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Abstract

Membrane-embedded prenyltransferases from the UbiA family catalyze the Mg2+-dependent transfer of a hydrophobic
polyprenyl chain onto a variety of acceptor molecules and are involved in the synthesis of molecules that mediate
electron transport, including Vitamin K and Coenzyme Q. In humans, missense mutations to the protein UbiA
prenyltransferase domain-containing 1 (UBIAD1) are responsible for Schnyder crystalline corneal dystrophy, which is a
genetic disease that causes blindness. Mechanistic understanding of this family of enzymes has been hampered by a
lack of three-dimensional structures. We have solved structures of a UBIAD1 homolog from Archaeoglobus fulgidus,
AfUbiA, in an unliganded form and bound to Mg2+ and two different isoprenyl diphosphates. Functional assays on
MenA, a UbiA family member from E. coli, verified the importance of residues involved in Mg2+ and substrate binding.
The structural and functional studies led us to propose a mechanism for the prenyl transfer reaction. Disease-causing
mutations in UBIAD1 are clustered around the active site in AfUbiA, suggesting the mechanism of catalysis is conserved
between the two homologs.
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Introduction

Vitamin K is an essential cofactor required for the posttrans-

lational modification of proteins involved in blood-clotting and

normal bone metabolism. One of the major forms of vitamin K in

humans, menaquinone-4, is produced by cleaving the phytyl

group from dietary phylloquinone to produce menadione, which is

then modified with a polyprenyl group donated from geranylger-

anyl diphosphate (Figure S1). This latter step is catalyzed by the

protein UBIAD1, a member of a family of integral membrane

proteins known collectively as UbiA prenyltransferases [1–3].

Recently, it has also been proposed that UBIAD1 is responsible for

the prenylation of coenzyme Q10 in Golgi membranes [4].

Missense mutations to the UBIAD1 gene are the underlying cause

of the genetic disorder Schnyder corneal dystrophy (SCD), which

causes accumulation of cholesterol and phospholipids in the

cornea of the eye, eventually leading to blindness [5].

Membrane-embedded prenyltransferases belonging to the UbiA

family are found in every branch of life, and are involved in the

biosynthesis of a highly diverse range of molecules, including

respiratory lipoquinones such as ubiquinone and menaquinone

[6–8], prenylated hemes and chlorophylls [9,10], archaeal lipids

[11], numerous prenylated plant flavonoids [12], the antibiotic

aurachin [13], Vitamin E [14,15], and bacterial cell wall

precursors [16]. Although the nature of the prenyl acceptor and

donor vary considerably, reactions catalyzed by UbiA homologs

are Mg2+-dependent and generate pyrophosphate as a leaving

group. A representative reaction, catalyzed by the eponymous E.
coli protein UbiA, involves the cleavage of the C–O bond in

polyprenyl diphosphates of variable length and transfer of the

prenyl chain to the ortho position of the phenol 4-hydroxybenzoic

acid (4HB; Figure 1A). UbiA family members are typically

predicted to contain eight or nine transmembrane helices and

have two characteristic conserved motifs with the consensus

sequences NDXXDXXXD and DXXXD (Figure 1B), often

referred to as the first and second aspartate-rich motifs,

respectively.

To understand the structural basis of UbiA function, we set out

to elucidate the structure of a member of the UbiA family using X-

ray crystallography. The resulting structures of an archaeal

homolog reveal locations of Mg2+ and polyprenyl diphosphate

binding sites, a possible hydrophobic substrate tunnel allowing the

protein to accommodate polyprenyls of variable length, and the

location of a cluster of highly conserved residues forming a

potential catalytic site.
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Results

Fold of AfUbiA
After screening a large number of bacterial and archaeal UbiA

proteins for suitability for crystallization, a homolog from the

extremophile Archaeoglobus fulgidus (AfUbiA) was chosen for

further study based on its stability in detergent (Figure S2A).

