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Purpose: A method is presented for generating simulated low-dose cone-beam CT (CBCT) preview
images from which patient- and task-specific minimum-dose protocols can be confidently selected
prospectively in clinical scenarios involving repeat scans.
Methods: In clinical scenarios involving a series of CBCT images, the low-dose preview (LDP)
method operates upon the first scan to create a projection dataset that accurately simulates the ef-
fects of dose reduction in subsequent scans by injecting noise of proper magnitude and correla-
tion, including both quantum and electronic readout noise as important components of image noise
in flat-panel detector CBCT. Experiments were conducted to validate the LDP method in both a
head phantom and a cadaveric torso by performing CBCT acquisitions spanning a wide dose range
(head: 0.8–13.2 mGy, body: 0.8–12.4 mGy) with a prototype mobile C-arm system. After inject-
ing correlated noise to simulate dose reduction, the projections were reconstructed using both con-
ventional filtered backprojection (FBP) and an iterative, model-based image reconstruction method
(MBIR). The LDP images were then compared to real CBCT images in terms of noise magnitude,
noise-power spectrum (NPS), spatial resolution, contrast, and artifacts.
Results: For both FBP and MBIR, the LDP images exhibited accurate levels of spatial resolution
and contrast that were unaffected by the correlated noise injection, as expected. Furthermore, the
LDP image noise magnitude and NPS were in strong agreement with real CBCT images acquired at
the corresponding, reduced dose level across the entire dose range considered. The noise magnitude
agreed within 7% for both the head phantom and cadaveric torso, and the NPS showed a similar level
of agreement up to the Nyquist frequency. Therefore, the LDP images were highly representative of
real image quality across a broad range of dose and reconstruction methods. On the other hand, naïve
injection of uncorrelated noise resulted in strong underestimation of the true noise, which would lead
to overly optimistic predictions of dose reduction.
Conclusions: Correlated noise injection is essential to accurate simulation of CBCT image quality
at reduced dose. With the proposed LDP method, the user can prospectively select patient-specific,
minimum-dose protocols (viz., acquisition technique and reconstruction method) suitable to a par-
ticular imaging task and to the user’s own observer preferences for CBCT scans following the first
acquisition. The method could provide dose reduction in common clinical scenarios involving mul-
tiple CBCT scans, such as image-guided surgery and radiotherapy. © 2014 American Association of
Physicists in Medicine. [http://dx.doi.org/10.1118/1.4884039]

Key words: cone-beam CT, dose reduction, protocol optimization, quantum noise, electronic noise,
image quality, iterative reconstruction

1. INTRODUCTION

Cone-beam CT (CBCT) is finding increased application in ar-
eas such as image-guided surgery (IGS), image-guided radia-
tion therapy (IGRT), and interventional radiology.1–9 In many
of these applications, repeat CBCT scans are often acquired.

For example, in IGS, an initial CBCT may be used for pa-
tient setup and registration of preoperative planning informa-
tion, while subsequent CBCTs may be used for visualizing
surgical progress, detection of complications, and/or verify-
ing the surgical product. Additionally, in IGRT, patients may
receive a CBCT scan at each treatment fraction. In accordance
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with efforts to reduce radiation dose to the patient (and in
some cases to the clinicians, as with IGS),10–12 each CBCT
should be acquired at the minimum dose such that a partic-
ular imaging task(s) can still be reliably performed. For sce-
narios in which multiple CBCTs of a patient are acquired,
ensuring that each scan is conducted at the minimum dose
sufficient for a given imaging task is especially important in
reducing the total accumulated dose, since a fractional dose
reduction per scan is multiplicative with the number of scans.
Of course, lower dose techniques generally produce higher
noise images, and selection of the minimum-dose protocol for
a particular patient is challenging—usually guided simply by
a coarse technique chart in which scan protocols are simply
stratified by patient body habitus. The ability to confidently
select low-dose protocols sufficient for a given imaging task
and patient is therefore a challenge, and perhaps even more
so for nonlinear model-based image reconstruction (MBIR)
methods for which complex dose-noise-resolution tradeoffs
may defy a simple predictive model.

One method to aid in selecting a patient- and task-specific
protocol (i.e., acquisition technique, image reconstruction
method, and image processing/postprocessing parameters) is
to provide a “low-dose preview” (LDP) of the image quality
that can be expected for a CBCT image acquired at reduced
dose. Such simulated dose reduction methods allow the user
to visualize image quality at reduced dose, followed by con-
fident selection of minimum-dose protocols sufficient for the
imaging task. The methods have been developed and validated
for diagnostic CT and successfully used to establish low-dose
CT protocols—both in creating optimal technique charts from
retrospective studies (“How low could we have gone?”) and
in prospectively determining protocols for individual patients
(“How low can we go next time?”). An early method pro-
posed by Mayo et al. demonstrated that by injecting noise into
raw CT data to simulate dose reduction, the reconstructed CT
images were indistinguishable from real low-dose images.13

Subsequent studies used simulated dose reduction to demon-
strate the potential for low-dose protocols in applications such
as pediatric abdominal CT,14 CT colonography,15 chest CT,16

and chest radiography.17 More recently, simulated dose reduc-
tion methods have utilized more advanced models of noise
beyond just quantum noise, such as inclusion of electronic
noise,18, 19 that led to accurate reproduction of not only im-
age noise magnitude but also noise power spectra.20–23 Other
extensions of simulated dose reduction include using dual en-
ergy scans to allow simulated changes in tube voltage24 or
using an image-based approach that does not assume avail-
ability of projection data (but does not allow for different
reconstruction methods/parameters).25–27 Common to these
methods is the assumption of spatially uncorrelated noise
in the projection data, which may be a fair assumption for
detectors employed in multidetector CT scanners. However,
correlated noise is an important consideration for flat-panel
detectors (FPDs) that are typically used in CBCT—for exam-
ple, scintillator blur is known to introduce spatial correlation
in the quantum noise, and electronic noise can be an impor-
tant source of noise at very low dose levels.28–30 Therefore,
previous methods for low-dose simulation in CT cannot be

directly extended to CBCT based on indirect-detection FPDs
since they do not include the effect of correlated noise (quan-
tum or electronic noise).

We propose a new LDP method for FPD-based CBCT that
seeks to inject both quantum noise and electronics noise in a
manner that is accurate in terms of both the magnitude and
correlation of noise exhibited at lower dose. The LDP im-
ages operate upon the initial CBCT of the patient (i.e., the first
CBCT in a series of subsequent images, as in IGS or fraction-
ated IGRT) to generate simulated low-dose projection data
that are in turn reconstructed by whatever algorithm and post-
processing methods are available in the imaging system. In
using the observer’s own preferences to select the minimum-
dose protocol for a particular imaging task, this approach to
prospective protocol selection is independent of models of ob-
server performance; moreover, by operating on the actual pro-
jection data from the initial CBCT scan, it is patient-specific
and applicable to advanced image reconstruction and process-
ing methods (including MBIR and possible proprietary ar-
tifact correction or postprocessing methods incorporated by
a particular system). An accurate LDP method can also be
used retrospectively to perform population-wide protocol op-
timization based on patient-specific attributes (e.g., patient
size, gender) and imaging task (e.g., bone, soft-tissue visu-
alization), ultimately providing minimum-dose CBCT tech-
nique charts. This paper therefore establishes a method for
generating realistic LDP images and validates the method
quantitatively to assess the similarity between preview and
real CBCT images acquired at lower dose for different recon-
struction methods.

