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Abstract

We report the first application of wavelet-based denoising (noise removal) methods to time-

domain box-car fluorescence lifetime imaging microscopy (FLIM) images and compare the results

to novel total variation (TV) denoising methods. Methods were tested first on artificial images and

then applied to low-light live-cell images. Relative to undenoised images, TV methods could

improve lifetime precision up to 10-fold in artificial images, while preserving the overall accuracy

of lifetime and amplitude values of a single-exponential decay model and improving local lifetime

fitting in live-cell images. Wavelet-based methods were at least 4-fold faster than TV methods, but

could introduce significant inaccuracies in recovered lifetime values. The denoising methods

discussed can potentially enhance a variety of FLIM applications, including live-cell, in vivo

animal, or endoscopic imaging studies, especially under challenging imaging conditions such as

low-light or fast video-rate imaging.
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1. Introduction

Fluorescence lifetime imaging and fluorescence lifetime imaging microscopy (FLIM) are

useful molecular imaging techniques for pre-clinical and clinical studies in living cells,

tissues, small animals, and endoscopic samples, with fluorescence lifetime providing image

contrast [1-10]. Fluorescence lifetime can be employed as an optical sensor to indicate

micro-environmental conditions such as oxygen levels, the state of endogenous / exogenous

fluorophores, and Förster resonance energy transfer in live cells [11-18].

The interest in biological FLIM is increasing, as commercial FLIM modules become

available for confocal and multi-photon microscopes. However, low fluorescence signals

from biological samples can be a challenge, causing poor lifetime precision. For endogenous
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fluorophores, low signals could result from low concentrations and / or unfavorable optical

properties. For exogenous fluorophores, low signals could result from low concentrations

desired to minimize the effects on sample physiology and / or low transfer efficiency. To

increase measured fluorescence signals from biological samples, high-intensity light sources

such as lasers can be used in FLIM, but this may cause unexpected cell responses and

sample damage / ablation [19, 20], and may also cause fluorophore photobleaching.

Image “denoising” (noise removal) [21, 22] has great potential to improve FLIM precision.

Wavelet analysis is a commonly used method that has been used for restoring fluorescence

microscopy images [23, 24] and for denoising frequency-domain confocal and full-field

FLIM images [25, 26]. Other image denoising methods include total variation (TV)

denoising, Tikonov denoising, Gaussian smoothing [27], non-parametric regression method

[28], and multiframe SURE-LET (Stein's unbiased risk estimate-linear expansion of

thresholds) denoising [29]. Among these techniques, TV denoising has been reported to

improve FLIM precision [30]. In this study, we report the first application of wavelet-based

denoising methods to time-domain FLIM, and compare them with previously developed TV

denoising methods [30, 31]. This is a new research area that, to our knowledge, has not yet

been explored before, potentially aiding a variety of emerging in vivo and clinical

applications.

2. Methods

2.1 Time-gated FLIM system and live-cell sample preparation

We designed and characterized a novel wide-field, time-domain box-car FLIM system for

picosecond time-resolved biological imaging [32, 33]. A pulsed (repetition rate = 1-20 Hz)

nitrogen laser (337.1 nm, GL-3300, Photon Technology International, Lawrenceville, NJ)

pumping a dye laser (GL-301, Photon Technology International, Lawrenceville, NJ) for UV-

visible-NIR excitation offers a significantly less expensive, wide-field, and potentially

portable alternative to multi-photon excitation for sub-nanosecond FLIM imaging of

biological samples [33]. After a sample was illuminated by an excitation pulse, the

fluorescence emission was recorded at different gate delays. The time interval between the

starting points of two consecutive gates was denoted by “dt”. At each gate delay, the

emission intensities were integrated during a gate width (denoted by “g”) controlled by the

intensifier of an intensified charge-coupled device (ICCD) camera (microchannel size = ~10

μm, Picostar HR, LaVision, Germany). The gain of the ICCD is controllable and the gate

width settings can vary from 200 ps to 10 ms for high-speed imaging applications [34]. The

large temporal dynamic range (750 ps – 1 μs), the 50 ps lifetime discrimination, and the

spatial resolution of less than 1.4 μm of the system make it suitable for studying many

endogenous and exogenous fluorophores that may transit through cells [35-37]. To create

fluorescence lifetime maps rapidly, a four-gate protocol, based on single-exponential

fluorescence decay, with an analytical least squares lifetime determination algorithm was

used on a pixel-by-pixel basis. It is more precise than a two-gate protocol while still being

easy to implement [38-40]. The fitting was implemented without any weighting and no

particular form of variance distribution (such as Poisson distribution) was assumed. This is

because, as mentioned later in Section 2.2, there was a combination of noise distributions in
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our real images and this kind of noise distribution was taken into consideration in the

denoising process. The analytical solution can be derived by first linearizing the

overdetermined system in log domain and then solving the normal equations, (XTX)a = XTy,

where a is the system parameters we are interested in, with X and y as the independent and

dependent variables, respectively:

