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Earlier, using phenomenological approach, we showed that in some cases polarizable models of
condensed phase systems can be reduced to nonpolarizable equivalent models with scaled charges.
Examples of such systems include ionic liquids, TIPnP-type models of water, protein force fields, and
others, where interactions and dynamics of inherently polarizable species can be accurately described
by nonpolarizable models. To describe electrostatic interactions, the effective charges of simple ionic
liquids are obtained by scaling the actual charges of ions by a factor of 1/

√
εel , which is due to

electronic polarization screening effect; the scaling factor of neutral species is more complicated.
Here, using several theoretical models, we examine how exactly the scaling factors appear in theory,
and how, and under what conditions, polarizable Hamiltonians are reduced to nonpolarizable ones.
These models allow one to trace the origin of the scaling factors, determine their values, and obtain
important insights on the nature of polarizable interactions in condensed matter systems. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4884276]

I. INTRODUCTION

At present, most biological simulations utilize nonpolar-
izable force fields;1, 2 such as various nonpolarizable models
of water (TIP3P,3 SPC,4 more generally TIPnP) and protein
force fields: AMBER,5, 6 CHARMM,7 GROMOS,8 OPLS,9, 10

and others. It is recognized, however, that in some cases these
simple force fields give poor results11 – one example is a low-
dielectric protein environment,12, 13 the other is interior of a
biological membrane.14 That is, in some cases nonpolarizable
models do produce reasonable results, but in others they do
not. The question then can be asked under what conditions an
inherently polarizable system can be reduced to a nonpolariz-
able model with effective and fixed charges, and how to find
these effective charges?

A straightforward way to avoid such questions is to use
polarizable force fields; a number of such force fields are
currently being developed.15–26 Polarizable models, however,
still suffer from some unresolved problems,76 such as con-
sistency and balance in treatment of intra- vs. intermolecular
polarizations.27 The computational efficiency of such mod-
els is also an issue. Achieving good sampling of relevant
configurations28 in large biological simulations can become
computationally prohibitive if microscopic interactions are
computationally expensive.20–25 Clearly, the simple but com-
putationally efficient nonpolarizable models have advantages
over more sophisticated polarizable ones, provided they are
accurate enough. Thus, the question is how to derive rigor-
ously an equivalent nonpolarizable model for a polarizable
system?

One may also ask if is it possible at all to describe inter-
actions between real molecules, which are inherently polariz-
able, with a nonpolarizable force field? In general, the answer

a)E-mail: stuchebr@chem.ucdavis.edu

to this question is negative; e.g., it is not possible to describe
both a small cluster of water molecules in vacuum and water
molecules in the bulk state with the same set of fixed charges,
because in vacuum an isolated water molecule has a dipole
1.85 D, whereas in liquid bulk state the dipole is close to 3D.29

(The exact value of the liquid dipole is still debated; here and
below, as previously,29–33 we rely on the results of first princi-
ples simulations of liquid state water, Refs. 34 and 35). Thus
different thermodynamic states or different environments re-
quire different sets of charges to reflect different polarization
state in different conditions.36

However, if simulations involve only configurations that
are similar in some macroscopic sense, e.g., as in equilib-
rium liquid water, there is a well-defined average molecu-
lar dipole moment or, more generally, well-defined average
charge distribution within the molecule. In this case, a typi-
cal set of fixed parameters, such as charges, can be introduced
that reflects the averaged values.37 These averaged charges
may even be adjusted to local environment, as in Ref. 36.
The remaining polarization fluctuations around the average
can be included as an additional renormalization or scaling of
the mean-field parameters.31, 32

In this paper we consider a generic polarizable model of
condensed matter, and examine under what conditions the po-
larizable Hamiltonian of the system is equivalent to a nonpo-
larizable one. Starting from an explicitly polarizable model,
we will derive an effective mean-field Hamiltonian of an
equivalent nonpolarizable model in which the polarization
effects are treated implicitly. The formalism is described in
Sec. II. The key approximation made is that the electronic po-
larizability of the system is macroscopically homogeneous,
which is usually the case for condensed matter molecular
systems, where electronic dielectric constant εel is close to
2.0 for most organic materials. The small variations between
macroscopic regions such as protein and surrounding water
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(εel = 1.78) can be included as well. The scaling procedure
is similar in spirit to what Warshel introduced in his PDLD/s
(scaled PDLD) approach;38 here we take a closer look at the
scaling procedure.

On the one hand, the theory provides theoretical frame-
work for better understanding basic principles of nonpolariz-
able modeling (of inherently polarizable molecular systems);
on the other, it offers insights important for polarizable mod-
eling, suggesting that in some cases a polarizable model (or
force field) is exactly equivalent to a nonpolarizable model
with scaled charges. The theory provides algorithms for such
charge scaling. In such a case, explicit inclusion of polariza-
tion dipoles in calculation is not necessary. In Sec. III we
discuss some notable examples which show how the scaling
principles are applied in polarizable simulations, including
models of water.

II. THEORY

We consider a generic polarizable system, or force field,
which consists of point polarizable sites and interaction be-
tween them (see e.g., Refs. 24 and 26); the interaction in-
cludes both electrostatic and non-electrostatic (bonding, van
der Waals, etc) terms. Electrostatically, the sites are char-
acterized by fixed point charges and/or point dipoles; the
polarization is described by point polarizable dipoles with
dipole-dipole interaction between them. We start with a sys-
tem where all polarizable dipoles interact with each other and
all electric sources, and address the issues of neglecting inter-
actions between some neighboring sites, i.e., intra-molecular
vs. inter-molecular polarization, later in the section. We also
include in consideration the issues of removing, or modifying
direct electrostatic interactions between nearest bonded atoms
(1-2, 1-3, and 1-4 terms) as such issues appear in standard
protein force fields.