Crystals of the selenomethionine-substituted protein diffracted to

3.2 Å, and the structure was solved by single-wavelength

anomalous dispersion (Table S1). Despite the modest resolution,

assignment of the sequence register was greatly facilitated by the

high quality of the experimentally phased electron density maps,

and by the locations of five selenomethionine residues (Figure

S2B,C). The selenomethionine structure was then used as a

molecular replacement search model for 2.4 and 2.5 Å datasets

collected on native AfUbiA crystals, grown in lipidic cubic phase

(LCP) and soaked with either geranyl diphosphate (GPP) or

dimethylallyl diphosphate (DMAPP) prior to freezing (Table S1,

Figure S2D). The final models for the two substrate-bound

structures contain four AfUbiA molecules in the asymmetric unit,

with one molecule of GPP or DMAPP and two Mg2+ per protein

chain. Comparison of the detergent and LCP crystal forms shows

that none of the interaction surfaces between neighboring

protomers are conserved between the different lattices, and so

the protein is likely a monomer in the membrane (Figure S2E).

The AfUbiA structure contains a total of nine transmembrane

helices, with the N and C termini emerging on opposite sides of

the membrane (Figure 1C). Based on the distribution of positive

and negative charges in the soluble loops, the N terminus of the

protein is probably oriented towards the cytoplasm and the C

terminus to the extracellular side [17]. This assignment is also

consistent with the experimentally determined orientation of E.
coli UbiA [18]. The first eight helices can be grouped into two

bundles of four helices each (Figure 1D). The loops connecting the

transmembrane helices are short, with the exception of the

cytoplasmic loops connecting TM2 and 3 (L2–3) and TM6 and 7

(L6–7), which are both over 25 and 18 residues in length,

respectively, and contain short helical regions. The two conserved

aspartate-rich motifs are both positioned on the cytoplasmic side of

the protein, between the C-terminal ends of TM2 and TM6 and

the L2–3 and L6–7 loops (Figure 1E). Interestingly, the conserved

motifs as well as the large cytoplasmic loops that follow them are at

equivalent positions in the two four-helix bundles. Closer

examination of the two bundles reveals that they are structurally

Figure 1. The UbiA fold. (A) A representative reaction catalyzed by UbiA family members. Polyprenyl is transferred from diphosphate to 4HB to
form 3-polyprenyl-4-hydroxybenzoate, a precursor to ubiquinone. The square brackets denote a single five-carbon prenyl unit. (B) The two conserved
aspartate-rich motifs characteristic of the UbiA family. Residue numbers correspond to the Archaeoglobus fulgidus UbiA sequence. Ec, Escherichia coli;
Sc, Saccharomyces cerevisiae; Hs, Homo sapiens; Af, Archaeoglobus fulgidus. (C) Topology diagram of AfUbiA, with the transmembrane helices colored
in pairs of equivalent helices in the four-helix bundles. Dashed lines indicate the region of L2–3 that is disordered in the SeMet crystal structure. (D)
Cartoon representation of the AfUbiA structure viewed from within the plane of the membrane (left) and from the extracellular side of the membrane
(right). The transmembrane helices are colored according to the same scheme as in panel (C). Orange arrows indicate the two pseudosymmetric
bundles. (E) Magnified stereo view of the boxed area in panel (D), showing residues from aspartate-rich Motif I and II as sticks.
doi:10.1371/journal.pbio.1001911.g001

Author Summary

The biosynthesis of Vitamin K and Coenzyme Q requires
the transfer of a long, hydrophobic moiety known as an
isoprenyl onto an aromatic acceptor compound. This
process is catalyzed by a family of proteins known as the
UbiA proteins, which are embedded in the hydrophobic
environment of cell membranes. To understand how the
prenyltransfer reaction is carried out, we solved the three-
dimensional structure of a member of the UbiA family by
X-ray crystallography. This structure reveals how magne-
sium ions and the prenyl substrate are bound within a
sealed amphipathic chamber inside the protein and
suggests how the reaction intermediate may be stabilized
by the protein and protected from the solvent. Functional
studies carried out on another member of the UbiA family,
as well as comparison to known disease-causing mutations
in the human homolog UBIAD1, demonstrate that the
residues involved in this process are conserved across the
UbiA family.