(1)

where τp is the lifetime of pixel p, Ii,p is the intensity of pixel p in image i, ti is the gate delay

of image i, and N is the number of images, which is four. All sums are over i. This method is

generally inefficient in terms of signal detection as compared to time-correlated single

photon counting (TCSPC) or even frequency-domain methods, since a large percentage of

the signal is simply discarded. However, it enables much faster and sometimes video-rate

image recording (only four intensity values are needed for each pixel) and also very rapid

lifetime determination due to the ability to evaluate all pixels simultaneously using the

analytical solution (Eq. (1)).

HCT-116 live cells (purchased from ATCC, CCL-247™) were cultured with modified

McCoy's 5a medium under 5% CO2 incubation. After removing the culture media and

washing 3 times using phosphate buffered saline (PBS), cells at 80% confluence were

incubated with 1 μM of the acetoxymethyl (AM) ester derivative of BCECF (2′,7′-bis-(2-

carboxyethyl)-5-(and-6)-carboxyfluorescein, a widely used fluorescent indicator for

intracellular pH) (Invitrogen, CA) in PBS at 37°C for 1 hr for cell staining. The laser

excitation wavelength was 434 nm and the fluorescence emission was collected at 480 ± 20

nm with a 40x, 1.3 NA objective. Five images were averaged for each gate in the FLIM

imaging of the samples with dt = 1 ns and g = 0.2 ns.

2.2 Total variation denoising

The f-weighted TV (FWTV) model was described previously [30, 31, 41-43]. It has been

demonstrated to have some advantages over other previously developed TV models, which

are mostly based on the commonly known Rudin-Osher-Fatemi (ROF) model [44]. The

FWTV model keeps the major advantage of TV denoising models, which are edge-

preserving, but was specifically developed to remove Poisson noise, an inevitable form of

noise occurring in image acquisition with photon counting devices, while still having high

flexibility to be easily adapted for removing non-Poisson noise (described below). In our

previous studies, we have demonstrated how the FWTV model can be used in time-gated

FLIM and time-correlated single photon counting FLIM to improve lifetime precision [30,

31, 41-43].

The FWTV model has the following mathematical form:

(2)
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where E denotes the energy, through minimization of which denoising was performed, Ω

denotes the signal domain, λ is the fidelity coefficient, u represents the processed image, f

represents the input or noise-corrupted image, and the variables x and y represent the spatial

location of the pixels. The values of λ were determined by the “discrepancy rule” [45],

which requires the fidelity term (the second term on the right hand side of Eq. (2)) evaluated

with f and the final u to be the same as that evaluated with f and the estimated original image

without noise corruption [41]. Eq. (2) was designed for removing Poisson noise, since the

data variance due to noise (the denominator of the integrand in the fidelity term, or, the

“weighting”) is equal to the intensity, f, which is a characteristic of Poisson noise.

To minimize the defined energy, E, and to implement denoising, the gradient descent of E,

with respect to time, t, along the direction of u was used with iterations to achieve the final

stable, denoised u. Here, the “time” is just a dimension along the iterations towards the

stable u and does not involve real time. Mathematically, u evolves from f (the input of u)

through iterations, and in this process the measurement f is selectively smoothed to a

denoised state: the smoothing occurs only in the direction perpendicular to, but not in

parallel with, local intensity gradient. This process, therefore, preserves the edges of objects

delineated by intensity contrast.

Further modification of FWTV for removing non-Poisson noise (such as a combination of

different forms of noise at low photon counts in real imaging systems) has been

demonstrated to be quantitatively accurate when applied to FLIM [41]. In the modified

FWTV, f in the weighting of FWTV was replaced with Gf, where G represented the ratio of

the signal variance to the mean intensity counts and was a function of local mean intensity

of the image [41]. This modified FWTV was also used here to denoise live-cell FLIM

images.