2. METHODS

Figure 1 illustrates the LDP methodology and general
workflow for selecting the minimum-dose protocol for sub-
sequent CBCT scans in a manner that is patient-specific
and accounts for the imaging task, the reconstruction algo-
rithm (including artifact correction and postprocessing meth-
ods therein), and user preferences in perceived image quality.

2.A. Theoretical basis for noise simulation

2.A.1. Model for projection image noise magnitude
and correlation

The proposed LDP method modifies the projections from
the initial CBCT in a manner that simulates tube output (given
by the tube current-time product, units of mAs) reduction.
When the tube output is reduced by a factor of α < 1 (i.e.,
exposure of the low-dose technique relative to that of the ini-
tial technique), the mean signal is reduced in proportion to
α, and the signal-to-noise ratio (SNR) is also reduced. Sim-
ulation of LDP projections ILDP from initial projections Iinit

therefore comprises two main steps: (1) scaling the detected
signal, and (2) injecting noise ninject into the projection. The
overall relationship is expressed as

ILDP(u, v) = αIinit(u, v) + ninject(u, v), (1)
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FIG. 1. Overview of LDP workflow. The first CBCT (denoted here as initial) is acquired as part of the normal clinical workflow and provides the projection data
for creating the LDP images. The LDP creates accurate CBCT simulation images at any level of dose reduction (and for any choice of available reconstruction
algorithm and parameters therein) from which to select minimum-dose CBCT protocols for subsequent scans.

where (u, v) is the pixel position. Scaling the initial projec-
tions ensures that the patient position, spatial resolution, x-
ray energy, beam hardening, and scatter-to-primary ratio are
preserved, while the addition of noise simulates tube output
reduction but does not affect these other properties. Note that
the first step of scaling the initial projections by α assumes de-
tector linearity (a reasonable assumption for a well-calibrated
detector) and image acquisition at the same x-ray energy (tube
voltage (kVp) and filtration).

Accurate estimation of the injected noise ninject requires a
model for both the magnitude and correlation of the quantum
and electronic noise. From Eq. (1), the variance in the LDP
projection is related to that in the initial projection and the
injected variance by

σ 2
LDP(u, v) = α2σ 2

init(u, v) + σ 2
inject(u, v). (2)

As illustrated in Fig. 2, the notation I(.) denotes a projection
image, n(.) denotes a zero-mean noise realization, and σ (.)
denotes a noise map (alternatively σ 2(.) a variance map). In
Eq. (2), therefore, dose reduction is seen to scale the initial
variance by α2, and the injected noise is assumed to be inde-
pendent of σ init. The system-specific signal-to-variance rela-
tionship is determined by a simple calibration detailed below.
Each term in Eq. (2) represents the sum of two main sources
of noise in x-ray imaging—quantum and electronic—which
are assumed to be independent. For example, the first two
terms of Eq. (2) can be written as a sum of quantum and elec-
tronic noise (subscripts q and e, respectively):

σ 2
LDP(u, v) = σ 2

q,LDP(u, v) + σ 2
e,LDP(u, v), (3a)

σ 2
init(u, v) = σ 2

q,init(u, v) + σ 2
e,init(u, v). (3b)

After substituting Eq. (3) into Eq. (2) and rearranging terms,
the injected variance can be written:

σ 2
inject(u, v) = (

σ 2
q,LDP(u, v) − α2σ 2

q,init(u, v)
)

+ (
σ 2

e,LDP(u, v) − α2σ 2
e,init(u, v)

)
. (4)

This suggests that the injected noise can also be represented
by two components, which are defined to be the quantum and

electronic injected variance:

σ 2
q,inject(u, v)

�= σ 2
q,LDP(u, v) − α2σ 2

q,init(u, v), (5a)

σ 2
e,inject(u, v)

�= σ 2
e,LDP(u, v) − α2σ 2

e,init(u, v). (5b)

The two components comprise the total injected variance:

σ 2
inject(u, v) = σ 2

q,inject(u, v) + σ 2
e,inject(u, v), (6)

as in Eq. (4). The method for evaluating the injected quan-
tum noise [Eq. (5a)] and injected electronic noise [Eq. (5b)]
is explained in the following sections.

2.A.1.a. Quantum noise. The variance associated with
quantum noise increases approximately linearly with the
mean signal.31 More generally, however, the relationship can
be characterized by a function F, where

σ 2
q (u, v) = F (Ī )(u, v) (7)

and Ī is the mean signal in the projection. In practice, the
mean projections are unavailable from a single scan, so the
projections of the initial scan Iinit are used as a surrogate for
Īinit (and αIinit as a surrogate for ĪLDP). The injected quantum
variance is then related to the initial projections using the ap-
proximation:

σ 2
q,inject(u, v) ≈ F (αIinit)(u, v) − α2F (Iinit)(u, v), (8)

which generalizes Eq. (5a) to include a potentially nonlinear
relationship between σ 2

q and Ī . Since Iinit is an unbiased (al-
beit noisy) estimate of Īinit and F is locally well-approximated
as a linear transform, the approximation yields an estimate of
σ 2

q,inject that is also unbiased (albeit noisy). In this work, the
approximation is applied for a high-quality initial scan, and
further investigation is needed to verify the ability of a low-
dose initial scan to approximate the injected quantum vari-
ance and may require using recently developed methods by
Zabic et al.23

2.A.1.b. Electronic noise. A basic model for electronic
noise assumes that it is spatially invariant and independent of
the signal magnitude, with variance σ e

2. Therefore, the elec-
tronic variance of Eq. (5b) simplifies to

σ 2
e,inject(u, v) = (1 − α2)σ 2

e , (9)

which is uniform across the projection.
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FIG. 2. Flowchart illustration of the process for sim-
ulating low-dose projections. The noise injected to the
projection data accounts for both the magnitude and cor-
relation of both the quantum and electronic noise com-
ponents at an arbitrary level of dose reduction (fraction
α) compared to the initial CBCT.

2.A.1.c. Noise correlations. In addition to the magnitude
of the injected noise, the correlations in the noise are an im-
portant consideration for CBCT not previously considered in
similar methods developed for low-dose CT simulation. Cor-
relations in quantum noise originate primarily from the scin-
tillator blur in (indirect-detection) FPDs, while correlations in
electronic noise may originate from line noise, crosstalk, etc.
in the readout electronics of the detector. These correlations
are represented by convolution kernels kq and ke for quantum
and electronic noise, respectively, which are also assumed
to be spatially invariant and independent of exposure. When
convolved with white (uncorrelated) noise, these kernels in-
troduce noise correlation to match that found in the projec-
tion data. Therefore, while multiplying the standard deviation
map σ q,inject by white noise wq(u, v) ∼ N (0, 1) iid (indepen-
dent and identically distributed) would produce uncorrelated
noise of the desired magnitude for injection, the appropriate
degree of correlation can be introduced by convolving the re-
sulting product with the kernel kq, as in

nq,inject(u, v) = [(σq,inject · wq) ∗ kq](u, v), (10a)