Two types of polarizable sites will be considered – polar-
izable point dipoles and polarizable point charges. Both mod-
els are key ingredients in polarizable molecular simulations.26

For simplicity, the higher multipoles20 are not considered,
but the formalism can be extended to such cases as well.
The point dipole screening factors are different from those
of point charges; the comparison of two models is instructive,
as it demonstrates the subtleties of electrostatic screening fac-
tors for higher multipoles in comparison with those for point
charges. However, in both cases we show that the energy of
polarization dipoles (i.e., polarization energy) in the system
is proportional to the energy of interaction of the charges or
dipoles that induce polarization. This is the key result of the
paper that allows one to express the total energy of a polariz-
able system in terms of the rescaled energy of the underlying
system of fixed charges or dipoles.

A. Polarizable Hamiltonians and equivalent
non-polarizable models

Consider a generic polarizable model, which consists of
point polarizable sites and interactions between them. The in-
teractions are both electrostatic and non-electrostatic (bond-
ing, van der Waals, etc.26). The sites are assigned fixed

charges Q0i, point dipoles �μ0i , and polarization dipoles �δi .
The interaction Hamiltonian/Energy is

Wtot = Wx + W0 + Wpol, (1)

W0 = 1

2

∑
i �=j

Mσ
0iK

σρ

ij M
ρ

0j , (2)

Wpol = −1

2

∑
i

�E0i
�δi . (3)

The first term Wx includes all non-electrostatic interactions
– van der Waals, bonding, torsion, etc.; these terms are not
affected by the following transformations, but for complete-
ness we keep them explicitly as they are integral part of any
force field. The second term is interaction of fixed charges
Q0i and fixed dipoles �μ0i on different sites; for each pair
of sites there are four terms: charge-charge, dipole-dipole,
charge-dipole, and dipole-charge. We write these terms sym-
bolically as interaction of multipoles Mσ

0i = {Q0i , �μ0i}, with
corresponding vacuum interaction kernel K

σρ

ij . For charges

the kernel is K
QQ
ij = 1/rij ; for dipole-dipole Kdd

ij = (T̂ij )αβ

= r2
ij δαβ−3(rij )α(rij )β

r5
ij

, etc.

In order to simplify next few transformation steps, we
will consider explicitly only the dipole-dipole interaction
terms (i.e., one type of interaction instead of four); the results
will be easy to generalize when needed. For the dipole-dipole
interaction,

Wdd
0 = 1

2

∑
i �=j

( �μ0i T̂ij �μ0j ) · ηij . (4)

To include a possibility that some direct electrostatic inter-
action terms are excluded or modified, as in 1-2, 1-3, and
1-4 terms in protein fields, we include an additional factor
ηij, which represents modification needed (e.g., ηij = 0, for
1-2, and 1-3 interactions, a constant for 1-4 interactions, and
ηij = 1 otherwise). Such terms are also present in the general
case of Eq. (2).

Finally, the polarization energy term Wpol is written in
the form that assumes that the polarization dipoles �δi are at
equilibrium with the local electric field for a given nuclear
configuration of the system; the local electric field is due
to both fixed charges/dipoles, and other polarization dipoles.
The electric field �E0i is due to fixed charges/dipoles. For a
dipoles only system, we have

�E0i = −
∑

j

T̂ij �μ0j , (5)

�δi = α

⎛
⎝ �E0i −

∑
j �=i

T̂ij
�δj

⎞
⎠ . (6)

The polarization distribution is found by minimizing to-
tal polarization energy for a given nuclear configuration (for
discussion, see, e.g., supplementary material of Ref. 36).
Electronic polarization is fast due to high frequency of elec-
tronic motion, and therefore it always follows the slow
nuclear configuration changes. As nuclei move, the electronic
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polarization changes adiabatically with nuclei. So, there is an
effective “Born-Oppenheimer” potential energy for the nu-
clei. The problem is how to approximate the effective poten-
tial Wtot (r1, r2, . . . rN ); to this end, one needs to evaluate the
polarization energy term in Eq. (3). We will do it explicitly
for the dipole system, and generalize for other types of inter-
actions later.

Before we move on with formal derivation, one com-
ment regarding fixed parameters Mσ

0i = {Q0i , �μ0i} is in or-
der. Although formally the fixed parameters can refer to gas
phase state of molecular fragments, and distribution of po-
larization dipoles �δi to whatever condensed state we wish,
assuming the same force field for both gas and condensed
state20, 26 (a delicate balance between electrostatic and non
electrostatic terms is involved), it is also possible to assume
a more restricted force field, in which the fixed parameters
reflect the average distribution of charges/dipoles in a given
condensed state, while polarization describes the remaining
fluctuations around the average. (Result of changing fixed pa-
rameters, from gas phase to a more relevant condensed state,
involves additional energy “re-polarization” terms of Berend-
sen type of SPC/E model,39 the strain energy due to change of
the molecular geometry and other quantum corrections,40 and
ubiquitous electronic solvation, see Refs. 31, 32, and 41 for
discussion). How to select these average fixed parameters is
actually a non-trivial question19, 24, 42 which goes beyond the
scope of this paper; some discussion of re-polarization of wa-
ter upon transfer from a gas to condensed phase is given in
our recent papers picture,31, 36 an additional discussion will be
given in the end of this section.

The selection of the fixed parameters also depends on the
type of interaction of polarization dipoles with the fixed elec-
tric sources in the molecule; one possibility is that polariza-
tion dipoles �δi interact with all sites including own molec-
ular fragment (except of course their own site (i)), another
is that interaction with charges/dipoles of a given molecular
fragment is set to zero (e.g., for computational reasons). We
notice that in the latter case, the gas phase dipole moment of
the fragment is defined only by its fixed parameters, while in
the former case (interaction with all sites), an additional “self
polarization” of the fragments occurs due to interaction with
molecular own charges; the dipole moment in the latter case
is a combination of fixed parameters and induced polariza-
tion dipoles within the molecular fragment. Clearly, there are
many possibilities, and the rational choice of fixed parameters
is a subtle non-trivial matter;19, 24, 26, 42 some of these issues
will be discussed in the end of this section.

