Skip to main content
. 2014 Jul 17;2:e488. doi: 10.7717/peerj.488

Table 2. The twelve combinations of feature-type and feature-summarisation tested.

The feature-type and feature-summarisation method jointly determine the dimensionality of the data input to the classifier.

Label Features Summarisation Dimension
mfcc-ms MFCCs (+deltas) Mean & stdev 52
mfcc-maxp MFCCs (+deltas) Max 26
mfcc-modul MFCCs (+deltas) Modulation coeffs 260
melspec-ms Mel spectra Mean & stdev 80
melspec-maxp Mel spectra Max 40
melspec-modul Mel spectra Modulation coeffs 400
melspec-kfl1-ms Learned features, 1 frame Mean & stdev 1,000
melspec-kfl2-ms Learned features, 2 frames Mean & stdev 1,000
melspec-kfl3-ms Learned features, 3 frames Mean & stdev 1,000
melspec-kfl4-ms Learned features, 4 frames Mean & stdev 1,000
melspec-kfl8-ms Learned features, 8 frames Mean & stdev 1,000
melspec-kfl4pl8kfl4-ms Learned features, 4 frames, two-layer Mean & stdev 1,000