where · denotes the Hadamard (element-wise) product and *
denotes 2D convolution. Because the standard deviation map
σq,inject(u, v) is derived from the initial projection Iinit(u, v),
which includes scintillator blur, the standard deviation map
exhibits a degree of unavoidable blur that could contribute
to errors in the magnitude of the injected noise nq,inject(u, v);
however, the error associated with blur in the noise map is
shown to be minor in results reported below. The injected
noise exhibits an accurate degree of correlation due to the
element-wise product with white noise (which produces spa-
tially uncorrelated noise) followed by convolution with the
noise kernel. Note that the kernels kq and ke have unit norm
so that the magnitude of the injected variance is unchanged

even after the correlations are introduced. Similarly, for the
electronic noise:

ne,inject(u, v) = [(σe,inject · we) ∗ ke](u, v), (10b)

with white noise we independent of wq. Although the effect
of each stage in the imaging chain is not directly modeled
(e.g., the conversion of x-rays to optical photons, which typi-
cally follows a non-Poisson distribution characterized by the
Swank factor), the first- and second-moments of the true dis-
tribution in the detected signal can be well-approximated by a
Gaussian distribution.32 While this approximation is expected
to break down at very low signal, it is seen to provide a rea-
sonable model over a fairly broad exposure range, as shown
below.

Collecting terms, Eq. (1) can be expanded to a closed form
for generating LDP projections:

ILDP(u, v) = αIinit(u, v) + [(σq,inject · wq) ∗ kq](u, v)

+ [(σe,inject · we) ∗ ke](u, v), (11)

as illustrated in Fig. 2 for an anthropomorphic head phantom.

2.A.2. System calibration

The model presented above involves four key
characteristics—namely, F, σ e

2, kq, and ke—that can be
determined by a calibration measured from projections of
a simple phantom. To decouple the quantum and electronic
noise contributions of the total noise, projections at two
exposure levels are required. For exposure levels ξ = {A,
B}, the noise in a projection is found from the difference
of two successive projections in the same position (denoted
Iξ , 1 and Iξ , 2, where 1 and 2 index the two projections with
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independent noise realizations) and normalized by
√

2:

nξ (u, v) = (Iξ,1(u, v) − Iξ,2(u, v))/
√

2. (12)

The noise kernels are most easily related to the autocorrela-
tion Rξ (i, j) of the projection noise, which is computed using
the definition:

Rξ (i, j ) = 1

NuNv

∑
u,v

nξ (u, v)nξ (u − i, v − j )

= 1

NuNv

(nξ � nξ ), (13)

where Nu × Nv is the size of a region-of-interest (ROI) within
which the noise is determined, and � represents the cross-
correlation operation. Note that Rξ can also be written as the
sum of its components:

Rξ (i, j ) = Rq,ξ (i, j ) + Re(i, j ), (14a)

= ηmξ R̃q(i, j ) + Re(i, j ), (14b)

where Rq, ξ and Re represent the quantum and electronic noise
contributions to the autocorrelation, respectively, and mξ is
the mean value of Iξ in the ROI. We assume that Rq, ξ increases
in proportion to exposure and is characterized by a constant
slope η (which is in fact the slope of F when F is modeled
by a linear relationship), while Re is independent of exposure.
The tilde denotes an autocorrelation function normalized by
the variance, such as:

R̃q(i, j ) = Rq,ξ (i, j )/Rq,ξ (0, 0). (15)

After computing Rξ for both exposure levels, R̃q and Re can
be solved through a set of linear equations. For example, Re

is solved by extrapolating the exposure to zero, using:

Re(i, j ) = mBRA(i, j ) − mARB(i, j )

mB − mA

. (16)

While in some systems Re could be measured directly from
dark-field projections (detector readout in the absence of
x-ray exposure), the projections would be zero-mean with
electronic noise producing an equal number of positive and
negative analog-to-digital units (ADU). In the system used in
experiments below, all values were clipped at 0 ADU by the
manufacturer (presumably so that an unsigned 16-bit integer
data format could be used), so the electronic noise could not
be accurately characterized without a positive mean signal to
ensure recorded values above 0 ADU—hence the use of two
nonzero exposure levels and extrapolation to zero exposure.

The autocorrelation functions can then be related to the
convolution kernels. Once R̃q (and R̃e) are determined by the
calibration, the corresponding kernels kq (and ke) can be esti-
mated such that they satisfy:

R̃q(i, j ) = (kq � kq)(i, j ). (17)

In the results below, the kernels were determined by using
the fminunc function in Matlab (MathWorks, Natick, MA) to
minimize the mean squared error between R̃q and kq � kq as
follows:

k̂q = argminkq
‖R̃q − (kq � kq)‖2

2, (18)

where each kq(i, j) was a free parameter within a small region
about i = j = 0 that depended on the spatial extent of Rq and
was set to 0 elsewhere to better condition the estimation. Al-
ternatively, Fourier methods for estimating and applying the
noise kernels could be considered but must be careful to keep
the simulated noise real-valued. As noted above, to preserve
the magnitude of the variance while introducing the correla-
tions, the norm of kq (and ke) must equal 1, which is satisfied
since:

∑
u,v

k2
q(u, v) = R̃q(0, 0) = 1. (19)

The electronic variance is given by σ e
2 = Re(0, 0), and the

signal mean-variance relationship F can be determined by
first sorting and binning the values in the average projection
Īξ = (Iξ,1 + Iξ,2)/2. The variance of nξ for the pixels in each
bin was plotted against the mean Īξ for the pixels in each bin,
after subtracting the electronic noise variance σ e

2 so that only
the quantum variance remains. A linear fit approximating F
can then be applied to the sample points derived from the
binned data.

2.B. Experimental methods

The proposed LDP method was experimentally tested
using a prototype mobile C-arm (modified Powermobil,
Siemens Healthcare, Erlangen, Germany; see Fig. 1) capa-
ble of CBCT. A computer-controlled motorized drive pro-
vided continuous rotation of the C-arm over a ∼178◦ orbit
while collecting 198 projections, and the source-axis dis-
tance (SAD) of 60 cm and source-detector distance (SDD) of
120 cm provided a ∼15 × 15 × 15 cm3 volumetric field of
view (FOV). A previously developed geometric calibration
phantom was used to measure the source-detector position
of each projection relative to the C-arm isocenter, which was
represented as projection matrices.33–35 The x-ray source was
operated in pulsed-fluoroscopic mode, with the tube potential
fixed at 100 kVp while the tube output of the scan was varied
from 20–320 mAs in the head and 30–480 mAs in the body.

The C-arm was equipped with a Varian PaxScan 3030+
FPD (Varian Medical Systems, Palo Alto, CA) operated by
the system manufacturer in 2 × 2 binning mode (768 × 768
effective pixels at 388 μm pitch) and in dual-gain mode to in-
crease the signal dynamic range. For each projection, a high-
gain image was recorded to provide a larger dynamic range
for low signal values, while a low-gain image was recorded to
prevent saturation of high signal values. The dual-gain mea-
surements were then corrected for detector dark current offset
and combined into a 16-bit unsigned integer ADU value per
pixel,36 with a minimum signal value of zero enforced. These
corrected and combined projections were the input to the
LDP calibration and validation. Due to the different gains, the
signal-variance relationship F was composed of two distinct
regions as seen in Fig. 2—a low-signal, high-gain region and
a high-signal, low-gain region. Based on the empirical mea-
surements of F, it was found that the low-signal region ranged
from [0, 360] ADU, while the high-signal region ranged from
[440, 216−1] ADU. Therefore, in approximating F with a
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linear relationship, separate linear fits were applied to the two
regions. A linear interpolation was applied between the fitted
values at 360 and 440 ADU to provide a piecewise-linear fit
to F that ensures continuity and an increasing relationship.

