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The floral transition is a key decision 
during plant development. While 

different species have evolved diverse 
pathways to respond to different environ-
mental cues to flower in the correct season, 
key properties such as irreversibility and 
robustness to fluctuating signals appear to 
be conserved. We have used mathematical 
modeling to demonstrate how minimal 
regulatory networks of core components 
are sufficient to capture these behaviors. 
Simplified models inevitably miss finer 
details of the biological system, yet they 
provide a tractable route to understand-
ing the overall system behavior. We com-
bined models with experimental data to 
qualitatively reproduce characteristics of 
the floral transition and to quantitatively 
scale the network to fit with available leaf 
numbers. Our study highlights the value 
of pursuing an iterative approach combin-
ing modeling with experimental work to 
capture key features of complex systems.

Global approaches to understand 
the regulatory transcriptional network 
involved in controlling the floral transition 
have revealed that hundreds of transcripts 
are specifically affected in their expression 
in the apex upon floral induction.1-4 Model-
ing such large genetic regulatory networks 
is a challenging task as the determination 
of all relevant parameters is rarely experi-
mentally feasible. The limited knowledge 
of component concentrations and kinetic 
interactions can result in a mathematically 
highly underdetermined problem. This 
means that the available data are not suf-
ficient to uniquely determine the underly-
ing parameters in the model, something 
that with typical biological data and mod-
els is rarely achieved.5 Methods have been 

developed, such as Boolean networks or 
systems identification, which simplify the 
description, thereby reducing the num-
bers of parameters. Boolean networks aim 
to capture the underlying biology in that 
the gene network structure is maintained 
but the complexity of the interactions is 
reduced, whereas systems identification 
(“black box”) focuses on capturing the 
overall behavior, typically employing small 
systems of linear equations that do not 
map well onto the underlying biological 
mechanisms.6,7 Another approach is to 
reduce the gene network while preserving 
its core structure. Following this strategy,8 
we sought to simplify the large regulatory 
network that controls flowering down to a 
core set of regulatory activities.9 As shown 
in Jaeger et al. (2013), a fairly simple net-
work of core flowering time hubs10 is able to 
capture important characteristics of the flo-
ral transition.8 We approximated the effect 
of the various regulatory pathways that 
govern the floral transition by assuming 
they converge on the key regulator of flow-
ering in higher plants, FT.11-15 FT expres-
sion increases under inductive conditions, 
and together with the FD transcription 
factor,16,17 FT activates key floral meristem 
identity genes such as AP1. For a number 
of species, homologs of the Arabidopsis 
master regulator FT are a core element of 
the photoperiod pathway.18,19 We use AP1 
hub levels as a proxy for the flowering state. 
Rosette leaves, cauline leaves, or flowers 
are produced based on the levels of AP1 in 
the model. Increasing FT signals promote 
flowering time, noisy input signals are fil-
tered out, and once initiated, the transi-
tion is irreversible. Although the degree to 
which this behavior manifests itself is very 
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much parameter dependent, at a qualita-
tive level the model is consistent with the 
experimental observations. Furthermore, 

the model could be scaled to available leaf 
number data for a number of mutant geno-
types. The modeling suggested how TFL1 

signals contribute to 
the molecular basis for 
a non-flowering pheno-
type that has not been 
understood until now. 
For an extended network 
we found that, for some 
parameter values, initial 
levels of LFY and TFL1 
seem to control the final 
determinacy of the cell. 
Cells with higher initial 
TFL1 levels are able to 
repress LFY, and thus 
also AP1, to remain in a 
vegetative state, or high 
initial LFY levels can 
cause a floral fate as spec-
ified by AP1 levels.