Structure of a Membrane-Embedded Prenyltransferase
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homologous and can be superposed by a twofold pseudosymmetry

axis running through the center of the protein perpendicular to the

bilayer (Figure 1D, Figure S3). This raises the possibility that the

UbiA fold may have arisen from the duplication of an ancient

four-helix, dimeric protein.

The crystal structure of another archaeal UbiA homolog from

Aeropyrum pernix (ApUbiA) was recently reported with a

resolution of 3.6 Å [19]. The overall fold of AfUbiA is similar to

that seen in ApUbiA, but there are differences in the location and

coordination of Mg2+ and substrate (detailed in the section

‘‘Differences between the AfUbiA and ApUbiA crystal struc-

tures’’). Both UbiA family members resemble proteins belonging

to the isoprenoid synthase superfamily [20], and in particular,

those members that catalyze the synthesis of all-trans polyprenyls

by repeated addition of isopentenyl pyrophosphate (IPP; Figure

S1), the trans-IPPSs. These enzymes are also Mg2+-dependent and

contain similar aspartate-rich motifs. Although any sequence

identity between the soluble and transmembrane families is

negligible, comparison of AfUbiA to the trans-IPPS farnesyl

diphosphate synthase (FPPS) from E. coli (Figure S4A–B) [21]

reveals that the two four-helix bundles comprising helices 1–8 in

AfUbiA and 2–9 in FPPS are superposable. TM9 in AfUbiA and

the first helix in the trans-IPPS fold have no equivalent in the other

family. Nevertheless, despite their structural similarity, examina-

tion of the distribution of charged residues on the two enzymes

clearly reveals their distinct identities as soluble and transmem-

brane proteins (Figure S4C–D).

Architecture of the Central Cavity and Substrate-Binding
Site

The bound isoprenyl-diphosphates and Mg2+ are located in a

large cavity at the interface between the four-helix bundles near

the cytoplasmic side, which is partly closed off from the solvent by

the L2–3 and L6–7 loops (Figure 2A). Interestingly, in the

unliganded structure, a 13-residue long region of the L2–3 loop is

disordered, leaving this cavity widely accessible to the solvent,

whereas all but four residues become resolved in the GPP-bound

structure. In the DMAPP-bound structure, the entire loop is

resolved and completely occludes the cavity from the solvent

(Figure S5A,B). This difference may be attributed to the lower

resolution of the unliganded structure, however, as the substrate in

the DMAPP-bound structure is occluded from the cytoplasm, a

more likely possibility is that substrate binding induces conforma-

tional changes in the L2–3 loop and thus seals off the active site.

Near the cytoplasm, the central cavity is broad and is lined with

polar and charged residues, including the aspartate-rich motifs and

many of the other residues that are most conserved across the

UbiA family (Figure 2B). The cavity becomes more hydrophobic

and tapers into a narrow tunnel as it extends deeper into the

transmembrane region of the protein. Approximately halfway into

the bilayer, the tunnel bends sharply and forms a fenestration in

the side of the protein that opens into the bilayer (Figure 2C). This

tunnel could offer a possible explanation for how UbiA family

members utilize prenyl donors of varying lengths, which range

from DMAPP (C5) [22] to dodecaprenyl phosphate (C60) [16].

The latter substrate approaches 60 Å in length in a fully extended

conformation; in comparison, the membrane-spanning region of

AfUbiA is less than 40 Å. The hydrophobic tunnel in AfUbiA

could potentially accommodate up to six prenyl units, and even

longer polyprenyls could bind to the protein by extending directly

into the hydrophobic core of the bilayer.