Here, we will assume first that all polarization dipoles
interact with each other, and with all fixed charges, except
for those of their own sites. The other possible schemes of
interaction will be considered later in the paper.

As seen from Eq. (6), the polarization �δ linearly depends
on the “external” field �E0j of fixed charges/dipoles:

�δi =
∑

j

Ĝij
�E0j = −

∑
j,k

(Ĝij T̂jk) �μ0k =
∑

k

D̂ik �μ0k, (7)

where Ĝ and D̂ are the corresponding Green’s functions. We
now express the local external field in Eq. (3) in the form of

Eq. (5) and arrive at the following expression for polarization
energy:

Wpol = 1

2

∑
ijk

�μ0i(T̂ikD̂kj ) �μ0j . (8)

The polarization energy can now be partitioned into “diago-
nal” and “non-diagonal” terms:

Wpol = 1

2

∑
i

�μ0i(T̂ D̂)ii �μ0i

+ 1

2

∑
i �=j

�μ0i(T̂ D̂)ij �μ0j = W sol
pol + W int

pol . (9)

The first term represents the sum of solvation energies of in-
dividual sites in the electronic polarizable medium that sur-
rounds each site:

W sol
pol = 1

2

∑
i

�μ0i(T̂ D̂)ii �μ0i . (10)

In the condensed state, this electronic solvation energy (by its
meaning it is negative) is independent of the configuration,
e.g., does not depend on the orientation of other dipoles �μ0i

of the system; it depends only on the properties of individual
molecules such as polarizability and average density of polar-
izable sites in the medium surrounding it, provided that the
average polarizability of the medium does not change much
as nuclear moves, which is the case for a condensed state. The
detailed analysis of the electronic solvation energy of water is
given in our recent paper.29

The second, non-diagonal term in the polarization energy
describes the polarization contribution to the effective pair-
wise interaction between the sites:

W int
pol = 1

2

∑
i �=j

�μ0i(T̂ D̂)ij �μ0j . (11)

The above expression shows that polarization of the sur-
rounding medium gives rise to an effective interaction of
fixed dipoles. This interaction has a typical form of “super-
exchange” via an intermediate – polarization dipoles: one
dipole induces polarization, which in turn creates electric field
that interacts with the second dipole.

It is convenient to add to pairwise effective polarization
interaction of the dipoles in (11) the direct interaction of the
dipoles, so that together they would represent the total interac-
tion energy of the dipoles in a polarizable medium. The total
interaction between dipoles takes the form:

W int
tot = 1

2

∑
j �=i

(
�μ0i T̂ij �μ0j +

∑
k

�μ0i(T̂ikD̂kj ) �μ0j

)

= 1

2

∑
j �=i

W
ij
tot , (12)

W
ij
tot =

∑
k

�μ0i T̂ik(1̂ + D̂)kj �μ0j = �μ0i
˜̂
T ij �μ0j ,
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where W
ij
tot is the resulting interaction between dipoles in po-

larizable environment, and

˜̂
T ij =

∑
k

T̂ik(1̂ + D̂)kj . (13)

The functional form of effective interaction is the same as in
vacuum, but the interaction kernel ˜̂

T is modified compared
with the vacuum T̂ . As for the solvation energy terms, in
the condensed state the effective interaction depends mainly
on the properties of the electronic polarizable medium rep-
resented by the polarizable sites. What is important is that
the long-range nature of the electrostatic interactions results
in the effective averaging of polarization interactions over
large scale, so that only averaged properties of the polariza-
tion medium are important. This give rise to the notion of
electronic continuum, which is uniform across the condensed
matter system, and more or less universal, as the dielectric
constant of most bio-organic materials is close to 2.0. Our

next goal is to show that in this case the difference between ˜̂
T

and T̂ is a constant, which depends only on the macroscopic
dielectric constant of the polarizable medium εel; therefore to-
tal pairwise interactions are the same as in vacuum, but scaled
by a constant,

W
ij
tot = D−1(εel)W

ij

0 . (14)

The scaling factor depends on the multipole type involved, as
we show below.

Summarizing, the results for dipole-type of interaction
can be presented as follows:

Wdd
ES = W0 + Wpol = W ′

0 + W int
tot + Wsol

pol, (15)

W0
′ = 1

2

∑
i �=j

( �μ0i T̂ij �μ0j )(ηij − 1), (16)

W int
tot = 1

2

∑
i �=j

( �μ0i
˜̂
T ij �μ0j ). (17)

The non-electrostatic terms of Wx remain the same. The elec-
trostatic energy now includes the following terms: (1) mod-
ified direct interaction – now it includes the terms that were
omitted (due to (ηij − 1) factors); (2) the interaction of all
fixed dipoles in polarizable medium; and (3) solvation en-
ergy of fixed dipoles in the polarizable electronic medium.
Under the assumption of macroscopic uniformity of the po-
larization medium in the condensed state, the last solvation
term Wsol

pol does not depend on the nuclear coordinates, and
therefore does not affect dynamics of the nuclei.

The key assumption that we make is that in the condensed
state the macroscopic properties of the electronic polarization
represented by the polarization dipoles �δi can be described
by a uniform polarizable continuum. The long-range nature
of the electrostatic interactions gives rise to an effective av-
eraging of polarization interactions over large scale, so that
mostly the large-scale macroscopic properties of the polariza-
tion medium are important. The averaging due to nuclear mo-
tions also contributes to smearing out the microscopic details
of the polarization field, which also helps to justify the model
of a polarizable continuum.

The polarizable properties of the electronic continuum
are characterized by the macroscopic electronic dielectric
constant of the condensed state material, εel, which depends
only on the average product of the density of polarizable sites
ρ and their polarizability α according to Clausius-Mossotti
(CM) equation:

εel = 1 + 4π (ρα)

1 − 4π
3 (ρα)

. (18)

In the condensed state, when the continuum polarizable
medium is formed out of the point polarization dipoles of the
Hamiltonian, the resulting electronic dielectric constant of the
medium, e.g., calculated from the above equation, may not
necessarily be the same as real electronic dielectric of 2.0 or
so (for organic materials εel are in the range 1.7–2.243), if the
polarization properties of the molecular fragments or sites of
the force field were chosen in some formal way to represent
the system. (Ideally, of course, the model should reproduce
correctly the electronic dielectric constant.) In any case, it is
the effective dielectric constant of the polarization continuum
formed that will determine the scaling the properties of inter-
actions of a given force field.