Here we demon-
strate how 2 important 
properties of the floral 
transition, namely noise-
filtering and irreversibil-
ity, can be implemented 
by 3-node networks in 
feed-forward loops. The 
coherent feed-forward 
loop is a network motif 
that is commonly found 
in signaling networks.20 
As a major floral path-
way integrator, we have 
placed the active FT/FD 
complex16,17 at the start of 
the transcriptional feed-
forward loop, upregulat-
ing another integrator, the 
LFY hub (which includes 
the functional effect of 
SOC1), which both acti-
vate the floral initiator 
hub AP1,21,22 (Fig. 1A). If 
the joint regulation is with 
AND logic, this simple 
network has persistence 
detection and thus is able 
to be used as a noise filter 
that removes small blips 
in a signal.20 The equa-
tions are shown in Fig-
ure 1 and explained in the 
supplemental information 
along with the parameters 

and an IPython notebook.27 As the correct 
timing of the floral transition is crucial, it is 

Figure 1. Simple network motifs can capture characteristics of the floral transition. On the left hand side of the figure, 
3 simple networks are shown. The nodes consist of the complex FT with FD, and the f roteins LFY and AP1. On the right 
hand side, we show the responses of LFY (blue) and AP1 (red) to a short and a long incoming FT signal (magenta). The 
model uses a set of ordinary differential equations to describe the dynamic behavior of the system. We used step func-
tions for the transcriptional activation of genes and AND, OR, and AND/OR gating, depending on the network. In (A) a 
coherent feed-forward loop20 using an AND gate at AP1 is shown. This network motif has been described previously20,26 
and has been shown to exhibit noise filtering properties for short bursts of the incoming signal that are below the delay 
time through the different routes in the pathway. In (B) we show a regulated feed-forward loop with an OR gate at AP1. 
Once LFY reaches a concentration level that can activate AP1, this interaction is sufficient to maintain AP1 production 
even in the absence of the incoming signal FT. The network therefore shows a memory effect and irreversibility.26 In (C) 
we combine the key features of both networks. The logic gating uses OR for transcriptional activation at a reduced level 
but requires AND for maximal activation. This gives rise to compromised characteristics for the individual properties 
but through the introduction of a flowering threshold for AP1 it is possible to capture a level of robustness to noise and 
partial memory that, depending on the threshold choice and parameters of the model, can give rise to irreversibility. 
These networks are reductions of the simple network presented in Jaeger et al. (2013) that included additional nodes 
with connections and Hill type gene activation.10 The ordinary differential equations governing the behavior of LFY and 
AP1 are given below the network motifs. All initial conditions are 0. The FT signal is modeled as a step function active at 
time points given in the supplement. An IPython notebook27 to enable full reproducibility of this work can be found as 
supplemental material and is also available from Nick Pullen (nick.pullen@jic.ac.uk).
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important that the system is not incorrectly 
activated by noise. Another similar network, 
called regulated feedback, that uses an OR 
gating can exhibit irreversibility. With the 
same 3-node set up, an extra activating con-
nection between the two targets, LFY and 
AP1, of the first transcription factor, FT/FD, 
will result in the targets being stably on once 
activated, (Fig. 1B). AP1 mutually activates 
LFY in a positive feedback loop, thus creat-
ing the important memory element that is 
responsible for irreversibility of a plant com-
mitted to flowering. So while these simple 
network motifs capture separate characteris-
tics of the floral transition, they are a crude 
approximation to the larger system.23,24 Both 
some level of noise filtering and irreversibility 
as well as the qualitative fit to ft-10 and lfy-
12 mutants can be achieved by introducing 
2 transcription rates,10 a low rate that can be 
activated by either FT or LFY and a higher 
rate that requires the presence of both FT 
and LFY, (Fig. 1C).

In summary, we have sought to show 
how simple regulatory networks can cap-
ture important properties of the floral 
transition. Genes with similar effects can 
be grouped into distinct hubs (denoted 
by underlining) or functional modules.25 
Such a reduced network that represents the 
core structure underlying the floral transi-
tion can be mapped to the simple feed-for-
ward loops discussed above. Such a simple 
3-node system, as presented here, can give 
intuitive understanding to a complex bio-
logical system. We point out that even for 
these simple networks, the available data 
was not sufficient to provide good estimates 
of the parameters. However, predictions10 
can be made without precise knowledge of 
all the parameters.5 Adding further hubs to 
this network, for example including the flo-
ral repressor TFL1, is relatively straightfor-
ward.10 To begin modeling a new pathway, 
looking for the basic properties of simple 
networks that exhibit the desired behavior 
may be a good first step. As with all simpli-
fications, this approach inevitably cannot 
account for the full spectrum of interacting 
pathways and variables seen in nature, but 
it may be a useful entry point for an itera-
tive modeling-experimental cycle.
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