Radiation dose was previously measured and reported in
the head and body,9, 37 using a 0.6 cm3 Farmer ionization
chamber (Accu-Pro, RadCal, Monrovia, CA). The head dose
was measured in an acrylic 16 cm diameter cylindrical CTDI
phantom, and good linearity was observed between specified
tube output (mAs) and measured dose, with a conversion of
0.041 mGy/mAs at 100 kVp. The dose in the abdomen was
measured in an oblate abdominal phantom (QRM GmbH,
Erlangen, Germany) and found to be 0.026 mGy/mAs at
100 kVp.

2.B.1. Calibration and assessment of LDP
in head imaging

The accuracy of the LDP method was first evaluated for
head imaging. Calibration measurements for F, σ e, kq, and ke

were obtained with the 16 cm acrylic cylinder wrapped in an
8 mm thick PVC layer (simulating the skull) scanned twice
each at settings of 100 kVp, {20, 40, 80, 160, and 320} mAs.

Following calibration, quantitative analysis of LDP accu-
racy was performed in an anthropomorphic head phantom
comprising a human skull encased in Rando tissue-equivalent
plastic with seven 12.7 mm diameter plastic spheres embed-
ded within the interior of the cranium with contrast rang-
ing from ∼40 to 900 HU (The Phantom Laboratory, Green-
wich, NY; see Fig. 1). The head phantom was scanned twice,
each at the same techniques as the calibration phantom. The
320 mAs technique was used as the “initial” CBCT, and LDP
projections were formed at 20, 40, 80, and 160 mAs. The re-
constructed LDP images were then compared with real im-
ages at the same techniques. As detailed below, the two sets
of scans (and preview images) at each technique allowed de-
termination of image noise from the difference images of two
iid realizations.

2.B.2. Calibration and assessment of LDP
in body imaging

Since body imaging involves increased attenuation and
scatter compared to head imaging (with possible effects on
F and kq), a separate calibration was performed for body
imaging using the oblate abdominal QRM phantom. A second
oblate thoracic phantom (QRM GmbH, Erlangen, Germany)
was placed immediately superior to the abdomen phantom,
and an acrylic 32 cm CTDI body phantom was placed imme-
diately inferior to provide fairly realistic scatter from outside
the imaging volume. The imaging techniques were 100 kVp,
{30, 60, 120, 240, and 480} mAs, each acquired twice.

After calibration with the abdominal phantom, studies
were conducted using a fresh, unfixed cadaveric torso pre-
senting realistic bone, soft-tissue structures, and fine-detail
gas pockets in the bowel. The same imaging techniques as
the body calibration were acquired for the cadaver, with the
480 mAs scan used as the “initial” CBCT, and the remaining
scans used for comparison between LDP and real images.

2.C. Image reconstruction

In addition to conventional filtered backprojection (FBP)
reconstruction, we applied the penalized-likelihood (PL)
framework as a representative selection of the much broader
class of MBIR algorithms such as total-variation (TV)
minimization,38 penalized weighted least-squares,39 com-
pressed sensing,40 and tight-frame regularization.41 The LDP
and real CBCT projections were both reconstructed using
FBP and PL. Note that the purpose of the work was not to
make a direct comparison between FBP and PL, although
such comparisons could potentially be facilitated with accu-
rate LDP methods that eliminate the need for scans at multiple
dose levels. Rather, the goal was to assess whether the LDP
noise injection in projections is sufficiently accurate to pro-
duce realistic images in either reconstruction method. There-
fore, for both reconstruction algorithms, the LDP and real
projections were reconstructed in the same manner so that
any differences in the reconstructed images originate from
the accuracy of the proposed LDP method and its underlying
assumptions rather than the reconstruction algorithm. While
both FBP and PL offer reconstruction parameters that may be
freely tuned (for example, trading off spatial resolution and
image noise), for simplicity only one set of parameters was
selected that was representative of each reconstruction algo-
rithm.

All images were reconstructed with isotropic 0.6 × 0.6 ×
0.6 mm3 voxels using Matlab, which interfaced with custom
external libraries for the computationally intensive 3D for-
ward and backprojectors. The projectors were implemented in
CUDA for GPU acceleration (GTX 680, nVidia, Santa Clara,
CA) and utilized the separable footprints with trapezoid func-
tions (SF-TT) method for projecting voxels onto the detector
plane.42, 43 While other projection methods could have been
used, SF-TT was shown by Long et al. to be more accurate
than other methods, such as the distance-driven method or
Siddon’s method.43–45

2.C.1. Cone-beam filtered backprojection (FBP)

Cone-beam FBP reconstruction was performed with a
modified Feldkamp-Davis-Kress (FDK) algorithm applied to
the line integrals l = −log(I/I0), where I is a projection (pre-
view or real) and I0 is the flood-field projection.46 A minimum
value of I = I0e−8 was enforced (i.e., the line integrals were
capped at 8, corresponding to ∼40 cm water taken as a
reasonable estimate of object diameter for the abdomen) to
avoid streak artifacts from photon starvation. Although clip-
ping the values like this may introduce a bias in the line in-
tegrals, the method was applied to both the preview and real
projections, which provided a consistent comparison between
the two. The lateral edge values were extended beyond the
detector edge (in the u-direction) as a form of basic trunca-
tion correction, and a Hann window with cutoff frequency
fc = 0.4 × fNyquist was applied to the ramp filter. No scat-
ter or beam-hardening corrections were applied to either the
preview or real reconstructions, although the LDP process is
compatible with various artifact correction or postprocessing
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methods that might be applied, since it uses the projection
data directly.

2.C.2. Penalized likelihood (PL) iterative
reconstruction

The penalized likelihood method combines a data con-
sistency term with image regularization to form the recon-
structed image. The data consistency term utilizes a statisti-
cal model of the projections I to construct the log-likelihood
function L(μ; I) for image μ, while image regularization pe-
nalizes the image roughness R(μ) with strength β. The recon-
structed image is then the solution μ̂ to the following opti-
mization problem:

μ̂ = arg maxμL(μ; I ) − βR(μ), (20)

which seeks to maximize the likelihood function while penal-
izing image roughness (e.g., noise). In order to apply a sta-
tistical model to the data, the projection measurements I and
flood-field air scan I0 were first normalized by the effective
detector gain η0, so that

Ĩ = I/η0,

Ĩ0 = I0/η0, (21)

where

η0 = Var(I0)/E[I0]. (22)

Then a basic Poisson statistical model was applied, with

Ĩ ∼ Poisson(Ĩ0exp(−Aμ)), (23)

where A is the forward-projection operator. Although we have
already shown that the true statistics are neither independent
(due to spatial correlations) nor Poisson distributed (due to
the various detector gain stages and additive electronic noise),
this model provides a basic form of statistical weighting of the
measurements that is commonly applied in practice. The log-
likelihood function (ignoring constant terms) is then

L(μ; I ) ∼= −
∑

i
[Ĩ0 exp(−Aμ)]i + Ĩi[Aμ]i . (24)

The image regularization reduces image noise in a manner
that generally trades off spatial resolution with image noise
(though in a different manner than FBP). Regularization was
applied to a first-order neighborhood N of each voxel, with
unity weights wjk and penalty function ψ applied to the dif-
ference of neighboring voxels:

R(μ) =
∑

j

∑
k∈N wjkψ(μj − μk). (25)

Rather than a basic quadratic penalty function ψQ(x) = 1
2x2,

an edge-preserving penalty is often adopted to provide lower
noise images while maintaining edge information. In results
reported below, the Huber penalty function

ψH (x) =

⎧⎪⎨
⎪⎩

1

2δ
x2, |x| ≤ δ

|x| − δ

2
, |x| > δ

(26)

was used, which provides a greater degree of edge-
preservation for smaller δ at the potential expense of blotchy
image texture.

