results are processed
and batch statistical uncertainties are evaluated. For simula-
tion with multiple GPUs, the CPU reads all sub-PSFs and then
copies the data to different GPU and launch kernel on each
GPU. Since the memory copy and kernel launch are asyn-
chronized (returned immediately), all the GPUs start working
virtually at the same time.

Inside the transport kernel, shown in Fig. 2, all the sec-
ondary particles created in each thread are stored in preallo-
cated array in the device global memory; after primary parti-
cle transport, secondary particles in the stack are fetched and
transported in the same way as primary particles. Each thread
is in charge of all secondary particle generated in that thread.
The next primary particle is not started until the secondary
stack is emptied. During the simulation, radiation energy de-
posited in each step is added directly to the global counter in
the device memory. To avoid race conditions resulting from
multiple threads attempting to write to the same tally, the
CUDA atomic operation is used.25 In this mode, writing op-
erations by different threads are serialized and the correct ra-
diation dose summation is guaranteed.

GPU uses different memory types and appropriate han-
dling is essential for achieving the best performance. Regis-
ters are on-chip local memory that is private to each thread.
Shared memory is also on-chip but can be shared by a block of
threads. These two kinds of on-chip memory are fast to access
but their sizes are very limited. There is a large off-chip global
memory (up to 12 GB) accessible to all the threads. Compared
with registers and shared memory, global memory has much
larger access latency. As a static allocated read-only memory,
constant memory features relatively high access speed and it
is suitable for storing constant variables. However, due to its
limited size (64 kB on Fermi architecture), in ARCHERRT

only some scientific constants such as the electron rest mass
and value of π are stored in constant memory, while other
data including cross sections, distribution tables and parame-
ters needed for transport are still stored in the global memory.
In addition, the dose counters for each voxel as well as the sec-
ondary particle stack for each thread also reside on the global
memory. For fast access, we used registers to store tempo-
rary variables in threads. Shared memory is not used in our
code.

As found in our previous work,23 single precision arith-
metic provides adequate accuracy for our medical application

Medical Physics, Vol. 41, No. 7, July 2014

071709-4 Su et al.: ARCHERRT: Fast radiotherapy MC dose calculation engine 071709-4

Start

End

Input

Configure GPU
• Device selection
• Memory allocation
• Read PSF and x-section
• Data sent to GPU

Initialize pseudo-random number

Synchronize device
Data returned from GPU

Output

Launch RNG kernel

Launch Transport kernel

Is electron?

e- Transport
Store secondary

Secondary Left?

Read a particle
from secondary

stack

Y

End

Start

Start

N

DEVICE GPU HOST CPU

RNG kernel

Thread 0

Thread 2

……
Thread N

Transport kernel

Thread 1

Photon Transport
Store secondary

All particles for
the thread done?

Read a particle from PSF

N

End

Y

N

Batch Left?

Read next sub-PSF

Y
N

FIG. 2. Flowchart of ARCHERRT GPU code. The left panel describes the work for CPU which is the host and the right panel describes the work for GPU which
is the device. Device cannot interact with outer world directly and can only send/receive data to/from host. Host and device communicate via PCI-E bus. Host
first reads data and sends them to device; after simulation, device sends results back to host. Pseudorandom number (PRN) kernel is used to initiate the PRN
streams. Transport kernel handles the MC simulation of particles. Batch simulation is employed. After all batches are done, the host synchronizes all thread on
the device and processes and outputs results.

and was adopted in our code. Moreover, fast-math compiler
option was enabled to achieve higher speed of floating point
operations. This choice bears no measureable error in the
results.

To fairly compare the performance of GPU and CPU, we
wrote multithreaded CPU code using OpenMP. With Intel’s
hyperthreading technique, our 6-core CPU can support as
many as 12 threads running concurrently. In the OpenMP
CPU code, the input data (PSFs and cross sections) and the

dose tallies are shared by all threads. Atomic directive is used
for tally function to avoid race condition.

2.C. Electron-photon coupled transport

2.C.1. Photon transport

The main physics models implemented in ARCHERRT

were similar to production MC codes, including MCNP,

Medical Physics, Vol. 41, No. 7, July 2014

071709-5 Su et al.: ARCHERRT: Fast radiotherapy MC dose calculation engine 071709-5

EGSnrc, GEANT4, PENELOPE, and DPM.26–30 For photon
transport, we considered photoelectric effect, Compton scat-
tering, and pair production. Rayleigh scattering is disregarded
in this study because it has negligible impact on dose distribu-
tion for photon energy range used for radiotherapy.30 Comp-
ton scattering is sampled according to the Klein-Nishina cross
section, assuming electrons are free and at rest before scatter-
ing. Binding effect and Doppler broadening, which are im-
portant for photon energies below 100 keV,27 are excluded
in ARCHERRT. Everett et al.’s method is used to obtain the
direction and angle of the scattered photon.31 The photoelec-
tric effect is modeled by ignoring electron shell structure and
binding energy. A secondary electron is produced isotropi-
cally with the same energy of the incident photon. For pair
production, the electron and positron are assumed to split the
incident photon energy using a uniformly distributed random
number. The angular distributions of electron-positron pair
are calculated using the method employed by the PENELOPE
code (Sec. 2.4.1.1).28 No triplet production is modeled in our
code due to trivial probability of the interaction. The photon
cross section used in ARCHERRT is from NIST XCOM.32

2.C.2. Electron transport

An electron undergoes a large number of interactions
with media, making the analog event-by-event simulation
unfeasible.28 Meanwhile, the angular deflection and energy
loss in each electron interaction is relatively small; thus, a
mixed “condensed history” method can be used to model the
transport. ARCHERRT employs the so called class-II con-
densed history method.33 In this method, interactions with
an energy loss greater than a preset value (hard collision)
are simulated explicitly; below that preset value, the energy
loss is treated with continuously slowing down approximation
(CSDA).33