Our next step is to express the new terms – the effective
interaction and electronic solvation in terms of the continuum
model. This will be done in Subsections II B and II C.

The expressions in Eq. (15)–(17) represent a principle re-
sult, which shows that the system of interacting polarizable
dipoles �μi in a condensed phase can be described by an equiv-
alent model of nonpolarizable fixed dipoles �μ0i with modified
interactions. The condensed medium allows for an approxi-
mation in which individual polarization dipoles are replaced
with a uniform polarizable continuum.

Obviously, the results for dipole-dipole interactions can
be generalized to other types of interactions: charge-charge,
and charge-dipole. Indeed all the interactions are of the same
pairwise nature, as shown in Eq. (2); the same manipulations
can be performed as for the dipoles, and one does arrive at
the system of fixed multipoles M

ρ

0i with modified interactions
K̃

ρσ

ij , which in condensed phase is different from the vacuum
interaction by a scaling constant that depends on the elec-
tronic dielectric property of the medium. In addition, there are
electronic solvation energy terms for a given multipole that do
not affect the dynamics but are important for solvation energy
calculations (see discussion later in the paper).

In the following, we consider different terms of the effec-
tive Hamiltonian using simple continuum dielectric models.

B. Solvation energies in electronic continuum

Solvation energy terms do not affect dynamics but are
important for solvation energy calculations using polarizable
or equivalent scaled models. The solvation energy discussed
here refers to individual sites, not to a molecule or molec-
ular fragment as a whole. Solvation energy of a given site
charge/dipole is the energy of all polarization dipoles, includ-
ing site’s own dipole �δi in the field of the fixed electric source
of the site. For point charges, and point dipoles the problem is
easily solved with simple spherical dielectric models consid-
ered below; however, when a molecular fragment is treated as
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a separate unit, several sites need to be considered, including
polarization induced interaction between the sites discussed
in Subsection II C. The problem of total solvation energy of
the whole molecule/fragment is more complicated and is not
considered in detail here.

It is worth mentioning that a related method for elec-
tronic solvation is the usual dielectric continuum solvation
model,44, 45 which involves a molecular cavity of arbitrary
shape, with point charges/dipoles inside. Here, in addition to a
well known problem of defining the molecular boundary, one
faces the uncertainty as to how polarization dipoles inside the
cavity (self-polarization) should be treated. The models con-
sidered below do not address the molecular boundary issue,
but provide some insights for self-polarization problem.

For a point charge or a point dipole, the solvation en-
ergy can be calculated directly using microscopic expressions
such as Eq. (10). In the continuum approximation, these mod-
els give the same results as phenomenological Kirkwood-
Onsager dielectric model of a spherical cavity in dielectric
continuum with a charge or a polarizable dipole in the middle
of the sphere.

For a point dipole, as for a charge, the solvation energy
depends on the radius of the cavity:

Wsol
di = −1

2
�μ0i

�ERF (i),

�ERF (i) = − �̃μ0i

R3

2(ε − 1)

2ε + 1
, (19)

�̃μ0i = �μ0i + �δi = �μ0i

1 − α
R3

2(ε−1)
2ε+1

.

There are two possible ways to choose the cavity radius R;
both are related to Clausius-Mossotti (CM) equation and to
the density of polarizable sites ρ:

1. 1/ρ = (2R)3,
α

R3
= 6

π

(ε − 1)

ε + 2
, (20)

2. 1/ρ = (4π/3)R3,
α

R3
= (ε − 1)

ε + 2
. (21)

In the past, there was an extensive discussion in the-
ory of dielectrics of both models. We previously used the
first model, as it better fits the dielectric properties of water.
The second choice corresponds to the so-called Lorentz vir-
tual cavity model. This model is consistent with the notion
of Lorentz acting field �Eact = �Eε + 4π/3 �P that polarizes in-
dividual molecules, which is different from the total field in
dielectric �Eε.

For Lorentz model,

�̃μ0i = �μ0i

(ε + 2)(2ε + 1)

9ε
, (22)

�δi = α �ERF = �μ0i

2(ε − 1)2

9ε
, (23)

the solvation energy of a point dipole is

Wsol
di = − �μ2

0i

2α

2(ε − 1)2

9ε
. (24)

Notice that for a fixed non-polarizable dipole d0i, the solvation
energy is

Wsol
d0i = − �μ2

0i

2R3

2(ε − 1)

2ε + 1
= − �μ2

0i

2α

2(ε − 1)2

(2ε + 1)(ε + 2)
. (25)

This energy does not include contributions of the polariza-
tion dipole δi on the considered site; the neglect of self-
polarization is equivalent to considering a real cavity model
that often used for calculation of solvation energy.

Comparison of Eq. (24) and (25) shows the difference of
two models. The difference is due to a factor in Eq. (22) that
relates the self polarized dipole μ̃0i to the fixed dipole μ0i

that induces polarization of the surrounding medium, which
in turn produces the reaction field that polarizes the dipole
δi on the site. For electronic dielectric constant ε = 2.0, the
difference in energy is about 10%. Considering that the solva-
tion energy themselves are large in absolute values (∼eV) the
difference can be very significant in absolute value.

For a point charge, solvation energy of Lorentz model is

Wsol
Q = −Q2

0i

2R

(
1 − 1

ε

)
= −Q2

0i

2a

(
ε − 1

ε

)(
ε − 1

ε + 2

)1/3

,

(26)
where “polarization radius” is defined as a3 = α. In this case,
there is no difference between the real cavity and Lorentz vir-
tual cavity with self-polarization, provided the cavity is spher-
ical and the charge is in the center of the cavity. If this is
not the case, the dipole and higher multipoles contributions
change the picture and results naturally will depend on self-
polarization of the solvated charge.