The PL reconstructions were initialized by the corre-
sponding FBP reconstructions and iteratively solved with the
ordered subset, separable quadratic surrogates (OS-SQS)
technique, which allowed for all voxels to be updated simulta-
neously per iteration.47, 48 The primary computational burden
lay with the forward- and back-projection operations per iter-
ation, which were accelerated by GPU implementation of the
projectors. The OS-SQS algorithm was run for 200 iterations
with 11 subsets, and the selected PL reconstruction parame-
ters were δ = 10−3 mm−1 and β numerically equivalent to the
tube output (e.g., β = 20 for the 20 mAs scan), which coin-
cidentally served as a convenient selection of β (as opposed
to a formal relationship) that also took into account the need
for larger β with higher I0. These values of δ and β served as
a fairly general-purpose selection that avoided patchy image
noise and preserved spatial resolution. Alternative parame-
ter selection—for example, specifically to enhance soft-tissue
imaging performance37—is possible and completely compat-
ible the LDP process.

2.D. Assessment of image quality and accuracy
of LDP images

The accuracy of the LDP was quantitatively assessed by
comparison of spatial resolution, image contrast, and image
noise characteristics of the LDP and real low-dose images.
Since neither the injection of noise (for the LDP images) nor
the reduction of exposure (for the real images) was expected
to affect the spatial resolution or absolute contrast, these two
metrics provided a “sanity check” to ensure that the LDP algo-
rithm did not have unexpected adverse effects on image qual-
ity, and emphasis of the analysis was on the accuracy of the
LDP image noise magnitude and correlation.

2.D.1. Spatial resolution

The spatial resolution was assessed by measuring the edge
spread function (ESF) of the high-contrast sphere (3 o’clock
position, Fig. 1) in the anthropomorphic head phantom. The
sphere was divided into 12 nonoverlapping 30◦ conical sec-
tions whose apices were at the center of the sphere and axes
lay in the axial plane, and an error function (erf) was fit to
the edge. The derivative of the erf (a Gaussian) yielded the
line spread function (LSF) characterized by its full-width at
half-maximum (FWHM). The difference in measured FWHM
between the LDP and real CBCT images for all 12 conical
sections and for both realizations at each dose level provided
24 measurements for evaluating the preservation of spatial
resolution.

2.D.2. Image contrast

The seven spheres embedded in the anthropomorphic head
phantom provided varying contrast levels (ranging from ∼40
to 900 HU) that were compared between the preview and real
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images. For each reconstructed image, the contrast of each
sphere was determined by subtracting the average attenuation
within the sphere (20 voxel diameter ROI) from the average
attenuation adjacent to the sphere (also a 20 voxel diameter
ROI). Agreement was assessed by examining the difference
in contrast between the LDP and real images for all seven
spheres and in both realizations at each dose level. Although
the images were reconstructed with units of mm−1, the image
contrast (and noise) were converted to HU by an approximate
factor of 5 × 104 HU/mm−1 determined from CBCT images
of known materials (e.g., water) in comparable head and body
phantom configurations.

2.D.3. Image noise

Since CBCT images were acquired twice at each dose
level, subtraction of two reconstructions at each tube output
level was used to measure image noise (after normalization
by

√
2). The noise magnitude was first assessed by measuring

the standard deviation within an ROI. In the anthropomorphic
head phantom, the standard deviation was measured in a 51
× 51 voxel ROI at the center of the axial plane for the 31 cen-
tral slices and averaged. In the cadaveric torso, the standard
deviation was measured in a 51 × 51 voxel ROI centered on
the right kidney (i.e., within a reasonably homogeneous re-
gion of soft-tissue) in the coronal plane and averaged across
31 coronal slices centered on the kidney.

Accurate reproduction of noise texture in the reconstructed
LDP images was also assessed by computing the noise-power
spectrum (NPS).49–51 Both axial-plane and longitudinal (z-)
direction NPS were considered, since detector correlations
were expected to affect both. In the head phantom, the 2D
NPS was computed in the axial plane and averaged in the lon-
gitudinal direction for the 51 × 51 voxel ROIs in the 31 axial
slices at the center of the volume. A radial average of the 2D
NPS was performed to reduce statistical error in the NPS es-
timate. In the cadaver, the 1D NPS was computed in the lon-
gitudinal (z-) direction and averaged in the other directions
for the 51 × 51 voxel ROIs in the 31 coronal slices centered
on the kidney. It was assumed that within these small ROIs,

the properties were locally stationary such that the computed
NPS were representative of the local noise texture. Addition-
ally, the ROIs avoided high-contrast edges so as to avoid the
nonlinear behavior of the PL edge-preserving penalty.

Finally, as a basis of comparison to naïve simulation of
noise without proper accounting of correlation, LDP projec-
tions were created by injecting white noise rather than corre-
lated noise (i.e., using kq = ke = δ2, a 2D discrete impulse
function). The injected noise therefore possessed the correct
magnitude but was not spatially correlated. The resulting LDP
images were similarly assessed in terms of the NPS, hypothe-
sizing that the reconstructed image NPS would be lower when
injecting white noise due to the effect of the reconstruction
process.

3. RESULTS

3.A. Calibration phantom empirical results

3.A.1. Signal-variance mapping

Figure 3(a) illustrates a single projection of the 16 cm
acrylic cylinder from the 1.6 mGy (100 kVp, 40 mAs) acqui-
sition, and the difference of two such projections [Fig. 3(b)]
yields a noise realization (after normalization by

√
2).

Figure 3(c) shows the variance in the difference image plotted
against the mean signal in the projection. Two linear regions
can be observed for this FPD (which employs a dual-gain
readout mode)—a high-gain region from 0 to ∼360 ADU and
a low-gain region above ∼440 ADU. Within each region, a
linear fit described the signal-variance relationship well (R2 >

0.99). A seemingly nonmonotonic relationship was observed
in the transition between the two regions. We believe the tran-
sition region corresponds to signal overlap between the two
gain modes, and the behavior of the variance-signal relation-
ship here could be due to a slightly suboptimal combination
(from a noise perspective) of dual-gain readout by the sys-
tem manufacturer. Because the observed effect covered only
a small fraction of the detector dynamic range, for simplicity,
the transition region was approximated by a linear interpola-
tion between the low-gain and high-gain linear fits that might
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FIG. 3. Calibration of the (potentially nonlinear) signal-variance relationship. For head imaging, a 16 cm acrylic cylinder served as a simple calibration phantom.
(a) Single projection of the cylinder from the 1.6 mGy (100 kVp, 40 mAs) acquisition, with grayscale pixel values in ADU. (b) A noise realization computed
from the difference image of two projections (normalized by

√
2), displayed in ADU. (c) Signal mean-variance relationship for a head-sized object and the

1.6 mGy technique. The points represent the measurements, and the lines represent linear fits in the high-gain [0, 360] ADU and low-gain [440, 216−1] regions,
with a linear interpolation in the transition region between [360, 440] ADU.
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FIG. 4. Central 5 × 5 region of the measured noise autocorrelation (a) R̃q and (c) R̃e from the calibration phantom. The noise kernels (b) kq and (d) ke estimated
from the respective autocorrelation functions.

be better generalized to other detectors, and the mismatch in
projection variance within this narrow region was expected to
have a small effect overall. The y-intercept is near 0, since
the measured electronic variance σ e

2 = 4.47 ADU2 was sub-
tracted out prior to fitting.