The hard inelastic collision is sampled according to the
Møller cross section,27 and the binding energy of a scattered
electron is ignored here since the hard interaction thresh-
old (∼200 keV) is typically much larger than the binding
energy of the electron (several keV). Because the primary
and scattered electrons are indistinguishable, the electron
with a higher energy is considered primary, i.e., an elec-
tron can lose no more than half of its kinetic energy in
scattering. The hard bremsstrahlung interaction is modeled
by the method described in Sec. 3.3.4 of the PENELOPE
manual.28 In such hard bremsstrahlung, an electron can lose
up to its total kinetic energy. Occurrence of Møller scatter-
ing and hard bremsstrahlung is controlled by corresponding
mean free path (MFP). The effect of a large number of elas-
tic interactions within a given pathlength is modeled accord-
ing to the Goudsmit and Saunderson (GS) multiple scatter-
ing theory.34, 35 In particular, the scattering angle is sampled
using the method described by Sempau et al.,30 which is
a modification of Kawrakow and Bielajew’s method.36 The
electron step length for multiple scattering is calculated ac-
cording to the energy of the electron, and is not restricted by
the voxel boundaries.30 This implementation enables an elec-
tron to travel through more than one voxel in a single step,

thus speeding up the MC simulations. The soft energy loss is
handled by the CSDA using the restricted stopping power. If
there is no hard interaction inside a voxel, the energy loss is
calculated for the trajectory length from boundary to bound-
ary. If there is an interaction in the current voxel, the trajec-
tory length for energy loss is from boundary to interaction
site instead. Electron stopping power data are adopted from
ICRU Report No. 37.37 In addition, positrons are simulated as
electrons, except they annihilate after losing all their energy,
leading to two photons, each with energy of 0.511 MeV.26

An electron or a photon is transported in ARCHERRT until
its energy falls below a cutoff energy. At this point, the parti-
cle is killed immediately and its remaining energy is deposited
locally. The cutoff energies of electron and photon are set to
be 200 keV and 10 keV, respectively, in this study.

2.D. Helical tomotherapy and phase-space
file implementation

Helical tomotherapy is a sophisticated IMRT delivery
modality developed at the University of Wisconsin-Madison
(UW) and commercialized by TomoTherapy R©, which is now
owned and distributed by Accuray Inc (Sunnyvale, CA). The
Hi-Art TomoTherapy R© system utilizes a unique mechanical
structure that resembles a helical CT scanner. Different from
the traditional IMRT, the treatment head in a Tomotherapy R©
system is mounted on a slip ring gantry and can rotate contin-
uously around the isocenter. During the treatment, the head
rotates continuously while the couch is translated concur-
rently, delivering the dose in a helical manner. Zhao et al.38

and Sterpin et al.39 have performed MC simulations of he-
lical tomotherapy using the general purpose codes EGSnrc
and PENELOPE, respectively. In this study, we adopted Ster-
pin et al.’s method to generate the patient dependent PSFs.
The PSFs of finished treatment plans are used to calculate 3D
dose distributions in patient CT geometries. The PSF was gen-
erated by MC modeling of a SIEMENS accelerator head—
which is used in a TomoTherapy R© system—with nominal
energy of 5.3 MeV and utilizes a fast technique for trans-
porting photons through the patient-specific multi-leaf colli-
mators (MLCs).39 For the details of the patient-specific PSF
generation, the readers are referred to Ref. 38. All particles
defined in the PSFs lie on a cylindrical surface formed by the
gantry rotation and couch translation—such that these parti-
cles can be used in the next-stage MC simulations involving
patient-specific parameters of the treatment plan. Contami-
nant electrons are not included in PSFs because a previous
study had showed that the electron contamination from a heli-
cal tomotherapy system could be ignored without introducing
measurable error.40 After benchmarking the code, three clin-
ical cases are considered: a prostate case, a lung case, and a
head & neck case. The energy spectrum of the PSF particles
in prostate case is shown in Fig. 3, where the average photon
energy is 1.45 MeV.

For the prostate plan, a PSF size is 6.4 GB, which is
too large to easily load into the GPU global memory (i.e.,
the largest memory pool in GPU). To circumvent this prob-
lem, the entire PSF file is partitioned into smaller pieces and

Medical Physics, Vol. 41, No. 7, July 2014

071709-6 Su et al.: ARCHERRT: Fast radiotherapy MC dose calculation engine 071709-6

FIG. 3. Energy spectrum of the PSF photons used in the prostate case, with
the average energy of 1.45 MeV and the maximum energy of ∼5.3 MeV.
Spectra for other treatment cases (not shown) are similar.

simulated in batches. Typically, the batch number is set to be
10, reducing the sub-PSF to a more manageable size of 640
MB. The ARCHERRT code works as follows: the CPU reads
the first sub-PSF and copies the data to the GPU global mem-
ory. The GPU kernel is then launched asynchronously to per-
form the MC calculations. The CPU reads in the next sub-PSF
immediately after the first kernel is launched. In this way, the
simulation and PSF reading are performed concurrently, thus
enhancing the code execution efficiency. For the prostate case,
the PSF contains about 200 million photons; for the lung case,
the PSF contains about 54 million photons; and for the head
& neck case, the PSF contains 160 million photons. Each PSF
is recycled to achieve the desired statistical error, 1% in the
PTV.

2.E. Patient CT phantom

The CT dataset is converted into mass density and material
composition using the Hounsfield unit (HU)-to-density con-
version curve provided by the TomoTherapy R© TPS. Using a
commercial treatment planning system at UW–Madison, the
conversion is calibrated in accordance with recommendations
by Verhaegen and Devic.41 In these simulations, four materi-
als, each having densities specified by the HU, are used for
the patient phantom: water, dry air, compact bone (defined by
ICRU), and lung (defined by ICRP). Although the code is ca-
pable of more materials, these four materials provide enough
accuracy for the MC investigation.42

The prostate phantom consists of 260 × 256 × 108 vox-
els, with a voxel size of 0.1875 × 0.1875 × 0.3 cm3. Organs
at risk (OARs) include the bladder, rectum, and “ring” around
PTV. The lung phantom consists of 256 × 256 × 160 vox-
els, with a voxel size of 0.195×0.195× 0.2 cm3. OARs in-
clude the left lung, right lung, and spinal cord. The head &
neck phantom consists of 256 × 256 × 127 voxels, with a
voxel size of 0.195 × 0. 195 × 0.25 cm3. OARs include the
brainstem, left parotid, right parotid, and spinal cord.

ARCHERRT is designed to handle the MC particle trans-
port inside a voxelized CT patient phantom. From the source

to the phantom, particles are transported using a direct
raytracing method without MC simulation.