2.3 Wavelet-based denoising

A wavelet is a waveform of effectively limited duration with an average value of zero. A

wavelet transform is to describe a function by using wavelets, which can be scaled and

translated (shifted). For example, the continuous wavelet transform (CWT) is defined as an

integral over the dimension of the signal (a continuous, square-integrable function)

multiplied by scaled, shifted versions of the wavelet function. The results of the CWT are

the wavelet coefficients, which are a function of scale and position.

In this study, the first wavelet-based denoising method was based on Discrete Wavelet

Transform (DWT). In DWT, the concept is to choose only a subset of scales and positions

for the calculations of wavelet coefficients. Only scales and positions based on powers of

two (the dyadic scales and positions) are chosen. To use DWT for image denoising, the

resulting wavelet coefficients from DWT decomposition are thresholded before the image is

reconstructed. The thresholding can be performed with either “hard thresholding”, which

sets the coefficients that are less than or equal to the threshold to zero, or “soft

thresholding”, where, in additional to hard thresholding, the threshold value is subtracted

from all the coefficients with their values greater than the threshold. An efficient way to

implement DWT is to use filters. This was developed in 1988 by Mallat [46]. In this case,

each level of filtering produces approximation coefficients and detail coefficients, followed
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by a “decimation” process, which retains only even indexed elements. The approximation

coefficients can then be further filtered into the next level of decomposition, and

thresholding can be applied to the detail coefficients for denoising.

The second wavelet-based denoising method was based on Stationary Wavelet Transform

(SWT). SWT was developed to remove the disadvantage of DWT being not time-invariant,

meaning that when the input signal is translated, the DWT transform is not translated

accordingly. SWT solves this problem by averaging some slightly different DWT, called

epsilon-decimated DWT [47]. Epsilon-decimated DWT is generated by the decimation that

chooses either even or odd indexed elements instead of choosing only even indexed

elements, following DWT. This choice is involved in each level of decomposition.

DWT and SWT image denoising was implemented with four levels of decomposition and

soft-thresholding, which makes smooth transitions between the values above and below the

threshold, using Matlab's Wavelet Toolbox version 4.4. The default threshold determination

method (universal thresholding s (log(n))1/2, with n being the number of pixels in the image

and s being the median absolute value of the detail wavelet coefficients divided by 0.6745)

was not used due to the fact that s would be zero and hence no denoising would be

performed for our artificial images (possibly because there are many zero-intensity

background pixels, described in Section 2.4) corrupted by Poisson noise. Therefore, mean

absolute value divided by 0.6745 was used as s in the expression s (log(n))1/2. Global

thresholding (meaning the same threshold value is used for all decomposition levels) was

used for all four levels of detail coefficients of each gate, but the threshold values were

determined separately for different gates. Fixed threshold values of 100 and 500 were also

used in SWT denoising for comparison. These values are comparable to and enclose the

“appropriate” values (see below). The wavelet biorthogonal 3.7 (bior 3.7) was chosen, not

only because it is a commonly used wavelet but also because it has been demonstrated to

perform well in frequency-domain FLIM for background subtraction and denoising [26].

A more sophisticated wavelet-based algorithm [48, 49] employed in this study (denoted as

“Poisson Wavelet” below) is a Bayesian approach to Poisson intensity estimation based on

the translation invariant hereditary unnormalized Haar wavelet transform. This type of

wavelet allows a simple formulation for Poisson data. Translation invariant Haar estimation

for Poisson data includes thresholding decisions based not only on the magnitude of the

coefficients, but also on the coefficients of the node's descendants. Image estimation based

on this method is near minimax optimal reconstruction techniques for photon-limited

images. It reduces artifacts by averaging over all possible shifts of the underlying partition.

Previous studies improved the robustness of this technique by including a hereditary

constraint in the thresholding rule: a coefficient can only be thresholded if all its descendants

are also thresholded [49].

Poisson Wavelet image denoising was implemented by using the Matlab function provided

on the web-site of Dr. Rebecca Willett's laboratory at Duke University. The penalty values

(similar to the threshold values used in DWT and SWT) were determined using the default

approach of log(summation of the values of all the pixels)/2.
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The threshold values used in DWT (and SWT with “varying threshold”, see Section 3.1.2)

were 458.50 ± 1.87, 319.86 ± 1.42, 224.46± 0.97, 159.04 ± 0.63 (number of trials = 20) for

the first, second, third, and fourth gates, respectively. These values were not fixed and had

distributions, because in each Monte Carlo simulation (Section 2.5), noise was randomly

generated based on Poisson distribution. The penalty values used in Poisson Wavelet were

8.56 ± 0.079×10-3, 8.35 ± 0.093×10-3, 8.14 ± 0.17×10-3, 7.94 ± 0.18×10-3 (number of trials

= 20) for the first, second, third, and fourth gates, respectively.