3.A.2. Noise correlation kernels

Noise autocorrelation functions were computed as in
Eq. (13) using projections of the calibration phantom from
the 100 kVp, 20 and 40 mAs scans. As illustrated in Fig. 4,
the major portion of quantum noise correlation was contained
within the central 5 × 5 region of R̃q , with an autocorrelation
coefficient of up to 0.22 for neighboring pixels and falling
to zero outside the central 5 × 5 region. A slight asymmetry
in the u- and v-directions was observed, with stronger cor-
relations in the u-direction. Although commonly assumed to
be uncorrelated, Re was found to exhibit correlation across
v = 0, the direction of detector readout lines, with an auto-
correlation coefficient of up to 0.08 for pixels along the same
readout line.

Due to the generally ill-conditioned nature of estimating
kq as a free parameter consistent with R̃q as in Eq. (18), only
the central 3 × 3 region of kq was allowed to vary, with a
value of 0 enforced elsewhere. For estimating ke, only the el-
ements along v = 0 were allowed to vary from zero, which
captured most of the correlated behavior of electronic noise.

More advanced models for estimating ke could also account
for the small amounts of negative correlation observed along
v = ±1. The resulting noise kernels (Fig. 4) were used in the
LDP of the anthropomorphic head phantom.

3.B. Anthropomorphic head phantom

LDP reconstructions are shown in Fig. 5, computed from
an initial CBCT acquired at 320 mAs (13.1 mGy). In each
case, the LDP image is shown split side-by-side with a real
CBCT image acquired at the reduced-dose technique (20, 40,
80, and 160 mAs, corresponding to 0.8, 1.6, 3.3, and 6.6 mGy,
respectively). The LDP and real images agree qualitatively,
demonstrating realistic image quality, including the increased
noise at lower dose and the effect of reconstruction algorithm
(FBP or PL). For example, FBP has streak artifacts from the
incomplete orbit and reduced image intensity at the edge of
the circular FOV, while PL mitigates these artifacts. Addition-
ally, with the selected PL parameters, the PL images exhibit
lower noise and visibly different noise texture than the cor-
responding FBP images. Such characteristics are readily ap-
preciated in viewing the LDP images and could be difficult to
appreciate otherwise, illustrating how the LDP process could
guide low-dose protocol selection in a manner that includes
nonlinear artifacts and complex characteristics of the recon-
struction method.

F
B

P
P

L

6.6 mGy3.3 mGy1.6 mGy0.8 mGy

Preview Real

Preview Real

FIG. 5. Side-by-side split comparison between LDP
and real CBCT images acquired at dose reduced from
that of the initial image (13.1 mGy). In each case, the
left half shows the LDP, and the right half is a real
CBCT acquired at the stated low-dose technique. (Top
row) FBP reconstructions and (bottom row) PL recon-
structions. The image quality and noise characteristics
demonstrate qualitative agreement, with LDP images re-
alistically depicting the increase in noise at lower dose
and a distinct difference in noise texture observed be-
tween reconstruction methods. Images are displayed on
a [0.015, 0.023] mm−1 grayscale window.
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FIG. 6. Quantitative comparison between LDP and real CBCT images for FBP (black) and PL (gray) reconstructions across all dose levels. (a) Difference in
measured spatial resolution (mm). (b) Difference in measured contrast (HU) of spheres in the head phantom. (c) Comparison of measured image noise (HU).
Each metric demonstrates strong agreement between LDP and real CBCT images.

As shown in Fig. 6(a), the difference in spatial resolution
measured between the LDP and real CBCT images showed an
agreement within 10 ± 37 μm (mean ± std) for FBP and 9 ±
62 μm for PL across all dose levels. Additionally, the image
contrast [Fig. 6(b)] exhibited agreement within −0.09 ± 2.00
HU for FBP and 0.50 ± 1.28 HU for PL across all dose lev-
els. These findings demonstrate that the LDP process of scal-
ing projections and injecting noise does not alter the spatial
resolution or image contrast, as expected. On the other hand,
the image noise increases at lower dose as shown in Fig. 6(c),
showing agreement within 2.9% for FBP and 6.4% for PL.
A power-law curve fit (y = axb + c) was applied to the
measured noise at the five dose levels and plotted up to the
13.1 mGy dose of the initial CBCT. The LDP and real CBCT
curve fits overlap almost identically, with PL presenting lower
noise than FBP for this particular set of reconstruction param-
eters (which are not meant to serve as a direct comparison
between PL and FBP).

The local NPS of 3D image reconstructions demonstrate
strong agreement when detector correlations are correctly

modeled, as shown in Fig. 7 for the 1.6 mGy case. The noise
exhibits similar levels of magnitude and texture between the
LDP and real CBCT images and illustrates the difference in
noise characteristics between the FBP and PL reconstructions.
The 2D axial NPS side-by-side split-comparison exhibits the
expected Hermitian symmetry, while again illustrating the dif-
ference in noise magnitude and texture between FBP and
PL reconstructions. The enhanced lobes along the fx-axis
result from the asymmetry of the object (i.e., the head phan-
tom exhibits a larger path length in the anterior-posterior (y-)
direction).

The radially averaged NPS plot [Fig. 7(c)] demonstrates
strong agreement between the LDP and real CBCT noise,
with the NPS for LDP peaking at a slightly lower value by
2.5% for FBP and 3.1% for PL. However, preview images
simulated with a naïve white noise injection exhibit substan-
tially lower noise-power and do not realistically portray the
image noise at reduced dose. The peak of the NPS with naïve
white noise injection is lower by 41.5% for FBP and 46.5%
for PL, and the shape of the curve (and therefore, the noise

FIG. 7. Comparison of reconstructed image NPS measured in LDP and real CBCT images at 1.6 mGy. (a) Difference image in the axial plane for (top) FBP and
(bottom) PL reconstructions, showing qualitatively good agreement in the magnitude and noise between LDP and real images. The white square in (a) marks
the position of the 3D ROI for computing the local NPS. Display window [−80, 80] HU. (b) Axial NPS shown in split side-by-side comparison of LDP and
real CBCT. Display window [0, 3200] HU2 mm2. (c) Radially averaged axial NPS. The NPS of LDP and real CBCT images are in close agreement, whereas
preview images simulated using a naïve injection of white noise underestimates the NPS by almost a factor of 2.
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FIG. 8. Comparison of LDP and real CBCT images in a coronal slice of the cadaveric torso. The top half of each image is from the LDP, and the bottom half is
from a real CBCT acquisition at each technique. The differences in image quality in (top row) FBP and (bottom row) PL reconstructions at different dose levels
is well-depicted by LDP. Display window [0.016, 0.022] mm−1.

texture) also differs from the real image NPS. While the in-
jected white noise contains an equal amount of noise-power
at all frequencies, the injected correlated noise was formed by
convolution with noise kernels that boosts the noise-power at
lower frequencies (particularly kq, which has a low-pass char-
acteristic typical of an indirect-detection FPD) while reduc-
ing the injected noise power at higher frequencies in a man-
ner that conserves the injected noise magnitude (since ‖kq‖
= ‖ke‖ = 1). Because image reconstruction effectively acts as
a bandpass filter in the axial plane (i.e., ramp filter with Hann
window and backprojection in FBP, or image regularization
in PL), the boosted lower-frequency noise-power of the in-
jected correlated noise is evident by the higher main lobe of
the reconstructed image NPS.