2.F. Statistical error evaluation

MC transport methods provide the most accurate results
for dose calculation by harvesting the power of a large number
of stochastic trials. The uncertainty in the final result is mainly
from statistical errors which must be assessed accurately. The
statistical error for an estimated mean value of a quantity x
can be calculated using Eq. (1):

sx̄
2 = sx

2

N
=

∑N
i=1

(
x2

i − x̄2
)

(N − 1)N
, (1)

where N is the total number of histories simulated, xi is the
score of the ith history, x̄ is the mean value of all xi , and sx̄

2

is the variance of x̄. According to Eq. (1), one needs to track∑N
i=1x

2
i and ∑N

i=1xi on the fly. In our case, x is the dose of a
certain voxel. In a primary particle history, there are many
energy deposition events. Calculating ∑N

i=1xi can be done by
accumulating the energy deposition in the voxel from all parti-
cle histories. For ∑N

i=1x
2
i , on the other hand, per-history energy

deposition is calculated one history at a time. Obviously, com-
puting dose using this conventional approach for every voxel
in the phantom is a lengthy and slow simulation process. In
ARCHERRT, different threads may deposit doses to the same
voxel concurrently. Thus, one cannot tell which part of the
voxel dose is incurred by a particular thread. One may attempt
to solve the problem by assigning each thread an independent
set of voxel tallies. However, there are millions of voxel tal-
lies and thousands of threads while the GPU memories are
limited to several GBs. For this reason, the batch statistics er-
ror estimation method43 is employed in ARCHERRT to avoid
issues with the conventional direct error estimation defined in
Eq. (1). The calculation of ∑N

i=1x
2
i in Eq. (1) is no longer

needed; instead, only x for each batch is required. The equa-
tion to calculate statistical error is similar to Eq. (1), with N
now being the number of batches and xi being x from the ith
batch simulation. Generally, a larger batch number will yield
a more accurate estimation of the statistics error. If the batch
number equals the number of histories simulated, the batch
estimation reduces to the direct estimation. In our study, we
use 10 batches—a number previously reported for the EGS
code system.43 When simulating with multiple GPUs, the
batch number can be larger. An important point for batch error
estimations is to minimize the correlation between batch par-
ticles. Partitioning the PSF by areas of the phase space plane
may result in biased error estimations. In our study, a sub-PSF
is sampled in an interlaced manner from the original PSF to
minimize correlations between sub-PSFs.

2.G. Woodcock tracking and variance reduction

The efficiency, ε, is defined to assess the performance of
the MC code by Eq. (2):27

ε = 1

s2T
, (2)

Medical Physics, Vol. 41, No. 7, July 2014

071709-7 Su et al.: ARCHERRT: Fast radiotherapy MC dose calculation engine 071709-7

where s and T are the statistical error and simulation time,
respectively. Any method that reduces the variance of tal-
lies with a fixed number of particle histories can be called
a variance reduction technique. Note that the variance reduc-
tion implementation may cost additional simulation time and
decrease the efficiency.

The Woodcock ray-tracing technique,44 also known as fic-
titious interaction method, is a variance reduction technique
that eliminates frequent boundary checking for photon trans-
port in heterogeneous geometries. The technique works as
follows: The maximum cross section μm(E) of the whole ge-
ometry for each energy E is calculated before the transport.
For each voxel with cross section μ(E), a “fictitious cross sec-
tion,” μm(E)-μ(E), is added so that all voxels have the same
μm(E). The fictitious cross section corresponds to the “ficti-
tious interaction.” The fictitious interaction is treated the same
as a real interaction such as Compton scattering. The differ-
ence is, when the fictitious interaction is sampled, the code
does nothing to the particle and the simulation continues. By
doing this, the heterogeneous phantom becomes a homoge-
neous phantom and the code does not need to stop to check
the voxel boundaries. Once the interaction occurs, the interac-
tion type (Compton scattering, pair production, photoelectric
effect, or fictitious interaction) is sampled according to cor-
responding the local cross sections. In the case of a fictitious
interaction, the phase space of photon remains unchanged and
previous process is repeated. The Woodcock technique avoids
time-consuming boundary detection and boundary crossing
operations, thereby increasing the simulation efficiency in
highly heterogeneous media. The Woodcock tracking method
works most efficiently in situations involving MeV photons
traversing water-equivalent materials—i.e., where the value
of μ(E) is comparable with μm(E) and the probability of fac-
tious interactions is small.

A modified Woodcock technique is also implemented in
ARCHERRT as an additional variance reduction method to
achieve higher efficiency.45 In this method, once a photon un-
dergoes an interaction (whether fictitious or real), it is split
into two photons. One is forced to undergo a real interac-
tion (Compton scattering, pair production, or photoelectric
absorption). To keep the scoring results unbiased, the weight
of the photon (and all its secondary particles) is multiplied by
the factor μ(E)/μm(E). The other photon remains unchanged
(fictitious interaction) with the weight multiplied by the factor
(1 − μ(E)/μm(E)). The Russian roulette technique is used for
scattered Compton photons and fictitious interaction photons
with the survival rate of μ(E)/μm(E) and (1 − μ(E)/μm(E)),
respectively. This treatment increases the secondary electron
generation and reduces the variance of tally for the same num-
ber of primary particles simulated. A comparison of the effi-
ciency gains produced by the original Woodcock method and
modified Woodcock method is provided in Sec. 3.C.

2.H. Performance evaluation

Before simulating the PSF dose distribution in a patient
CT phantom, the code was first tested with a homogeneous
water phantom. The PSF for testing was from a 6 MV Elekta

PRECISE linear accelerator.46 The source-to-surface distance
was set to 90 cm. The phantom was a 30 cm cube with a voxel
size of 0. 5 × 0. 5 × 0.5 cm3. The depth dose and lateral dose
profiles at 2, 5, and 10 cm from ARCHERRT were compared
with those from DOSXYZnrc.

For clinical case simulations, the results of ARCHERRT

were compared to those from the GEANT4 code. To achieve
less than 1% statistical uncertainty, the prostate PSF was re-
cycled 2 times while lung PSF and head & neck PSF were
recycled 9 times and 5 times, respectively. For all MC simu-
lations, voxel doses were normalized in such a way that the
median dose at PTV equaled the prescribed dose—60 Gy for
the lung case and 70 Gy for both the prostate and head & neck
cases. DVHs were employed to represent dose statistics in
different structures. Isodose maps were generated to compare
the dose distributions from the GEANT4 and ARCHERRT. A
gamma index test was used to examine the overall dosimetric
accuracy of ARCHERRT.