In the GPP-bound structure, the substrate is located in the

central cavity with its diphosphate positioned between the two

aspartate-rich motifs (Figure 3A,B). Two electron densities are also

visible on either side of the diphosphate that likely correspond to

Mg2+. This observation is consistent with data showing that the

activity of UbiA family members is Mg2+-dependent, as well as

extensive mutagenesis experiments, confirming the importance of

the two motifs for activity in E. coli UbiA [23] and other homologs

[13,24]. The two Mg2+ are coordinated by N68 and D72 in the

first aspartate-rich motif and D198 and D202 in the second

aspartate-rich motif (Figure 3A). The conserved aspartate D76 is

too far away to bind directly to Mg2+ in the first motif, but could

interact indirectly by stabilizing a water molecule coordinating the

ion. The diphosphate group of GPP is stabilized by Mg2+ in the

first motif, which bridges two oxygens with coordination distances

of 2.3 and 2.6 Å. In contrast to the first motif, the Mg2+ bound to

the second motif is 3.5–4.0 Å away from the diphosphate, which is

significantly farther than the expected coordination distance of

2.0–2.3 Å. Additional interactions between the protein and GPP

oxygens are provided by the basic residues R22 and K146. The

GPP molecule is slightly kinked after the diphosphate, so that the

isoprenyl tail extends along the wall of the cavity close to highly

conserved residues on TM2, 4, and 5. In particular, the C–O bond

cleaved in the prenyltransfer reaction is positioned near a cluster of

conserved polar residues including N68, Y139, and S140

(Figure 3B). The geometry of the Mg2+ and substrate binding

sites in the DMAPP-bound structure is similar (Figure S5C,D).

Figure 2. The substrate-binding cavity and possible substrate
tunnel. (A) The solvent-accessible surface of the central cavity in the
GPP-bound AfUbiA structure is shown as a blue mesh. Helix TM9 is
highlighted in pink. (B) A ribbon representation of the AfUbiA structure
in which the thickness and color of the ribbon indicate the degree of
conservation. Highly conserved residues are thicker and colored dark
purple; poorly conserved residues are thinner and colored teal. Residues
colored yellow were not included in the multiple sequence alignment
used to calculate the conservation scores. GPP and Mg2+ are shown in
green. (C) Cutaway view of the central cavity and putative substrate
tunnel from two perpendicular directions in the plane of the
membrane, with the extracellular side on top. The molecule of GPP is
shown as sticks. The pink arrow indicates a hydrophobic tunnel that
opens into the membrane bilayer.
doi:10.1371/journal.pbio.1001911.g002
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We used two approaches to verify the interactions between the

bound substrate, ions, and protein in our crystal structure. First, to

confirm the Mg2+ binding sites, we co-crystallized the protein with

Cd2+ (Table S1). Two strong electron densities consistent with

Cd2+ appear coordinated by the aspartate-rich motifs, which align

well to the Mg2+ locations in the GPP-bound structure (Figure S6).