3.C. Cadaver abdomen

Following a similar phantom calibration process as de-
tailed for the head calibration but instead using the QRM
body phantom, LDP images for the cadaver were produced
as shown in Fig. 8. The split comparison shows qualitatively
good agreement between the LDP and real CBCT images in
features such as the fine-detail, high-contrast vertebrae, the
contrast of soft-tissue structures, and the increase in image
noise at lower dose. The LDP images could enable a clinician
to confidently select a patient-specific, minimum-dose proto-
col in a manner that directly considers the imaging task (as
well as the observer’s preferences)—for example, in select-
ing a protocol sufficient for high-contrast bone detail, PL at
0.8 mGy. Numerous other considerations could (and should)

be incorporated in technique selection as well—e.g., although
PL improves overall image quality, FBP may be preferred
for reasons of speed in fast, repeat scans sufficient for high-
contrast visualization. On the other hand, for visualization of
the kidney, liver, muscle, and surrounding fat, LDP would en-
able the user to determine a minimum-dose technique and
reconstruction algorithm sufficient for imaging of low-
contrast soft tissues—e.g., PL at 3.1 mGy.

As shown in Fig. 9(a), difference images (coronal slices)
in 3D reconstructions of the cadaver images at 1.6 mGy show
the noise to be strongly correlated and nonstationary. For ex-
ample, PL exhibits noise that is highly dependent on the ob-
ject, and edge-preservation of high contrast structures such as
bone-tissue or air-tissue interfaces causes larger differences
at these edges in the difference image. The ROI in the soft
tissue (kidney) therefore provides more homogeneous noise
characteristics for standard deviation and NPS analysis. The
agreement in standard deviation between LDP and real CBCT
images was within 6.7% for FBP and 1.1% for PL across all
dose levels [Fig. 9(b)]. For the longitudinal NPS at 1.6 mGy
[Fig. 9(c)], LDP exhibited peak noise-power at a spatial fre-
quency that was just 3.7% lower for FBP and 4.7% higher
for PL, likely within experimental error. On the other hand,
simulation of low-dose images with a naïve injection of white
noise yields NPS peaking at a frequency 40.6% lower for FBP
and 44.7% lower for PL and grossly underestimating the total
noise magnitude. Here again, the correlations in the quantum
noise boost the lower frequencies in the injected noise, and
a white noise model leads to inaccurate noise estimates that
could cause one to underestimate the effect of low-dose pro-
tocols on image noise.
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FIG. 9. Comparison of LDP and real CBCT image noise in the torso cadaver. Difference images (coronal slice, 1.6 mGy, display window [−50, 50] HU) for (a)
FBP and (b) PL reconstructions, with the LDP in the top half and real CBCT in the bottom half. (c) Image noise evaluated in a ROI in the kidney as a function of
dose. (d) Longitudinal NPS (1.6 mGy) shows close agreement in the LDP and real CBCT noise, whereas a naïve white noise injection underestimates the NPS.

4. DISCUSSION AND CONCLUSIONS

The LDP method was found to accurately depict CBCT
image quality for scan techniques of lower dose than an ini-
tial reference, including faithful reproduction of spatial res-
olution, contrast, noise, and NPS characteristics. Although
the results showed comparisons at specific dose levels, recon-
struction methods, and smoothing/regularization parameters,
the LDP method is general in that it operates directly on the
initial reference projections data; therefore, the dose reduction
factor (α ≤ 1) can be freely adjusted, and any reconstruction
method and smoothing/regularization parameter selection can
be applied. The correlated noise injection accounts for both
quantum and electronic noise sources, as well as their spa-
tial correlation, which in turn affects the reconstructed im-
age NPS. Without accounting for these spatial correlations,
the preview image would not exhibit the correct noise texture
and, more importantly, tends to underestimate the real image
noise magnitude. For quantum noise, the scintillator blur in-
duces noise correlations to the first-order neighborhood of a
pixel (resulting in a 3 × 3 kernel) for the FPD considered in
this work, and the electronic noise possessed a small corre-
lated component along the entire readout line. In the results
reported here, the same dose reduction factor α was applied
to all projections of a scan, but the LDP method can simi-
larly allow for tube current modulation by applying different
α ≤ 1 to each projection according to the desired modulation.
Additionally, LDP could be used to simulate dose reduction
via sparse projection acquisition by discarding a subset of the
projections.

The calibration procedure involving a simple head or body
cylinder could be applied to other CBCT systems as well
and performed as a part of the overall routine system calibra-
tion. Our results suggest that the calibration is fairly robust
to object size when the calibration object is of similar size
and attenuation to the actual subject—e.g., a 16 cm acrylic
cylinder for head imaging or a simple abdomen phantom for
body imaging. Future work could include assessment across
a broader range in patient size and C-arm FOV positioning
to assess overall robustness to calibration in routine clinical
use. Additionally, the signal mean-variance relationship, elec-
tronic noise, and noise kernels may not be spatially invariant,
as assumed in this work, with possible nonstationarity arising

from nonuniform FPD response, the heel effect, or use of a
bowtie filter. These may require the noise characteristics to be
measured locally rather than using a global characterization.

The proposed method is well-suited to clinical scenarios
involving repeat CBCT scanning (e.g., fractionated IGRT)
and requires an initial reference CBCT obtained at nomi-
nal dose. In many contexts, however, the patient may have
a preoperative (or diagnostic) CT available prior to treatment.
Therefore, the ability to compute a LDP from an initial CT
image would allow even the initial CBCT to be previewed
and acquired at lower dose. There are, of course, several addi-
tional challenges with such a CT-to-CBCT LDP approach that
are not a factor in the CBCT-to-CBCT LDP method reported
above, including matching spatial resolution, x-ray energy
and filtration, beam hardening, and scatter. Nonetheless, the
noise model developed in this work enters in the same man-
ner as described above in a CT-to-CBCT LDP. An additional
useful feature of LDP to be investigated in future work is
the virtual insertion of interventional devices, since such de-
vices (e.g., a deep-brain stimulation electrode or transpedicle
spine screws) may be introduced during a procedure and re-
sult in degraded image quality. The LDP could therefore al-
low the user to anticipate the change in image quality aris-
ing from the device (e.g., photon starvation) and select the
optimal protocol based on images with realistic artifact and
noise. One possible approach—analogous to the initialization
step in the known-component reconstruction method of Stay-
man et al.52—would be to allow the user to virtually place
the interventional device in its anticipated location in the im-
age, followed by forward-projecting the device and modify-
ing the projections so that the affected rays are attenuated and
increased in noise.