The efficiency defined in Eq. (2) can be used when only a
single tally is desired. For our three-dimensional dose distri-
bution, a measure of the “average” uncertainty s2 is used,42

which is defined as

s2 = 1

n

∑
Di≥Dmax/2

(
sDi

Di

)2

, (3)

where Di is voxel dose, sDi is the standard deviation of Di

calculated per Eq. (1), and n is the number of voxels with
dose greater than 50% of the maximum dose.

Combining Eqs. (2) and (3), one can calculate the effi-
ciency of a 3D dose simulation. The efficiency of the original
Woodcock technique and modified Woodcock method with
splitting and Russian roulette (see Sec. 2.H) are evaluated and
compared.

3. RESULTS

3.A. Dosimetric results

Dosimetric results from different hardwares agree with
each other within 0.5% difference. Here, we only discuss re-
sults obtained from NVIDIA M2090 card. The relative depth
dose and lateral dose profile curves using the 6 MV Elekta
PRECISE PSF for a water phantom are shown in Fig. 4. Doses
are normalized to the maximum dose in each case. The esti-
mated standard deviations are less than 0.3% of the maximum
dose. It can be observed that the results from ARCHERRT

agree well with those from DOSXYZnrc.47

For the voxel doses in the PTV, relative statistical error
(1 σ) is kept to be about 1% for all clinical cases considered
in this study. The comparisons of GEANT4 and ARCHERRT

for clinical cases are provided in Fig. 5. Figure 5(a) shows
the DVHs for the prostate case, including PTV, the bladder,
rectum, and ring area. The lung and head & neck DVHs are
displayed in Figs. 5(b) and 5(c), respectively. It can be seen
that these two MC codes agree with each other, for the cases
studied, except for the fall-off tail of the PTV curve for the
lung and head & neck. Such slight dose differences, as shown
in Fig. 5, are partially caused by the heterogeneity in these

Medical Physics, Vol. 41, No. 7, July 2014

071709-8 Su et al.: ARCHERRT: Fast radiotherapy MC dose calculation engine 071709-8

FIG. 4. Depth dose and dose profile curves from ARCHERRT (circles) and DOSXYZnrc (solid line). Statistical uncertainty is less than 0.3% of dose maximum.
(a) Depth dose along central axis, (b) lateral dose profiles at depth of 2, 5, and 10 cm.

FIG. 5. DVH comparisons between GEANT4 and ARCHERRT. (a) The
prostate case; (b) the lung case; (c) the head & neck case. General agree-
ment between the two MC codes is evident for all three cases and the hetero-
geneity is the cause of minor discrepancies near the fall-off tails of the PTV
curves.

two cases, but are considered to be insignificant in treatment
planning.

A different way to compare the two codes involved the iso-
dose maps for the same treatment sites. Figures 6(a) and 6(b)
show the prostate isodose maps obtained from ARCHERRT

and GEANT4, respectively. Similar comparisons for the
lung and the head & neck cases are given subsequently in
Figs. 7 and 8. From these visual inspections, it was clear that
ARCHERRT and GEANT4 agree well for all three cases, al-
though less conformity is observable for regions in the head
& neck case where heterogeneity is present. A gamma index
test was performed for those voxels that are dosimetrically
important, i.e., having a dose greater than 10% of the maxi-
mum dose. For gamma test criteria of 2% of dose tolerance
and 2 mm of distance tolerance, it was found that the passing
rate was 99.7%, 98.5%, and 97.2% for the prostate, lung, and
head & neck cases, respectively. Since GEANT4 is a well-
tested code and is currently used for treatment verification at
UW-Madison, these benchmark results suggest that the accu-
racy of ARCHERRT is satisfactory for the cases tested here.

3.B. Timing studies

For fast MC simulations using PSF as source input, it is
found that reading PSF from the hard drive costs a large
fraction of code execution time. For instance, on a desktop
mounted with single M2090 card, as introduced in Sec. 2.A,
reading a binary prostate PSF of 6.4 GB to the CPU memory
takes about 40 s. On the other hand, using the batch simu-
lation explained before, file reading works concurrently with
kernel execution, thus avoiding explicit file read time. With
this improvement, the GPU MC transport time for simulating
600 million particles is found to be only about 63 s for the
prostate case. Additional processes, such as reading the CT
dataset, account for about 9 s, making the total MC execution
time 72 s. For the lung case, the GPU MC transport time for
530 million particles was found to be 50 s and the total ex-
ecution time was 58 s. For the head & neck case, the GPU
transport time for 800 million particles was found to be 80 s

Medical Physics, Vol. 41, No. 7, July 2014

071709-9 Su et al.: ARCHERRT: Fast radiotherapy MC dose calculation engine 071709-9

FIG. 6. Prostate isodose maps on one transverse slice. (a) ARCHERRT. (b) GEANT4. The similarity of the contour lines from two MC codes is obvious showing
the satisfactory accuracy in dose calculations by ARCHERRT.

FIG. 7. Lung isodose maps on one transverse slice. (a) ARCHERRT. (b) GEANT4. The similarity of the contour lines from two MC codes is obvious showing
the satisfactory accuracy in dose calculations by ARCHERRT.

FIG. 8. Head & neck isodose maps on one transverse slice. (a) ARCHERRT. (b) GEANT4. Although larger discrepancies are observed, the overall agreement
of the contour lines from two MC codes is satisfactory for one of the most complicated case (head & neck) in radiation therapy.

Medical Physics, Vol. 41, No. 7, July 2014

071709-10 Su et al.: ARCHERRT: Fast radiotherapy MC dose calculation engine 071709-10

TABLE I. ARCHERRT execution times for clinical cases on single M2090
card.

Reading phantom, Total
Clinical No. of particles Transport first sub-PSF execution
cases (million) time (s) and misc (s) time (s)

Prostate 600 63.4 9 72
Lung 530 49.8 8 58
Head & neck 800 79.1 9 89

and the total execution time was 89 s. Table I summarizes the
timing results for one M2090 GPU card.