Second, we used isothermal titration calorimetry (ITC) to measure

the Mg2+ dependence of GPP binding to AfUbiA. In the presence

of 2 mM MgCl2, GPP binds to AfUbiA with a KD of 3.260.1 mM

(Figure 3C). However, when 1 mM EDTA was added instead of

MgCl2, no GPP binding was observed (Figure 3D). Residues N68,

D72, D198, and D202 from the two aspartate-rich motifs, as well

as the basic residues R22 and K146, were then mutated to alanine

to test their contribution to Mg2+-dependent GPP binding

(Figure 3E, Figure S7). Mutations to all six residues had

pronounced effects on binding of GPP to AfUbiA. Four of the

mutations completely abolished GPP binding, whereas the effects

of the D198A and D202A mutations were comparatively mild,

Figure 3. Substrate binding and active site. (A) Stereo view of the GPP binding site, viewed from the cytoplasmic side of the membrane. Two
Mg2+ atoms (green spheres) and a GPP molecule are shown in the binding site. Residues that potentially bind to Mg2+ and the diphosphate are
labeled. (B) Stereo view of the active site from within the plane of the membrane. Conserved residues proposed to stabilize the intermediate state are
labeled. The green mesh in both figures corresponds to Fo-Fc density contoured at 3.0 s. (C and D) Binding of GPP to detergent-solubilized AfUbiA
measured by ITC. Heats from successive injections of GPP were measured in the presence of 2 mM MgCl2 (C) or 1 mM EDTA (D). Right panel in (C)
shows the fit to a one-site model. (E) Table of thermodynamic values for GPP binding to WT and mutant AfUbiA measured by ITC. KD, DH, and n were
obtained by fitting a binding isotherm described in the Methods section. The thermodynamic relation DG =DH2TDS was used to calculate 2TDS at
25uC with errors propagated. ‘‘N.D.’’ indicates no binding detected. Each value is the mean and s.e.m. of three ITC experiments.
doi:10.1371/journal.pbio.1001911.g003
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increasing the KD by 45- and 21-fold, respectively. This is

consistent with the observation that the distance between the Mg2+

bound to the second aspartate-rich motif and the GPP diphos-

phate is outside of the typical coordination distance range.

Differences Between the AfUbiA and ApUbiA Crystal
Structures

There are notable differences in the shape of the substrate-

binding cavity and in the organization of the active sites of the

AfUbiA and ApUbiA structures. The central cavity in ApUbiA is

smaller than in AfUbiA, largely because ApUbiA lacks the long

hydrophobic tunnel and second opening observed in AfUbiA. For

the ApUbiA structure, it was proposed that longer prenyl chains

may extend out of the protein via its single entrance to the central

cavity, which is closer to the membrane interface than in AfUbiA.

This mechanism of accommodating long prenyl chains is not likely

for the current AfUbiA structure, because although the cytoplas-

mic opening exists in unliganded AfUbiA, it is completely closed in

the DMAPP-bound structure (Figure S5B).

In both structures, the bound Mg2+ and the diphosphate moiety

are located in the central cavity between the two conserved

aspartate-rich motifs; however, interactions between the protein

and ligands are different (Figure 4). Although two bound Mg2+

were modeled in both structures, in the current AfUbiA structure,

N68, D72, D198, and D202 directly coordinate the Mg2+, while in

the ApUbiA structure all the corresponding residues are .3.4 Å

away from Mg2+. These four residues were demonstrated to be

important for Mg2+-dependent GPP binding according to our ITC

data (Figure 3E). The differences in Mg2+ location and coordina-

tion between the two structures are likely attributable to the

significantly lower resolution (3.6 Å) of the ApUbiA structure.

4HB was also modeled into the ApUbiA structure, although

there is currently no direct biochemical evidence that it can act as

a prenyl acceptor for ApUbiA. This proposed 4HB binding site is

unlikely to hold the prenyl acceptor in the current AfUbiA

structure, as its position clashes with the location of the geranyl

moiety. We were also unable to detect binding of 4HB to AfUbiA

by ITC.

Conservation with Other UbiA Family Members and
Implications for the Catalytic Mechanism

Although two crystal structures are available now for the UbiA

family of proteins, both AfUbiA and ApUbiA are from archaeal

thermophiles and enzymatic activity has not been demonstrated

for either of the proteins. To understand the relevance of the

AfUbiA structure to other UbiA family members, we mutated a

number of residues on the E. coli MenA homolog (EcMenA) that

are equivalent to key active site residues in AfUbiA (Figure 5A,

Figure 5B). EcMenA catalyzes the transfer of a prenyl chain onto

1,4-dihydroxy 2-naphthoic acid (DHNA) to produce the mena-

quinone precursor demethylmenaquinone. Two independent

functional assays were used to measure the effects of mutations

on EcMenA: an in vivo genetic complementation assay in which

growth under anaerobic conditions was measured in an menA2 E.
coli strain [25] transformed with WT or mutant EcMenA

(Figure 5C), and an in vitro assay measuring prenyltransferase

activity with purified membranes from E. coli cells overexpressing

WT or mutant EcMenA (Figure 5D, Figure S8). For both assays,

mutations to the equivalents of N68 and D72 in the first aspartate-

rich motif and D198 and D202 in the second motif resulted in

total or near-total loss of function. Mutation of the highly

conserved tyrosine (Y139 in AfUbiA) near the C–O bond also

resulted in loss of function.