C. Effective interactions and scaling factors

Consider now the interactions between the individual
sites. There are three types: charge-charge, charge-dipole,
and dipole-dipole. Again, assuming a continuum polarizable
medium formed in the condensed phase, characterized by di-
electric constant of Eq. (18), for charge-charge, the interaction
scales as

W
ij

int = 1

ε

Q0iQ0j

rij

. (27)

This is total interaction energy of two charges – direct, plus
polarization induced part. If direct part was not included in
the Hamiltonian initially (e.g., 1-2, 1-3 etc terms), this energy
is subtracted in the modified Hamiltonian W ′

0. The effect of
polarization can now be described by scaling all charges,

Q0i → Q
eff

0i = Q0i√
ε

. (28)

For dipoles, the scaling laws are more subtle (details dis-
cussed in the Appendix). For the basic model, where all sites
have polarization dipoles which interact with all charges on
all sites (except its own), the total (direct plus polarization in-
duced) interaction between two fixed dipoles μ0i and μ0j has
a form:

W
ij

int = 1

ε

(
ε + 2

3

)2

�μ0i T̂ij �μ0j , (29)
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which means that this interaction can be implicitly included
by scaling all dipoles as

μ0i → μ
eff

0i = μ0i

ε + 2

3
√

ε
. (30)

The scaling factors described above are referred to our ba-
sic model, in which individual sites are described by polar-
izable charges and dipole, and polarization dipoles interact
with all electric sources of other sites, except those of its own
site. Next we consider a few possible variations of the general
scheme.

1. If the model operates with the total dipoles, i.e., the
fixed dipole plus self polarization dipole, μ̃0i = μ0i +
δi , which in the Lorentz model is given by (see Eq. (22))

μ̃0i = μ0i

(ε + 2)(2ε + 1)

9ε
, (31)

the total interaction takes the form

W
ij
tot = ε

(
3

2ε + 1

)2

�̃μ0i T̂ij �̃μ0j . (32)

We see now that the scaling factor for re-polarized to-
tal dipoles is different from that in Eq. (29). This factor
D−1(ε) = ε( 3

2ε+1 )2 is the same as for the model of non-
polarizable dipoles (i.e., when a polarization dipole δi is
missing on a given site). This is equivalent to having a
point dipole in a real cavity.31 In this case we have an ef-
fective dielectric with “holes” (because of missing some
δi), which is quite unnatural, if a continuum dielectric
model is considered.

2. Consider a neutral (zero net charge) molecular frag-
ment (a). Suppose there is no interaction of polariza-
tion dipoles with the charges of the fragment in the
Hamiltonian (but there is interaction with charges of
other fragments/molecules, and there is interaction of all
polarization dipoles between themselves). Physically it
means that the fragment is already self-polarized; the to-
tal dipole of the fragment (in gas phase) reflects this self-
polarization. Call this molecular fragment dipole μ0(a).
Consider now a molecular fragment as an individual site.
The total dipole moment of the fragment is now equiv-
alent to a fixed dipole μ0i of a site that does not affect
its own polarization δi, but can be polarized by other
sources, exactly as in our basic model considered above.

The dipolar field outside the fragment can be thought of
as a field of the fixed charges of the fragment and that of self-
polarized dipoles that are fixed in the fragment. If a model of a
point dipole in a dielectric sphere is applied, the fixed charges
dipole μ0(a)′ and the total dipole μ0(a) are related as follows:

μ0(a) = μ0(a)′
3

ε + 2
. (33)

Since the total dipole scales with the factor ε+2
3
√

ε
, the scaling

factor for fixed charges dipole μ0(a)′ is

μ
eff

0 (a) = μ0(a)′
3

ε + 2

ε + 2

3
√

ε
= μ0(a)′√

ε
. (34)

We see that scaling of the total dipole according to our basic
model, is equivalent to scaling fixed charges of the molecular

fragment by a ubiquitous factor 1/
√

ε; the individual charges
that corresponds to μ0(a)′ will scale with the same factor
1/

√
ε. Hence the overall procedure of scaling of charges of

molecular fragments is as follows:

Q0i(a) → Q0i√
ε

ε + 2

3
. (35)

This scaling factor is different from a simple 1/
√

ε as in
Eq. (28). The difference is due to specific details of how inter-
actions of the polarization dipoles in the system are chosen.

The relations considered above demonstrate the essence
of the approach: in condensed state, all polarization effects are
reduced to some sort of scaling of the original fixed charges
and dipoles of the model. The charge scaling has been dis-
cussed earlier on the basis of much simpler and pure intuitive
picture.30, 31, 36 The present theory provides additional insights
and rigor into the question of how the screening factors D(ε)
should be selected.

In the following, we consider some applications of the ef-
fective non-polarizable Hamiltonians and discuss their origin
and relation to underlying polarizable models.

D. Molecular dynamics in electronic continuum

1. Effective Hamiltonians for MD simulations

Summarizing the theory above, we have arrived at the
following picture. In the condensed phase, a polarizable force
field is (approximately) equivalent to a non-polarizable model
of the effective (scaled) fixed charges and dipoles, which
reflect implicitly the presence of the electronic polarizable
continuum. The model of the charges moving in uniform po-
larizable continuum is referred to as MDEC – Molecular Dy-
namics in Electronic Continuum.31–33

The dynamics of nuclear coordinates in MDEC is ex-
pected to be the same as in the equivalent polarizable model;
however, the implicit treatment of electronic polarizability re-
quires special care and additional modifications in cases when
calculating quantities directly involve electronic polarization.
Two such cases are solvation energy calculation, and dielec-
tric constant calculation.