For multithreaded CPU code, the MC transport times on
Intel E5-2620 (12 hyperthreads) are 614 s, 507 s, and 798 s
for three cases. Single M2090 GPU is 10.2–11.5 times faster
than multithread E5-2620 CPU.

Different MC simulation times for different hardware are
listed in Table II. One may find that the simulation time is not
proportional to the floating point capability of a GPU card.
The main reason is that ARCHERRT is not FLOPS bound
and more time is spent on the memory access than arithmetic
calculation. The increase of FLOPS does elicit performance
enhancement albeit nonlinearly. Nevertheless, K20 and K40
cards still achieved on the average 1.5 and 1.8 times, respec-
tively, speedup over M2090.

In addition, ARCHERRT was also tested with six M2090
cards (the second system described in Sec. 2.A). Harvesting
the power of enterprise Solid State Drive (SSD), we were able
to squeeze the PSF reading time from 12–38 to only 2–5 s.
The execution timing information is shown in Table III. The
simulation time ranges remarkably from 8.9 to 13.4 s, nearly a
real-time performance in the clinical practice. Compared with
single M2090 results, it is almost linear scale up from one to
six GPU cards. However, as indicated in previous work,23 to
provide the best GPU performance involving multiple cards,
a minimum workload is needed to achieve reasonable scale
up factor.

In contrast, the use of GEANT4 in clinical treatment veri-
fication at UW-Madison generally requires 500 CPU-hours to
finish the same simulation task. Obviously, the inherent paral-
lel computing power brought forth in the GPU hardware has
made the ARCHERRT an extremely fast MC code. There are
two additional reasons why GEANT4 is much slower than
ARCHERRT. First, as a general-purpose MC code, GEANT4
has complicated code structures that can handle a vari-
ety of application scenarios. In comparison, ARCHERRT is
specifically designed for radiation therapy dose calculations.

TABLE III. ARCHERRT execution times using six M2090 cards.

Clinical GPU time Reading PSF Reading phantom Total execution
cases (s) time (s) and misc (s) time (s)

Prostate 10.9 4.8 ∼4 ∼20
Lung 8.9 1.6 ∼3 ∼15
Head& neck 13.4 3.9 ∼5 ∼23

Second, GEANT4 employs more detailed physics models
than ARCHERRT does, including binding effect, Doppler
broadening, and X-ray fluorescence. ARCHERRT uses sim-
pler physics models that are justified for radiotherapy appli-
cation, which greatly enhances the simulation speed without
sacrificing the accuracy.

3.C. Efficiency of variance reduction

In an initial attempt to improve the simulation efficiency,
we implemented a modified Woodcock algorithm. The per-
formance of this modification was compared with the original
algorithms. Table IV presents the results for this efficiency
comparison. Interestingly, our results differ from those in the
literature for CPU-based methods,45 with the finding that the
modified Woodcock method achieved less efficiency than the
original implementation. We believe this is partially caused
by the fact that splitting and Russian roulette require more
writing and reading operation of the global memory of GPU.
Accessing global memory is relatively expensive, introduc-
ing execution penalty for the modified Woodcock algorithm
in GPU.

4. DISCUSSION

4.A. GPU execution characteristics and comparison
of CPU and different GPUs

The GPU is a highly parallel computational tool with hun-
dreds of streaming processors. Although the so-called thread
divergence prevents the peak performance to be achieved, the
GPU can still dynamically allocate threads to minimize pro-
cessor idle time. For example, if a thread stalls to wait for
global memory access, another ready thread is switched in
immediately. Therefore, the GPU works the best when a large
number of threads are occupied. This finding can be further
illustrated in the previous Table IV where, for the original
Woodcock algorithm, the efficiency of the simulations with-
out particle recycling (16.7 s−1) is lower than that of the

TABLE II. ARCHERRT MC transport times using different CPU and GPU cards.

Intel E5-2620
Clinical No. of particles (12 threads) M2090 GPU K20 GPU K40 GPU
cases (million) time (s) time (s) time (s) time (s)

Prostate 600 729 63.4 44.7 36.0
Lung 530 507 49.8 35.6 29.9
Head & neck 800 876 79.1 59.4 44.2

Medical Physics, Vol. 41, No. 7, July 2014

071709-11 Su et al.: ARCHERRT: Fast radiotherapy MC dose calculation engine 071709-11

TABLE IV. Efficiency of two Woodcock algorithms. s2, T, and ε are from
Eq. (2), s2 are calculated via Eq. (3). The first column data are for modified
Woodcock algorithm, with PSF being used once. The second column data
are for original Woodcock algorithm, with PSF being used once. The third
column data are for original Woodcock algorithm, with PSF being used 3
times (2× recycles) for prostate case and 10 times (9× recycles) for lung
case.

Modified Original
Woodcock Woodcock Original

(no recycle) (no recycle) Woodcock

Prostate s2 7.56 × 10−4 2.20 × 10−3 7.72 × 10−4

T (s) 144.2 22 63
ε(s−1) 9.17 20.7 20.6

Lung s2 1.25 × 10−3 9.61 × 10−3 9.87 × 10−4

T (s) 54.8 6.23 50.2
ε(s−1) 14.6 16.7 20.2

simulation with 9× recycling (20.2 s−1). The main reason
is that without recycling, there are only 5 million particles
in each batch. Such number of particles is insufficient to
saturate the GPU to achieve it peak performance.

Compared with Intel E5-2620 CPU, NVIDIA M2090 GPU
achieved 10.2–11.5 speedup. While some other GPU related
studies reported much more attractive speedup (near 100) over
CPU, most of them simply compared GPU code with single-
threaded CPU code. Since current prevailing CPUs usually
consist of multiple cores, employing only single core not only
wastes CPU’s computational capability but also makes the
comparison biased. Therefore, in our study, we make full use
of our 6-core E5-2620 CPU with 12 hyperthreads, providing
a fairer comparison. In addition, as shown in Sec. 3.B, K40
GPU has 1.7–1.8 speedup over M2090, although the former
has about 3 times higher FLOPS than the latter. It suggests
that except for floating point capability, the memory access
latency is another key factor that impacts the overall perfor-
mance of ARCHER GPU code.