Functional data for eukaryotic UbiA homologs are currently

scarce, but missense mutations to 19 different residues on human

UBIAD1 are known to cause SCD [5,26–35]. Of these, three align

to insertions not present on AfUbiA (Figure 5A). As shown in

Figure 5E, the remaining 16 mutated residues all map to the

region around the putative active site at the cytoplasmic end of the

cavity. The residues Y174 and T175 on human UBIAD1 are

equivalent to Y139 and S140, which belong to the cluster of polar

residues on TM2 and TM4 likely important for catalysis; the

residues A97 and G98 (F63 and S64 on AfUbiA) pack into the

interface between TM2 and TM4 near this site (Figure 5F).

Residues N102, K181, D236, and D240 on UBIAD1 are

homologous to N68, K146, D198, and D202, which form part

of the Mg2+/diphosphate binding site (Figure 3A). Residues 112,

118, 119, 121, and 122 on UBIAD1 align to residues 78, 90, 91,

93, and 94 on the highly mobile L2–3 loop of AfUbiA, which

changes conformation upon substrate binding in AfUbiA.

Potential functions for G177, G186, and L188 (P142, D152, and

I154 on AfUbiA) are less evident, but all three residues are located

in close proximity to the proposed active site.

Overall, the above experiments on EcMenA and the mapping

of UBIAD1 mutations onto the AfUbiA structure suggest that the

fold and location of substrate-binding sites are conserved across

the UbiA family, and that the mechanism of the prenyltransfer

reaction is conserved as well. Although this mechanism is currently

unknown, possible clues may be found by comparison to the

soluble trans-IPPS proteins. In addition to sharing a fold with the

UbiA homologs, the two protein families also exhibit similarities in

the architecture of their active sites. The structure of E. coli FPPS

bound to IPP and a thio- analog of the prenyl donor, thioDMAPP,

is representative of available structures of trans-IPPS ternary

complexes (Figure S9) [21]. Like AfUbiA, members of the trans-

IPPS family contain two signature acidic motifs, which both

contain the conserved sequence DDXXD [36] and which

coordinate Mg2+ atoms that stabilize the diphosphate on the

prenyl donor. In trans-IPPS proteins, the reaction is believed to

proceed via a three-stage ionization–condensation–elimination

mechanism [37], involving a carbocation intermediate in the

allylic site that is stabilized by the liberated diphosphate as well as

interactions with nearby polar side chains [21,38]. Given the

Figure 4. Comparison of the AfUbiA and ApUbiA active sites. (A
and B) Interactions between Mg2+, GPP/GSPP, and residues in the first
and second aspartate-rich motifs are shown for (A) AfUbiA and (B)
ApUbiA (PDB accession 4OD5). All interaction distances of 3.0 Å or less
are marked.
doi:10.1371/journal.pbio.1001911.g004
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Figure 5. Conservation of active site residues across the UbiA family. (A) A sequence alignment of AfUbiA, human UBIAD1, and EcMenA.
Residues currently known to be mutated in SCD patients are highlighted in pink, red, or blue in the AfUbiA and HsUBIAD1 sequences. Red indicates
mutated residues that are identical between the two proteins; blue indicates residues that align with gaps in the AfUbiA sequence. Green boxes
indicate locations of residues that were mutated in the EcMenA functional assays. The colored bars above the alignment indicate locations of
transmembrane helices in the AfUbiA crystal structure. (B) The locations of the active site residues marked with green boxes in panel (A) are shown
relative to bound Mg2+ and GPP in the AfUbiA structure. Black labels correspond to residue numbers in the AfUbiA structure, green labels to the
equivalent residues in EcMenA. (C) A menA2 E. coli strain was transformed with plasmids containing either WT or mutant EcMenA, and grown in
suspension cultures in an anaerobic chamber. The optical densities at 600 nm were measured after 24 h. Cells transformed with an unrelated protein