2. Free energy simulations

Solvation energy of the entire molecule or a molecular
fragment is directly related to solvation energy terms of in-
dividual polarization sites in the effective Hamiltonian(15).
Overall they contribute to total electrostatic part of the sol-
vation energy related to solvation in electronic continuum

Gel.75 The other part of electrostatic energy is related to nu-
clear configurations of the system, which is explicitly treated
in molecular dynamics simulations, 
GMD. Assuming that
MD simulations, and evaluation of energy, is performed by
using non-polarizable force field with effective charges, it fol-
lows directly from the theory of this paper that the total sol-
vation energy is the sum


Gsol = 
GMD + 
Gel, (36)
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i.e., the electronic solvation energy needs to be added explic-
itly to solvation energy obtained from MD simulations with
non-polarizable force field.

A consistent non-polarizable force field would involve
rescaling of all charges in the system by the factor 1/

√
εel

≈ 0.7, including those of ions and ionized groups. However,
this is not what is usually done in all known popular force
fields; therefore direct application of the above equation with
such force fields is not possible.

The apparent reason why nonpolarizable force fields
such as AMBER,5, 6 CHARMM,7 GROMOS,8 and OPLS9, 10

avoided scaling of the ion charges is that the reduction of
charges by itself results in completely wrong hydration free
energies.7 The reason is that the charging free energy of ions
from MD simulations by itself does not account for the elec-
tronic polarization energy, which typically amounts to more
than 50% of the total. This missing electronic energy is usu-
ally balanced by using the un-scaled vacuum charges of the
ions (and adjusting van der Waals radii), but this balance is
not exact, except in high dielectric32).

The problem can be partially resolved by an addi-
tional scaling factor to the MD part of free energy, assum-
ing that the main contribution is coming form unscreened
charges.30, 31, 36, 49 Assuming scaling factor 1/εel, the corrected
MD part of free energy would be 
GMD/εel in Eq. (36); one
should recognize, however, that the neutral molecular frag-
ments, which are presumably already scaled, in this case be-
come “doubly scaled.”

3. Dielectric constant simulation

The screened nature of the model charges (and dipole
moments) should also be accounted for in simulations of di-
electric property. The static dielectric constant is related to the
mean square fluctuation of the total dipole 〈M2〉 of the dielec-
tric sample V as50

ε0 = εel + 4π

3V kBT
〈M2〉 = εel

(
1 + 4π

3V kBT

〈
M2

MD

〉)
= εel · εMD. (37)

That is the total (static) dielectric constant of the medium ε0

is a product of that obtained in nonpolarizable MD simulation
εMD and pure electronic εel. Here we assumed that all charges
were scaled uniformly with a factor 1/

√
εel . Hence, the MD

dipole moment of the sample is related to the actual dipole
moment as 〈M2〉 = εel〈M2

MD〉, which results in the above re-
lation. The scaling factors between the effective MD dipole
moment and the actual dipole moment other than

√
εel are

also possible, as discussed in Secs. II B and II C; however,
for the analysis of dielectric data for alkanes discussed below
(see Fig. 2), the difference was insignificant, therefore we do
not elaborate on these variations further.

4. Relation to existing force fields

With the obtained insight it is interesting to reconsider
existing nonpolarizable models and to examine whether they
are consistent with the idea of uniform dielectric screening

of charges. Parameterization strategy of different force fields
is different. It even differs within a force field for different
molecules. For example, TIP3P3 and SPC4 solvent models
were derived completely empirically adjusting their param-
eters to reproduce in simulations experimental water proper-
ties. Empirical parameters of these models obviously should
reflect the screened nature of electrostatic interactions. Hence,
their empirical charges should be considered as scaled effec-
tive charges.

The parameters for other molecules were derived in dif-
ferent procedures. After examining several force fields with
very diverse parameterization strategies, we concluded that
overall, charges of neutral molecules in common force fields,
such as AMBER,5, 6 CHARMM,7 GROMOS,8 OPLS,9, 10 etc,
approximately do reflect dielectric screening and can be con-
sidered as effective scaled charges.

In contrast, the charges of ionized molecules carry their
original un-scaled values ±1 or ±2, as in vacuum, com-
pletely disregarding the electronic screening effect inherent
to the condensed phase media. Microscopic interaction be-
tween such bare charges is obviously overestimated by the
factor εel ≈ 2. But this is only half of the problem. The other
half is that interactions of ions with solvent are also overesti-
mated. Indeed, if charges of solvent are scaled, while charges
of ions are not, then resulting coulomb’s interaction is over-
estimated by the missing factor

√
εel which is about 1.4. To

reflect the screened nature of electrostatic interactions charges
of ionized moieties need to be corrected by the missing factor
1/

√
εel≈0.7, see additional discussion in Refs. 31, 32, and 41.

III. APPLICATIONS OF MDEC MODEL

A. Electronic screening in low dielectric medium

A remarkable example of how simple charge scaling can
replace a fully polarizable simulation is shown in Fig. 1 (ini-
tially reported in Ref. 32). The PMF for an ion pair A+ and
A− in benzene was calculated by several methods. VdW pa-
rameters of both model ions A correspond to Cl− atom. In
one calculation a fully polarizable CHARMM Drude model51

was used for benzene (squares in Fig. 1). In another, standard
nonpolarizable CHARMM (circles), and finally CHARMM
with scaled charges – i.e., MDEC (triangles) was tested. In
addition, the least square fitting of the simulation points by

FIG. 1. PMF for an ion pair A+ and A− in benzene.
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the Coulomb function −1/εr (with the Ewald correction, see
Ref. 32) was done to determine the best empirical dielec-
tric constant for both polarizable and non-polarizable simu-
lations. For polarizable simulations (solid line), the effective
dielectric constant was determined to be ε0 = 1.88; for non-
polarizable simulations (dashed line), the dielectric constant
εMD = 1.16. As seen in Fig. 1, the nonpolarizable CHARMM
simulations completely fail to reproduce results of polariz-
able simulations, by up to almost 30kcal/mol in interaction
energy; however, the nonpolarizable CHARMM simulations
with scaled charges by a factor 1/

√
(ε0/εMD) (triangles), in

accordance with MDEC model, Eq. (37), reproduce results of
fully polarizable simulations with remarkable accuracy.