4.B. Comparison with previous work

Compared with previous work on GPU-based fast MC
dose calculation,12–14, 18–20 this study does better job on “fair
comparison.” Instead of comparing GPU code with serial
CPU code, this study makes multithreaded CPU code and
conducts a fairer comparison of GPU and CPU. In addition,
this work is one of the first to investigate “heterogeneous
architecture” involving a host CPU and different GPUs as
devices. Among previous studies, at least two of them in-
volved the IMRT dose calculation. Jahnke et al. developed
GMC based on GEANT4 and tested it on a mediastinum
IMRT case with unspecified phantom size.14 The simulation
of 240 million particles costs 349 s, which is much slower
than ARCHERRT. Meanwhile, the 2%/2mm gamma test pass
rate of 91.74% is worse than ARCHERRT. Townson et al.
developed GPU based MC dose calculation tool for tradi-
tional IMRT using a PSF source.21 They performed a 7-field
IMRT treatment simulation of a tongue tumor treatment. The
phantom consisted of 154 × 90 × 109 voxels with a voxel

size of 0.3 × 0.3 × 0.3 cm3. The overall phantom size was
smaller with lower resolution in the Townson’s simulation,
than all of the phantoms used in this investigation. Townson’s
investigation required 50 s to simulate 500 million 6 MV
photons, achieving less than 1% statistical uncertainty near
isocenter. In comparison, ARCHERRT requires 60 s to simu-
late 600 million 6 MV photons, achieving the same precision
in the PTV. For the Townson investigation, an NVIDIA GTX
580 card was used. Although it is not designed for general
purpose scientific computing, it has higher single precision
FLOPs relative to M2090 card. Thus, the overall speed of our
TomoTherapy R© simulation is comparable with or faster than
Townson’s work in traditional IMRT. In addition, for the first
time, we report the use of six M2090 cards to finish a full plan
dose calculation in about 10 s. Furthermore, our study pro-
vides DVHs and whole phantom isomaps for three common
clinical cases. Finally, Townson used a so-called phase-space-
let (PSL) method together with fluence map to achieve patient
independent PSF dose calculation for traditional IMRT. How-
ever, those implementations do not work for HT due to dif-
ferent machine structure and treatment protocol. In on-going
work, we are adopting patient independent PSFs for the sim-
ulation using Sterpin’s method.39

4.C. Meaning of ARCHER in context of trends of CPU
and accelerator development

From the inception of microprocessor in 1970s, the clock
rate of the CPU kept increasing, bringing growing computa-
tional power, until early 2000s. During that time, the majority
of personal and business computers was equipped with sin-
gle core CPUs. The enhancement of computing power was
achieved by increasing the clock rate as well as the number
of transistors on chip. In 2000s, the clock rate had reached
several GHz. Further increase of clock rate not only reduces
energy efficiency but also introduces cooling difficulties.
Therefore, the development of CPU has turned to multi-
core, with moderate clock rate (typically 1–2 GHz). At
the same time, hardware accelerators have been emerging
quickly. NVIDIA and AMD provided general purpose GPU
(GPGPU), which has hundreds of streaming cores. Intel in-
vented Xeon Phi, a coprocessor consisting of more than 60
cores. In addition, Intel is said to apply knights landing ar-
chitecture to future CPU production, which means the fu-
ture CPU may change from multicore to many-core, similar
to Xeon Phi coprocessor. These companies are competing for
the incoming exascale computing era. While it is still not clear
who will win the contest eventually, the consensus has formed
that the parallel computing is no doubt the trend of future
computing paradigm. In this context, the work of ARCHER
provides a testbed for different hardwares in terms of radi-
ation transport application. The significance of our study is
to establish a scalable Monte Carlo software framework on
different developing platforms, so that as the hardware archi-
tecture is upgraded at a steady pace—with increased memory
bandwidth, memory size, number of cores, etc.—we will be
able to, in a timely manner, fine-tune the code, re-evaluate the
performance, and find out which platform benefits us most.

Medical Physics, Vol. 41, No. 7, July 2014

071709-12 Su et al.: ARCHERRT: Fast radiotherapy MC dose calculation engine 071709-12

5. CONCLUSIONS

We have successfully developed and applied ARCHERRT,
a GPU-based fast and accurate dose calculation engine for
radiotherapy. It was benchmarked against DOSXYZnrc for
6 MV Elekta PRECISE PSF dose distributions in a water
phantom. Three clinical TomoTherapy R© treatment plans of
the prostate, the lung, and the head & neck were studied to
further benchmark against GEANT4 which was used in clini-
cal treatment verification in UW-Madison to show the clinical
utility. ARCHERRT was tested on different hardware includ-
ing multithreaded Intel E5-2620 CPU, NVIDIA K20, K40,
and up to six M2090 GPU cards.

For all cases, gamma tests were performed and the dosi-
metric accuracy of ARCHERRT was demonstrated. The total
ARCHERRT execution times for three cases one M2090 were
found to be about 60–80 s. The simulation time is reduced
by a factor of ∼1.8 using the latest K40 GPU card. Using
six M2090 cards, the simulation of full clinical plan can be
completed in about 10 s. In comparison, 12-hyper-threaded
E5-2620 CPU takes 507–876 s and GEANT4 takes hundreds
of CPU hours for same simulation. These results suggest that
ARCHERRT is capable of performing swift yet accurate MC
dose calculations for the TomoTherapy R© treatment cases. Al-
though we report in this paper only application for the heli-
cal tomotherapy, ARCHERRT can be readily used for other
radiotherapy modalities including RapidArc (Varian Medical
Systems, Palo Alto, CA) and VMAT (Elekta, Stockholm,
Sweden). Currently, ARCHERRT accepts patient-specific
PSFs, and on-going work is carried on to adopt patient-
independent PSFs.

ACKNOWLEDGMENTS

The GPU programming tools were developed using fund-
ing from the National Institute of Biomedical Imaging and
Bioengineering (Grant No. R01EB015478). Discussions with
Dr. Josep Sempau and Dr. Christopher D. Carothers are
appreciated.

a)Author to whom correspondence should be addressed. Electronic mail:
xug2@rpi.edu; Telephone: 518-276-4014.

1T. Bortfeld, “IMRT: A review and preview,” Phys. Med. Biol. 51, R363–
R379 (2006).