(TrkH) were used as the negative control. Error bars are standard deviations of three experiments. Data used to calculate the bar graphs are shown in
Table S2. (D) Membranes were purified from E. coli overexpressing WT or mutant EcMenA and incubated at 37uC for 10 min with 2 mM DHNA, 1 mM
GPP, and 5 mM MgCl2. Product formation was measured by HPLC and is shown as a percentage of the activity for WT EcMenA. Membranes from cells
overexpressing EcUbiA, which is selective for 4HB as the prenyl acceptor, were used as a negative control. Error bars are standard deviations of three
experiments. Data used to calculate the bar graphs are shown in Table S3. (E) Residues currently known to be mutated in SCD patients are shown as
spheres on the structure of AfUbiA. (F) The same residues are shown as sticks in a closer view of the substrate-binding cavity from within the plane of
the membrane (left) and from the intracellular side (right).
doi:10.1371/journal.pbio.1001911.g005
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structural and functional similarity between AfUbiA and the trans-

IPPS proteins, it is possible that this catalytic mechanism is shared

with homologs of the UbiA family (Figure 6).

In the GPP- and DMAPP-bound structures, C-C bond

formation would occur near a triad of three polar side chains:

N68 from the first aspartate-rich motif, and Y139 and S140 on

TM4 (Figure 3B). Interestingly, the tyrosine is the single most

highly conserved residue in the UbiA family, present in 97% of the

more than 10,000 UbiA sequences currently in the Pfam database

[39]. Mutation of this residue in both EcMenA (Figure 5C,D) and

EcUbiA [19] results in a loss of function. The near-universal

conservation of the tyrosine residue implies that this site is involved

in a function that is shared among all the different branches of the

UbiA family, regardless of the nature of the highly variable prenyl

acceptor. We therefore propose that this site could be involved in

stabilizing the carbocation intermediate on the prenyl donor after

cleavage of the pyrophosphate leaving group, possibly by cation–p
interactions with Y139. A similar role for active site tyrosine

residues has been proposed for the structurally unrelated aromatic

prenyltransferases DMATS and CloQ [40–42].

Discussion

We have described the structure of an archaeal member of the

UbiA family of membrane-embedded prenyltransferases. The

substrate-bound structures reveal that the diphosphate group

interacts with arginine and lysine side chains as well as Mg2+

coordinated by conserved aspartate-rich motifs. Although short

prenyl donors containing only one or two prenyl units were chosen

for crystallization due to their higher solubility in water, the

structure reveals a long, narrow cavity that opens into the

membrane and could allow the protein to bind significantly longer

polyprenyl chains. Due in part to its low homology with UbiA

family members of known function, we were unable to identify the

natural prenyl-accepting substrate of AfUbiA. Nonetheless, the

EcMenA functional assays using mutations designed with the

AfUbiA structure, as well as the clustering of SCD-causing

mutations around conserved residues in the substrate-binding

cavity of AfUbiA, suggest that the fold and key aspects of the

catalytic mechanism may be conserved between these distantly

related homologs and that AfUbiA is a useful structural model for

understanding UbiA family prenyltransferases.

One curious feature of the substrate-bound structures is that the

Mg2+ bound to the second conserved motif is out of range for

coordination of the prenyl donor, and yet the functional data for

EcMenA indicate that the residues coordinating this Mg2+ are

critical for function. One possible explanation is that when the

protein is bound to Mg2+ and the isoprenyl diphosphate only, the

substrate is coordinated by only one Mg2+ in order to prevent

reaction of the isoprenyl diphosphate with water in the absence of

the prenyl acceptor, as interactions with one Mg2+ may not be

sufficient to induce spontaneous cleavage of the C–O bond.