The computed points are accurately approximated by the
Coulomb law 1/r scaled by a dielectric constant ε, which sup-
ports our idea of equivalency of polarizable simulations and
charge scaling. The data of polarizable model correspond to
the value of dielectric constant 1.9, which exactly represents
the electronic polarizability of benzene model in simulations.

B. Calculations of dielectric constants

The importance of charge scaling (or rather its conse-
quence) is demonstrated next in direct simulations of di-
electric constants of low-dielectric materials with differ-
ent methods. Dielectric properties of non-polar alkane se-
ries simulated with polarizable CHARMM, non-polarizable
CHARMM, and MDEC (non-polarizable CHARM with cor-
rection due to charge scaling Eq. (37)) models are shown in
Fig. 2. Here MDEC results are obtained from the previously
reported data.43 (The details can be found in Ref. 33).

As seen all the values of dielectric constants obtained in
standard nonpolarizable CHARMM simulations43 are about
1.0 (as in vacuum) while experimental values are all about 2.
It just means that the standard nonpolarizable model does not
capture electronic polarization at all. The problem, however,
is efficiently resolved by doing either fully polarizable (and
computationally more demanding) simulations as in Ref. 43

FIG. 2. Dielectric constants for alkane series computed with different mod-
els. The squares and circles stand for polarizable and standard nonpolarizable
CHARMM simulations, respectively, taken from Ref. 43 (see also Ref. 73 for
alcohol series). The triangles represent nonpolarizable MDEC calculations,
Eq. (37), where εMD and εel are taken from Ref. 43. The solid line stands for
the experimental data.74

or using effective simple nonpolarizable simulations accord-
ing to MDEC model.

It can be argued, of course, that those problems in the
low-dielectric solvents are a result of inaccurate CHARMM
parameterization that was not calibrated to reproduce sol-
vation and dielectric properties. The CHARMM parame-
ters for alkanes, however, reproduce structural and kinetic
properties,43 e.g., rdf and diffusion coefficient, which indi-
cates that microscopic interactions and molecular dynamics
are modeled correctly. The over-polarization of the solvent
electrostatic parameters for correcting the solvation and di-
electric properties would disturb microscopic interactions and
result in problems with dynamical properties of the material
as it was observed with parameterization of ethers.52 More-
over, as discussed below the over-polarization strategy fails in
the case of highly concentrated ionic solutions and ionic liq-
uids. In contrast, with MDEC effective description of the elec-
tronic polarization, the problem of compromising between
correct solvation and dynamical properties does not arise.

In the case of polar materials such as alcohol series (not
shown) the standard nonpolarizable CHARMM model rea-
sonably well reproduces experimental data; yet, the polariz-
able CHARMM model and nonpolarizable MDEC calcula-
tions with Eq. (37) provide much better agreement.

C. Charge scaling of ions

The charge scaling has received strong support in appli-
cations to ions,53–56 in particular in ionic liquids. As reported
in Ref. 53, the use of scaled charges substantially improved
the description of dynamical properties of ionic liquids, such
as electric conductivity while previously the accurate model-
ing was reachable only in polarizable simulations.57–60 The
other group54 investigated very fine effect of interfacial ad-
sorption of halide ions at the oil-water interface. Previously it
was believed61 that the selective effect can be reproduced only
in polarizable simulations but in Refs. 54, 62, and 63 the effect
was predicted in computationally more efficient nonpolariz-
able simulations with scaled ionic charges. Another test was
to reproduce the neutron scattering structure data for highly
concentrated ionic solutions.55 In standard MD simulations,
with unscaled ion charges, the authors observed unphysical
clustering of ions due to the exaggerated electrostatic inter-
actions. The correction of ion charges by factor 1/

√
εel re-

solved the problem.55 In a comparative study56 of polarizable
and non-polarizable models, the nonpolarizable MDEC simu-
lations with scaled charges demonstrated capability of repro-
ducing ion pairing structure properties. Overall, there is grow-
ing evidence in the literature53–56 that the lack of electronic
polarizability in nonpolarizable simulations can be efficiently
compensated by simple scaling of ionic charges.

D. Solvation free energy

The idea of charge scaling of ions, although justified
physically, sometimes is rejected in practice on the basis of
apparent difficulty7 of reproducing the ion hydration free en-
ergy (main target property for parameterization of ions), as the
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FIG. 3. Charging free energy of polyatomic ions in aqua solution simulated
in Ref. 49. Opened symbols correspond to the standard MD simulations,
while filled symbols stand for MDEC technique, Eq. (37).

reduced charge significantly decreases the solvation energy
of MD simulation in comparison with experiment. The issue
is naturally resolved within the MDEC framework, in which
the reduced free energy from MD simulations is compensated
by the electronic free energy term, as given by Eq. (36). As
shown in Fig. 3, hydration free energies for polyatomic ions
are remarkably well reproduced in MDEC simulations.49

In the Figure, opened symbols correspond to standard
MD simulations with GROMACS force field8 (G43A); filled
symbols stand for MDEC simulations, which used scaled
charges of ions and Eq. (36). The experimental values (dashed
line) were obtained as a difference of total solvation energies
for a given ion64 and its hydrocarbon counterpart.65 Charges
and geometry of ions were found in the SCRF/ESP quantum
procedure.66 Circles correspond to AM1 level of theory, while
squares and triangles to RHF/6-31G**. Van der Waals radii
scaled by the factor κ = 0.9 (filled circles and squares) and
κ = 0.8 (filled triangles) were used to build the dielectric cav-
ity in MDEC computation of 
Gel term. The results demon-
strate that the new technique reconciles the long standing is-
sue of inconsistency of the correct scaled ionic interactions
and correct hydration free energies.

IV. CONCLUSIONS

In this paper we examined the formalism for the implicit
treatment of polarizability in computer simulations. Starting
from the potential energy expression for explicitly polarizable
model we have derived an effective mean-field Hamiltonian
of nonpolarizable model. In other words, the analysis repre-
sents a formal proof that under certain conditions, inherently
polarizable molecular systems can be described by equivalent
nonpolarizable fixed-charge models. This is the main result
of the present paper.