Finally, the correlated noise injection for simulating LDP
projections only requires a small computational effort to gen-
erate a noise realization. Therefore, generating the LDP im-
ages is more likely constrained by image reconstruction time
(although a single axial slice may suffice for visualization
and low-dose technique selection), and ideally the LDP pro-
jections would be reconstructed using the same process as
the real CBCT. In surgery, the timescale between CBCT ac-
quisitions at specific milestones in the operation may range
from ∼10 to 60 min (depending on the procedure and work-
flow), and in IGRT timescales of one day between fractions
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would allow for a potentially large menu of LDP images to
be computed at various levels of dose reduction, reconstruc-
tion techniques, and reconstruction parameters. The use of
LDP should nonetheless be well-integrated into the work-
flow to avoid excess manual intervention and prevent user
error—for example, the image menu could be constrained to
a fixed number of images within a predetermined dose range
that avoids unreasonably low dose protocols while still en-
couraging dose reduction. The patient-specific LDP images
would then enable a number of new capabilities in prospective
dose reduction—including task-specific and observer-specific
selection of minimum-dose protocols. Additionally, the use
of LDP in retrospective studies would be equally valuable
for setting general guidelines (e.g., CBCT technique charts)
based on attributes such as patient size and imaging task, as
well as for training purposes for new users of CBCT systems.
Therefore, the new LDP method can be a powerful tool to
both prospective and retrospective approaches by providing
accurate visualization of the impact of low-dose protocols and
(advanced) reconstruction methods on CBCT image quality.

ACKNOWLEDGMENTS

This research is supported by a 2013 AAPM Research
Seed Funding grant, NIH fellowship F32EB017571, and
academic-industry partnership with Siemens Healthcare (XP
Division, Erlangen, Germany). The authors would like to
thank Ronn Wade (University of Maryland Anatomy Board)
for assistance with cadaver specimens, Joshua Levy (The
Phantom Laboratory, Greenwich, NY) for assistance with
phantom development and construction, and Dr. Jonathan
Lewin and Laurie Pipitone (Department of Radiology, Johns
Hopkins University) for support and research infrastructure.

a)Author to whom correspondence should be addressed. Electronic mail:
jeff.siewerdsen@jhu.edu; Telephone: 443-287-6269.

1R. Fahrig, A. J. Fox, S. Lownie, and D. W. Holdsworth, “Use of a C-arm
system to generate true three-dimensional computed rotational angiograms:
Preliminary in vitro and in vivo results,” Am. J. Neuroradiol. 18(8), 1507–
1514 (1997).

2D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-
panel cone-beam computed tomography for image-guided radiation ther-
apy,” Int. J. Radiat. Oncol., Biol., Phys. 53(5), 1337–1349 (2002).

3J. H. Siewerdsen et al., “Volume CT with a flat-panel detector on a mo-
bile, isocentric C-arm: Pre-clinical investigation in guidance of minimally
invasive surgery,” Med. Phys. 32(1), 241–254 (2005).

4M. J. Daly, J. H. Siewerdsen, D. J. Moseley, D. A. Jaffray, and J. C. Irish,
“Intraoperative cone-beam CT for guidance of head and neck surgery:
Assessment of dose and image quality using a C-arm prototype,” Med.
Phys. 33, 3767–3780 (2006).

5G.-H. Chen, “Design and development of C-arm based cone-beam CT for
image-guided interventions: Initial results,” Proc. SPIE 6142, 614210-1–
614210-12 (2006).

6M. J. Wallace, M. D. Kuo, C. Glaiberman, C. A. Binkert, R. C. Orth, and
G. Soulez, “Three-dimensional C-arm cone-beam CT: Applications in the
interventional suite,” J. Vasc. Interv. Radiol. 19(6), 799–813 (2008).

7R. C. Orth, M. J. Wallace, and M. D. Kuo, “C-arm cone-beam CT: General
principles and technical considerations for use in interventional radiology,”
J. Vasc. Interv. Radiol. 19(6), 814–820 (2008).

8A. C. Miracle and S. K. Mukherji, “Conebeam CT of the head and
neck, part 2: Clinical applications,” Am. J. Neuroradiol. 30(7), 1285–1292
(2009).

9S. Schafer et al., “Mobile C-arm cone-beam CT for guidance of spine
surgery: Image quality, radiation dose, and integration with interventional
guidance,” Med. Phys. 38, 4563 (2011).

10K. J. Strauss and S. C. Kaste, “The ALARA (as low as reasonably achiev-
able) concept in pediatric interventional and fluoroscopic imaging: Striving
to keep radiation doses as low as possible during fluoroscopy of pediatric
patients: A white paper executive summary,” Radiology 240(3), 621–622
(2006).

11K. Tsiklakis, C. Donta, S. Gavala, K. Karayianni, V. Kamenopoulou, and
C. J. Hourdakis, “Dose reduction in maxillofacial imaging using low dose
cone beam CT,” Eur. J. Radiol. 56(3), 413–7 (2005).

12J. Wang, T. Li, Z. Liang, and L. Xing, “Dose reduction for kilovotage cone-
beam computed tomography in radiation therapy,” Phys. Med. Biol. 53(11),
2897 (2008).

13J. R. Mayo et al., “Simulated dose reduction in conventional chest CT:
Validation study,” Radiology 202(2), 453–457 (1997).

14D. P. Frush et al., “Computer-simulated radiation dose reduction for
abdominal multidetector CT of pediatric patients,” Am. J. Roentgenol.
179(5), 1107–1113 (2002).

15R. E. van Gelder et al., “CT colonography at different radiation dose levels:
Feasibility of dose reduction,” Radiology 224(1), 25–33 (2002).

16K. Hanai et al., “Computer-simulation technique for low dose computed to-
mographic screening,” J. Comput. Assist. Tomogr. 30(6), 955–961 (2006).

17W. J. H. Veldkamp, L. J. M. Kroft, J. P. A. van Delft, and J. Geleijns, “A
technique for simulating the effect of dose reduction on image quality in
digital chest radiography,” J. Digit. Imag. 22(2), 114–25 (2009).

18P. Massoumzadeh, S. Don, C. F. Hildebolt, K. T. Bae, and B. R. Whit-
ing, “Validation of CT dose-reduction simulation,” Med. Phys. 36(1), 174
(2009).

19T. M. Benson and B. K. B. De Man, “Synthetic CT noise emulation in the
raw data domain,” in 2010 IEEE Nuclear Science Symposium Conference
Record (NSS/MIC) (IEEE, Piscataway, NJ, 2010), pp. 3169–3171.

20R. M. S. Joemai, J. Geleijns, and W. J. H. Veldkamp, “Development and
validation of a low dose simulator for computed tomography,” Eur. Radiol.
20(4), 958–66 (2010).

21M. Söderberg, M. Gunnarsson, and M. Nilsson, “Simulated dose reduction
by adding artificial noise to measured raw data: A validation study,” Radiat.
Prot. Dosim. 139(1–3), 71–77 (2010).

22L. Yu, M. Shiung, D. Jondal, and C. H. McCollough, “Development
and validation of a practical lower-dose-simulation tool for optimizing
computed tomography scan protocols,” J. Comput. Assist. Tomogr. 36(4),
477–87 (2012).
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