2A. Fogliata, E. Vanetti, D. Albers, C. Brink, A. Clivio, T. Knöös, G. Nicol-
ini, and L. Cozzi, “On the dosimetric behaviour of photon dose calcula-
tion algorithms in the presence of simple geometric heterogeneities: Com-
parison with Monte Carlo calculations,” Phys. Med. Biol. 52, 1363–1385
(2007).

3E. Sterpin, M. Tomsej, B. D. Smedt, N. Reynaert, and S. Vynckier, “Monte
Carlo evaluation of the AAA treatment planning algorithm in a heteroge-
neous multilayer phantom and IMRT clinical treatments for an Elekta SL25
linear accelerator,” Med. Phys. 34, 1665–1677 (2007).

4D. W. Rogers, “Fifty years of Monte Carlo simulations for medical
physics,” Phys. Med. Biol. 51, R287–R301 (2006).

5D. Yan, F. Vicini, J. Wong, and A. Martinez, “Adaptive radiation therapy,”
Phys. Med. Biol. 42(1), 123–132 (1997).

6E. K. Hansen, M. K. B. Mk, J. M. Quivey, V. Weinberg, and P. Xia, “Repeat
CT imaging and replanning during the course of IMRT for head-and-neck
cancer,” Int. J. Radiat. Oncol., Biol., Phys. 64(2), 355–362 (2006).

7L. A. Dawson and D. A. Jaffray, “Advances in image-guided radiation ther-
apy,” J. Clin. Oncol. 25(8), 938–946 (2007).

8W. R. Martin and F. B. Brown, “Status of vectorized Monte Carlo for parti-
cle transport analysis,” Int. J. High Performance Comput. Appl. 1(2), 11–32
(1987).

9G. Pratx and L. Xing, “GPU computing in medical physics: A review,”
Med. Phys. 38, 2685–2697 (2011).

10J. Shalf, S. Dosanjh, and J. Morrison, in High Performance Computing for
Computational Science–VECPAR, 2010 (Springer, 2011), pp. 1–25.

11Top500.org, “Top 500 List - June 2013,” http://www.top500.org/list/2012/
11/, accessed on Dec 12 2013

12X. Jia, X. Gu, Y. Graves, M. Folkerts, and S. B. Jiang, “GPU-based fast
Monte Carlo simulation for radiotherapy dose calculation,” Phys. Med.
Biol. 56, 7017–7031 (2011).

13S. Hissoiny and B. Ozell, “GPUMCD: A new GPU-oriented Monte Carlo
dose calculation platform,” Med. Phys. 38, 754–764 (2011).

14L. Jahnke, J. Fleckenstein, F. Wenz, and J. Hesser, “GMC: A GPU imple-
mentation of a Monte Carlo dose calculation based on Geant4,” Phys. Med.
Biol. 57, 1217–1229 (2012).

15L. Su, T. Liu, A. Ding, and X. G. Xu, “A GPU/CUDA based Monte Carlo
code for proton transport: Preliminary results of proton depth dose in wa-
ter,” Med. Phys. 39(6), 3945 (2012).

16T. Liu, A. Ding, and X. G. Xu, “GPU-based Monte Carlo methods for ac-
celerating radiographic and CT imaging dose calculations: Feasibility and
scalability,” Med. Phys. 39(6), 3876 (2012).

17B. Zhou, C. X. Yu, D. Z. Chen, and X. S. Hu, “GPU-accelerated Monte
Carlo convolution/superposition implementation for dose calculation,”
Med. Phys. 37(11), 5593–5603 (2010).

18X. Jia, X. Gu, J. Sempau, D. Choi, A. Majumdar, and S. B. Jiang, “De-
velopment of a GPU-based Monte Carlo dose calculation code for cou-
pled electron–photon transport,” Phys. Med. Biol. 55(11), 3077–3086
(2010).

19X. Jia, H. Yan, X. Gu, and S. B. Jiang, “Fast Monte Carlo simulation
for patient-specific CT/CBCT imaging dose calculation,” Phys. Med. Biol.
57(3), 577–590 (2012).

20S. Hissoiny, M. D’amours, B. Ozell, P. Despres, and L. Beaulieu, “Sub-
second high dose rate brachytherapy Monte Carlo dose calculations with
bGPUMCD,” Med. Phys. 39(7), 4559–4567 (2012).

21R. Townson, X. Jia, Z. Tian, Y. J. G. S. Zavgorodni, and S. B. Jiang,
“GPU-based Monte Carlo radiotherapy dose calculation using phase-space
sources,” Phys. Med. Biol. 58, 4341–4356 (2013).

22T. Liu, A. Ding, W. Ji, X. G. Xu, C. Carothers, and F. B. Brown, “A Monte
Carlo neutron transport code for eigenvalue calculations on a dual-GPU
system and CUDA environment,” in Proceedings of International Topical
Meeting on Advances in Reactor Physics, Knoxville, Tennessee (PHYSOR,
2012).

23L. Su, X. Du, T. Liu, and X. G. Xu, “Monte Carlo electron-photon transport
using GPUs as an accelerator: Results for a water-aluminum-water phan-
tom,” in Proceedings of the International Conference on Mathematics and
Computational Methods Applied to Nuclear Science & Engineering, Sun
Valley, ID (M&C, 2013).

24W. Kim and M. Voss, “Multicore desktop programming with intel threading
building blocks,” IEEE Software 28(1), 23–31 (2011).

25NVIDIA, “Cuda C programming guide,” http://docs.nvidia.com/cuda/
cuda-c-programming-guide/, accessed on 12 Dec 2013.

26F. B. Brown, “MCNP–A General Monte Carlo N-Particle Transport Code,
Version 5,” Los Alamos National Laboratory, Oak Ridge, TN, 2003.

27I. Kawrakow and D. W. O. Rogers, “The EGSnrc code system: Monte Carlo
simulation of electron and photon transport,” NRCC Report No. PIRS-701,
2011.

28F. Salvat, J. M. Fernandez-Varea, and J. Sempau, “PENELOPE-2006: A
code system for Monte Carlo simulation of electron and photon transport,”
OECD Nuclear Energy Agency, 2006.

29S. Agostinelli, J. Allison, K. E. Amako, J. Apostolakis, H. Araujo, P. Arce,
M. Asai, D. Axen, S. Banerjee, and G. Barrand, “GEANT4—A simulation
toolkit,” Nucl. Instrum. Methods, Phys. Res. A 506(3), 250–303 (2003).