2.4 Artificial images

Artificial images with predetermined parameters were employed to evaluate fluorescence

lifetime determination accuracy and precision after denoising. The fluorescence decay

model was single-exponential with the intensity profile I(t) = α exp (-t/τ), where τ is

fluorescence lifetime and α is a pre-exponential term, or amplitude. Geometry that we may

encounter with live-cell FLIM was mimicked. It consisted of “the ring” (the large open

circle shown in the upper-right panel of Figure 1) with τ = 5 ns and α = 1000, “the inner

circle” (the centered solid circle inside the ring) with τ = 10 ns and α = 1000, and “the

satellite” (the small dot to the bottom right of the inner circle and the ring) with τ = 10 ns

and α = 50. The image size was 128 pixels × 128 pixels. Note that total photon counts (ατ)

here were kept relatively high, making the relative standard deviation (Section 2.5) low, for

better characterizations of the denoising methods with minimized possible bias of Poisson

distribution at low photon counts. A combination of different forms of noise including

Poisson noise at low photon counts will be considered in live-cell images (Section 3.2). As

an example of the geometry mentioned here, a cell may have some fluorophores inside it

with higher lifetime and others interacting in its membrane with lower lifetime, while in

another smaller cell or organism the same fluorophores at lower concentration are present.

The optimal gating scheme was determined to be g = 16 ns and dt = 4 ns [41]. It was an

optimal gating scheme for a certain lifetime range in which the above setting was covered.

2.5 Evaluation of accuracy and precision

To assess accuracy and precision, Monte Carlo (MC) simulations were used, along with the

artificial images (Section 2.4), to construct the lifetime distribution determined from

Poisson-noise-corrupted intensity images, either with or without denoising. First, the single-

exponential decay model I(t) (Section 2.4), the correct values of lifetime τ and pre-

exponential term α, gate width g, and time interval dt between two consecutive gates were

used to simulate the noise-free time-gated fluorescence intensity images. Then, Poisson

noise was added to each pixel in each image, and denoising was applied to each image. The

lifetime values retrieved from the denoised images using Eq. (1) were recorded in each

iteration to build up a histogram for each pixel over a number of iterations of noise addition,

denoising, and lifetime determination. The number of simulations was 20 in each denoised

or undenoised case. The mean and standard deviation (std.) of the lifetime distribution were

used for the evaluation of accuracy and precision with RSD [relative standard deviation, in

%, defined as (std. / mean) × 100, also known as coefficient of variation] and RME {relative

mean error, in %, defined as [(mean – correct value) / correct value] × 100}. In the

undenoised case (see Section 3), the step of “denoising” was omitted.
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3. Results and discussion

3.1 Artificial images

3.1.1 A comparison of DWT, Poisson Wavelet, and FWTV—FWTV has previously

been tested on the artificial images (Section 5.2 in [41]). The results demonstrate that after

FWTV denoising, the precision of lifetime determination was improved for all three objects

(the RSD values were 0.14%, 1.43%, and 4.76% for the inner circle, the ring, and the

satellite, respectively), while the accuracy was preserved (the RME values of all three

objects were within 1% from zero).

Figure 1 and Table 1 show that precision improvement was method- and geometry-

dependent. FWTV and Poisson Wavelet performed approximately equally well, with the

ring being most difficult to denoise. In the undenoised image, the satellite had a much higher

RSD value due to its much lower total photon counts. After denoising with the three

methods (DWT, Poisson Wavelet, and FWTV [41]), all the three objects had lowered RSD

and the precision improvement was most significant in the inner circle. However, DWT had

the smallest improvement (averaged RSD = 0.64%) and FWTV the greatest (averaged RSD

= 0.14% [41], precision improvement > 10-fold when compared with the undenoised value

of 1.80%), while Poisson Wavelet had slightly smaller improvement (averaged RSD =

0.23%) than FWTV. The ring was most difficult to denoise for all the three methods,

probably due to the fact that it had an edge-rich geometry. Still, FWTV produced the lowest

RSD and improved the precision by about 1.3-fold [41]. Interestingly, for the satellite, DWT

produced the best precision, but it caused inaccuracy (described below).