The theory states that if simulations involve only similar
configurations so that there is a well-defined average molec-
ular dipole moment or, more generally, a well-defined aver-

age charge distribution within the molecule, then a typical
set of fixed parameters, such as charges, can be introduced
that represent an averaged charge distribution.37 We showed
that the remaining fluctuations of charges around the average
can be included as an additional renormalization or uniform
scaling of the mean-field parameters.31, 32 The renormaliza-
tion of the original mean-field charges is equivalent to a fa-
miliar screening by the electronic polarizable continuum19, 20

with dielectric constant εel (also known as optic dielectric
constant ε∞), which is a measurable characteristic for a given
condensed state. For example, for liquid water the electronic
part εel of the dielectric constant is 1.78, and for most or-
ganic materials this value is close to 2.0. The resulting fixed-
charge model is equivalent to the developed earlier MDEC
model31–33 (Molecular Dynamics in Electronic Continuum).
Minor variations of the electronic dielectric constant between
macroscopic regions such as protein and outside solvent, can
be easily addressed within the general framework of contin-
uum dielectrics.

The model involves only effective scaled charges and
does not include electronic polarizability explicitly. The elec-
tronic polarizable continuum, however, is a part of the model,
and has to be included explicitly in certain cases, especially
when a molecule is transferred from a condensed phase to
gas phase, such as in calculation of solvation free energy30

or vaporization energy,29 and also dielectric properties33 of
the material. As in our previous works, the theory states that
charges of ionized groups of the protein, as well as charges
of ions, in nonpolarizable simulations should be scaled in re-
spect to the actual mean-field values; i.e., reduced by a factor
1/

√
εel (about 0.7), to reflect the electronic screening of the

condensed phase medium. In the solvation free energy simu-
lations the electronic part of the free energy (estimated by the
continuum model) should be added explicitly to the nuclear
reorganization part, which is obtained in nonpolarizable MD
simulations.

The present theory also sheds new light on the effect
of dielectric screening of polar molecules which have been
debated in the literature for a long time.30, 31, 47, 48, 67–70 It
was shown that screening of charges for neutral molecules
can vary from 1/

√
εel (about 0.7) to a much weaker fac-

tor ∼0.9. The exact value of the factor depends on the
model of intramolecular polarizability which cannot be de-
fined unambiguously even in most sophisticated polarizable
models.20–25

In a few examples, we compared the traditional nonpo-
larizable MD simulations with MDEC approach, and demon-
strated how the new principles improve the accuracy of the
computationally-efficient nonpolarizable approach. The suc-
cessful examples of MDEC applications are encouraging, but
it is of course recognized that simple scaling is not a replace-
ment of a well-build real polarizable force field. It is hoped,
however, that the obviously useful charge scaling idea will
find its proper place in the future force field models.
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APPENDIX: SCALING FACTORS IN LORENTZ
VIRTUAL CAVITY MODEL

Consider a probe point dipole μ0 in dielectric ε. The field
of the dipole scales as46

Eε ∝ μ0
ε + 2

3ε
. (A1)

This is the scaling factor for the field of a point dipole (i.e.,
probe nonpolarizable dipole μ0) in polarizable medium. It is
obtained as follows. Suppose there is a point charge q in the
medium that creates electric field Eε; the field in the medium
scales as q/ε. The acting field on the dipole is then modified
by Lorentz virtual cavity as46

Eact = Eε · ε + 2

3
. (A2)

Therefore energy of interaction of the charge and the probe
dipole is

Wint ∝ q
ε + 2

3ε
μ0. (A3)

Due to symmetry of electrostatic interactions, the same inter-
action can be obtained as the energy of the probe charge q in
the field of the dipole μ0. Hence the field created by the probe
dipole scales as shown in (A1).

Now if the interaction of probe dipole μ0i with another
probe dipole μ0j is considered, the acting field is

Eact = Eε · ε + 2

3
∝ μ0j · 1

ε

(
ε + 2

3

)2

. (A4)

Hence interaction of two probe dipoles μ0i and μ0j is

W
ij

int ∝ μ0i

1

ε

(
ε + 2

3

)2

μ0j . (A5)

In the condensed phase medium, however, the nonpolariz-
able probe dipoles μ0i and μ0j are in some sense unobserv-
able. It is sometimes more convenient to consider re-polarized
dipoles μ̃0i and μ̃0j , which correspond to total dipole mo-
ments of molecules in the medium, i.e., dipoles that include
part of the medium polarization induced by the probe dipoles
themselves. The relation between probe μ0 and re-polarized
μ̃0 dipole can be obtained in the Kirkwood-Onsager (KO)
model:71, 72

μ̃0 = μ0

1 − 2(ε−1)
(2ε+1)

α
R3

, (A6)

where R is the radius of molecular cavity in dielectric of ε,
and α is the molecular polarizability. The most natural choice
for the cavity radius R with respect to polarization density ρ

of the CM equation:

4π

3
R3 = 1/ρ. (A7)

This choice corresponds to the Lorentz virtual cavity model.
In this case the relation between the total self-polarized dipole
μ̃0 and μ0 is

μ̃0 = μ0
(ε + 2)(2ε + 1)

9ε
. (A8)

Now we can rewrite the interaction energy (A5) in terms of
re-polarized dipoles. This interaction, when scaling (A8) is
included, takes the form:

W
ij

int ∝ μ̃0i ε

(
3

2ε + 1

)2

μ̃0j . (A9)

The scaling factor in Eq. (A9) is equivalent to that of the real
cavity model.31

Previously, many authors47, 67, 68, 70 considered scaling
that follows from Eq. (A5); it should be recognized that it cor-
responds to scaling of un-polarized dipoles μ0i and μ0j, while
for total self-polarized dipoles, the scaling factor is different,
Eq. (A9).
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