30J. Sempau, S. J. Wilderman, and A. F. Bielajew, “DPM, a fast, accu-
rate Monte Carlo code optimized for photon and electron radiotherapy
treatment planning dose calculations,” Phys. Med. Biol. 45, 2263–2291
(2000).

31C. Everett, E. D. Cashwell, and G. Turner, “A new method of sampling
the Klein–Nishina probability distribution for all incident photon energies
above 1 keV,” Los Alamos Scientific Lab, 1971.

Medical Physics, Vol. 41, No. 7, July 2014

http://dx.doi.org/10.1088/0031-9155/51/13/R21
http://dx.doi.org/10.1088/0031-9155/52/5/011
http://dx.doi.org/10.1118/1.2727314
http://dx.doi.org/10.1088/0031-9155/51/13/R17
http://dx.doi.org/10.1088/0031-9155/42/1/008
http://dx.doi.org/10.1016/j.ijrobp.2005.07.957
http://dx.doi.org/10.1200/JCO.2006.09.9515
http://dx.doi.org/10.1177/109434208700100203
http://dx.doi.org/10.1118/1.3578605
http://www.top500.org/list/2012/11/
http://www.top500.org/list/2012/11/
http://dx.doi.org/10.1088/0031-9155/56/22/002
http://dx.doi.org/10.1088/0031-9155/56/22/002
http://dx.doi.org/10.1118/1.3539725
http://dx.doi.org/10.1088/0031-9155/57/5/1217
http://dx.doi.org/10.1088/0031-9155/57/5/1217
http://dx.doi.org/10.1118/1.4736101
http://dx.doi.org/10.1118/1.4735826
http://dx.doi.org/10.1118/1.3490083
http://dx.doi.org/10.1088/0031-9155/55/11/006
http://dx.doi.org/10.1088/0031-9155/57/3/577
http://dx.doi.org/10.1118/1.4730500
http://dx.doi.org/10.1088/0031-9155/58/12/4341
http://dx.doi.org/10.1109/MS.2011.12
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1088/0031-9155/45/8/315

071709-13 Su et al.: ARCHERRT: Fast radiotherapy MC dose calculation engine 071709-13

32M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. S. Coursey, and D. S. Zucker,
“XCOM: Photon cross sections database,” Physics Laboratory, National
Institute of Standards and Technology, 1999.

33M. J. Berger, in Methods in Computational Physics, edited by B. Alder,
S. Fernbach, and M. Rotenberg (Academic, New York, 1963), Vol. 1,
pp. 135–215.

34S. A. Goudsmit and J. L. Saunderson, “Multiple scattering of electrons,”
Phys. Rev. 57, 24–29 (1940).

35S. A. Goudsmit and J. L. Saunderson, “Multiple scattering of electrons. II,”
Phys. Rev. 58, 36–42 (1940).

36I. Kawrakow and A. F. Bielajew, “On the representation of electron mul-
tiple elastic-scattering distributions for Monte Carlo calculations,” Nucl.
Instrum. Methods, Phys. Res. B 134(3), 325–336 (1998).

37International Commission on Radiation Units and Measurements, “Stop-
ping powers for electrons and positions,” ICRU Report No. 37,
1984.

38Y.-L. Zhao, M. Mackenzie, C. Kirkby, and B. G. Fallone, “Monte Carlo cal-
culation of helical tomotherapy dose delivery,” Med. Phys. 35, 3491–3500
(2008).

39E. Sterpin, F. Salvat, R. Cravens, K. Ruchala, G. H. Olivera, and S. Vynck-
ier, “Monte Carlo simulation of helical tomotherapy with PENELOPE,”
Phys. Med. Biol. 53, 2161–2180 (2008).

40E. Sterpin, F. Salvat, G. H. Oliverac, and S. Vynckier, “Analytical model
of the binary multileaf collimator of Tomotherapy for Monte Carlo simula-
tions,” J. Phys.: Conf. Ser. 102, 012022–012029 (2008).

41F. Verhaegen and S. Devic, “Sensitivity study for CT image use in Monte
Carlo treatment planning,” Phys. Med. Biol. 50, 937–946 (2005).

42I. Kawrakow and B. R. B. Walters, “Efficient photon beam dose calcu-
lations using DOSXYZnrc with BEAMnrc,” Med. Phys. 33, 3046–3056
(2006).

43B. R. B. Walters, I. Kawrakow, and D. W. O. Rogers, “History by history
statistical estimators in the BEAM code system,” Med. Phys. 29, 2745–
2752 (2002).

44E. Woodcock, T. Murphy, P. Hemmings, and S. Longworth, “Techniques
used in the GEM code for Monte Carlo neutronics calculations in reactors
and other systems of complex geometry,” Argonne National Laboratories
Report No. ANL-7050, 1965.

45I. Kawrakow and M. Fippel, “Investigation of variance reduction tech-
niques for Monte Carlo photon dose calculation using XVMC,” Phys. Med.
Biol. 45, 2163–2183 (2000).

46IAEA, “Phase-space database for external beam radiotherapy,” http://
www-nds.iaea.org/phsp/phsp.htmlx, accessed on 12 Dec 2013.

47B. Walters, I. Kawrakow, and D. W. O. Rogers, “DOSXYZnrc users man-
ual,” NRCC Report No. PIRS-794revB, 2011.

Medical Physics, Vol. 41, No. 7, July 2014

http://dx.doi.org/10.1103/PhysRev.57.24
http://dx.doi.org/10.1103/PhysRev.58.36
http://dx.doi.org/10.1016/S0168-583X(97)00723-4
http://dx.doi.org/10.1016/S0168-583X(97)00723-4
http://dx.doi.org/10.1118/1.2948409
http://dx.doi.org/10.1088/0031-9155/53/8/011
http://dx.doi.org/10.1088/1742-6596/102/1/012022
http://dx.doi.org/10.1088/0031-9155/50/5/016
http://dx.doi.org/10.1118/1.2219778
http://dx.doi.org/10.1118/1.1517611
http://dx.doi.org/10.1088/0031-9155/45/8/308
http://dx.doi.org/10.1088/0031-9155/45/8/308
http://www-nds.iaea.org/phsp/phsp.htmlx
http://www-nds.iaea.org/phsp/phsp.htmlx