Figure 2 and Table 1 show that both FWTV [41] and Poisson Wavelet preserved the

accuracy of lifetime determination after denoising, with Poisson Wavelet performing

slightly better especially for the satellite. In this case, the undenoised image and its RME

values served as the accuracy standard, since the noise was defined by Poisson random

distribution. In other words, these RME values are not exactly zero simply due to

randomness. Compared to the undenoised case, if denoising causes RME values to become

farther away from zero (possibly due to unsuitable assumption of noise distribution), this is

an evidence of producing a bias and making lifetime determination inaccurate. Our goal is

therefore to find the denoising methods that can improve the precision to the best degree

without causing inaccuracy.

On the other hand, DWT denoising suffered from severe inaccuracy for the ring (averaged

RME > 6%) and the satellite (averaged RME < -10%) and even for the inner circle (negative

RME on the edge but positive RME off-edge).

3.1.2 A comparison of SWT with different threshold values—With SWT, the RSD

values for all the three objects decreased with increasing threshold values from 100 to

varying values (between 100 and 500) to 500, because higher threshold caused greater

smoothing and removed more noise. However, only SWT with varying threshold had both

the inner circle and satellite accurate (absolute values of averaged RME < 1%), although the

RME of the ring was still high (5.80%), and higher than that from SWT with threshold =
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100. Also, SWT with varying threshold was better than DWT in terms of both precision and

accuracy, especially for the accuracy of the satellite.

3.1.3 Overall performance of FLIM denoising methods—Overall, although DWT

and SWT under current settings improved precision, they mostly suffered from severe

inaccuracies. SWT with varying threshold could still be a good choice except that edge-rich

objects such as the ring would have inaccurate lifetime values. Poisson Wavelet and FWTV

appeared to be better choices for both improved precision and good accuracy. As for the

running times for each 128 × 128 image, wavelet-based methods were faster (DWT, Poisson

Wavelet, and SWT had running times ~0.1 sec, ~0.2 sec, and ~0.6 sec, respectively)

compared to FWTV (~2.4 sec), making Poisson Wavelet the best choice. However, as will

be demonstrated in the next section, our FWTV could be further modified (Section 2.2) to

remove non-Poisson distributed noise with good accuracy.

Another key point to make is that, after denoising, the edge of each object may become less

definite or blurred due to intensity diffusion. Therefore, it is important to check if denoising

causes any bias for segmentation after different types of denoising. This has been indirectly

investigated with our artificial images and is presented in Figures 1, 2, and Table 1. When

evaluating the accuracy and precision of lifetime determination of the three different objects

(the inner circle, the ring, and the satellite), the same pixels were used for the mask for a

certain object after different kinds of denoising (or no denoising). In other words, any

denoising that caused the object shape / size to slightly change could introduce a bias in the

averaged lifetime value, since in this case the mask for that object could not exactly cover

the entire object and / or included pixels in the background or in another object. On the other

hand, further segmentation analysis will be considered as one of our future directions

(Section 3.3).

3.2 Denoising live-cell FLIM images

Poisson Wavelet and a modified FWTV were used to denoise the gated fluorescence

intensity images from our FLIM system before lifetime map construction. DWT and SWT

were not used since they suffered from severe inaccuracies (Section 3.1). FWTV was

modified because real imaging systems, especially at low photon counts, have forms of

noise other than Poisson distribution. The total photon counts were around 600, which was

in the appropriate range (approximately 102 - 104) for the use of denoising for FLIM

precision improvement [30]. Both denoising methods could reduce the uncertainties, as

shown in Figure 3. However, the lifetime values were different when averaged, and were

compared with the averaged undenoised lifetime value, which should remain almost

constant pre- and post-denoising, due to the randomness of the uncertainties. Table 2 clearly

demonstrates that the modified FWTV could better preserve the overall τ and α values (<

3.5% changes) while still improving local lifetime fitting with averaged R2 increase = ~1.5%

and averaged χ2 decrease = ~20%. This is due to the fact that the flexibility and modification

of our FWTV rendered it the capability of removing a combination of different forms of

noise that occur in real imaging systems. In addition, the accurate denoising results of the

modified FWTV illustrated here are also consistent with our previous real-image denoising

results [30, 31, 41-43].
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3.3 Future improvements

Future improvements of the current algorithms include local thresholding (different

threshold values can be used for different decomposition levels) and more sophisticated

approaches to threshold determination in DWT, SWT, and other wavelet-based methods for

FLIM use. Newly developed methods for wavelet-based denoising of Poisson-corrupted

images [50] will be further considered in the future. Also, high-speed FWTV may be

developed by improving the code efficiency and adopting advanced algorithms [51, 52]. In

addition, precision and accuracy evaluation of multi-exponential decay lifetime

determination is also an important issue and will be investigated in combination with FLIM

image denoising. Finally, since precise and accurate noise removal can enhance other image

processing techniques including deconvolution (with 3D image slicing) / deblurring [53],

segmentation, and object tracking, the combination of denoising and these techniques could

be employed for FLIM use, as well.

As a key future direction, we understand that segmentation analysis following denoising is

an important issue. However, advanced segmentation methods need to be applied to the

images for this kind of analysis, and this will inevitably introduce more uncertainties since

the results will definitely depend on the choice of segmentation method. In this work,

therefore, we focused more on preserving the accuracy of the lifetime determination while

enhancing the precision, leaving segmentation analysis as one of our major future directions

following this work.

4. Conclusions

In this study, TV-based and wavelet-based image denoising methods were characterized and

compared for individual strengths and weaknesses with artificial images and live-cell images

acquired from a gated time-domain FLIM system. With artificial images, FWTV and

Poisson Wavelet performed almost equally well (precision improvement up to 10-fold,

depending on the geometry of objects) and better than DWT and SWT in terms of mostly

accuracy and partially precision, with wavelet-based methods running faster. For live-cell

images, the modified FWTV better preserved the overall τ and α values (< 3.5% changes

compared to the undenoised image) while still improving local lifetime fitting (averaged R2

increase = ~1.5% and averaged χ2 decrease = ~20%). The methods proposed here can

enhance both the precision and the accuracy of FLIM, especially under challenging imaging

conditions, such as low-light or fast video-rate imaging. This approach should aid current

and rapidly emerging FLIM applications, including live-cell, in vivo animal, or endoscopic

imaging, and is potentially applicable to other biomedical imaging systems.
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CWT Continuous Wavelet Transform

DWT Discrete Wavelet Transform

FLIM Florescence Lifetime Imaging Microscopy

FWTV f-weighted Total Variation

RME Relative Mean Error

RSD Relative Standard Deviation

SWT Stationary Wavelet Transform

TV Total Variation
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Figure 1.
RSD (Relative Standard Deviation, in %), indicating the precision, of the lifetime map

constructed with the undenoised and denoised artificial images using several different

denoising methods. The precision improvement was method- and geometry-dependent. The

ring was the most difficult to denoise. SWT with threshold = 500 generally had the best

precision but it suffered from severe inaccuracy (see Figure 2 and Table 1).
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Figure 2.
RME (Relative Mean Error, in %), indicating the accuracy, of the lifetime map constructed

with the undenoised and denoised artificial images using several different denoising

methods. FWTV [41] and Poisson Wavelet performed equally well and preserved the

accuracy of lifetime determination after denoising.
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Figure 3.
The lifetime maps (in ns) of HCT-116 live cells stained with BCECF. Each map was

constructed from four gated intensity images that were either undenoised or denoised with

one of the two methods: Poisson Wavelet and modified FWTV. Both denoising methods

could reduce the uncertainties compared to the undenoised image. However, the lifetime

values within the cell regions denoised with the two methods were different.
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Table 1

Averaged RME and RSD (%), over the pixels in each of the three objects (the inner circle, the ring, and the

satellite) in the undenoised and denoised artificial images using several different denoising methods.

Undenoised DWT Poisson Wavelet

RSD RME RSD RME RSD RME

Inner circle 1.80 0.035 0.64 −0.12 0.23 0.0028

Ring 1.91 −0.020 1.75 6.34 1.64 −0.0054

Satellite 7.90 0.031 2.49 −11.89 4.35 0.33

SWT threshold = 100 SWT varying threshold SWT threshold = 500

RSD RME RSD RME RSD RME

Inner circle 0.74 −0.16 0.52 −0.12 0.39 −0.74

Ring 1.62 3.24 1.57 5.80 1.15 19.24

Satellite 2.99 −9.19 2.23 0.62 1.64 −11.10
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Table 2

The averaged lifetime values (τ, in ns), pre-exponential terms (α), R-squared values (R2) and Chi-squared

values (χ2) over the non-zero pixels in the live-cell lifetime images shown in Figure 3, and their % changes

compared to the undenoised image.

Undenoised Poisson Wavelet Modified FWTV

τ 2.38 2.08 2.30

% τ change 0 −12.61 −3.32

α 190 183 186

% α change 0 −3.68 −2.11

R 2 0.93 0.96 0.94

% R2 change 0 2.91 1.51

χ 2 1.20 0.79 0.95

% χ change 0 −34.31 −20.33
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