Binding of the prenyl acceptor would then induce a conforma-

tional change to bring the Mg2+ bound to the second conserved

motif within coordination distance of the diphosphate and exclude

water from the cavity. Another possibility has also been proposed

based on homology models of E. coli UbiA [23], that UbiA

homologs stabilize the diphosphate via a single Mg2+ bound to

only one of the two aspartate-rich motifs and that the other motif

activates the phenolic substrate by abstracting a proton. Resolu-

tion of the issue will likely require a structure of the full ternary

complex.

In the structurally related trans-IPPS FPPS, comparisons of the

ternary complex and apo-structure show that the enzyme under-

goes a conformational change upon binding substrate; in

particular, the loops corresponding to L2–3 and L6–7 in UbiA

close over the active site to occlude it from the solvent [21]. The

unliganded and substrate-bound AfUbiA structures show similar

behavior, in that a region of the L2–3 loop undergoes a disordered

to ordered transition upon substrate binding. The prenyl acceptor

could therefore enter the cavity through an opening formed by

fluctuations in the L2–3 loop, which would then be stabilized in

the closed conformation. Although short polyprenyl diphosphates

like GPP could also enter the substrate-binding cavity via the

opening to the cytoplasm, longer polyprenyl diphosphates have

poor solubility in water and likely partition into the lipid bilayer,

and therefore may bind to the protein laterally from within the

membrane. Because it seems implausible that the negatively

charged diphosphate group enters the core of the bilayer and

threads into the hydrophobic tunnel, the protein may undergo a

conformational change to allow the polyprenyl substrate access to

the substrate binding cavity. In the crystal structure, one wall of

the substrate tunnel is formed by TM9, whose removal leaves the

central cavity completely exposed to the bilayer (Figure 2A). A

slight movement of this loosely packed helix could potentially

suffice to allow substrates to enter the binding site and allow

release of the product as well.

Methods

Cloning and Overexpression of AfUbiA
Fifty-two bacterial and archaeal UbiA homologs were cloned

and tested for expression [43]. A UbiA gene from Archaeoglobus
fulgidus DSM 4304 (GenBank AAB89594.1) was identified as the

Figure 6. The proposed UbiA prenyltransferase reaction mechanism. Schematic showing a potential three-stage ionization (i), condensation
(ii), and elimination (iii) reaction mechanism for prenyl transfer, with key conserved residues on the enzyme highlighted. The prenyl acceptor shown is
the proposed substrate for UBIAD1, the reduced form of menadione (2-methyl-1,4-dihydroxynaphthoquinol); residue numbers are for AfUbiA and
human UBIAD1 (in parentheses).
doi:10.1371/journal.pbio.1001911.g006
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most promising candidate for crystallization trials. The AfUbiA

gene was cloned into a modified pET vector (Novagen) with an N-

terminal polyhistidine tag. For large-scale purification of native

AfUbiA, the plasmid was transformed into BL21 (DE3) cells. For

expression of the native protein, the transformants were grown in

Luria broth supplemented with 100 mg/l Kanamycin at 37uC
until OD600 reached 1.0 and induced with 0.5 mM isopropyl b-D-

1-thiogalactopyranoside (IPTG) at 20uC for 15 h. For expression

of selenomethionine-incorporated proteins, the cells were grown in

minimal medium containing 32.2 mM K2HPO4, 11.7 mM

KH2PO4, 6 mM (NH4)2SO4, 0.68 mM Na Citrate, 0.17 mM

Mg2SO4, 32 mM glucose, 0.008% (w/v) alanine, arginine,

aspartic acid, asparagine, cysteine, glutamic acid, glycine, histi-

dine, proline, serine, tryptophan, glutamine, tyrosine, 0.02% (w/v)

isoleucine, leucine, lysine, phenylalanine, threonine, valine,

25 mg/l L-selenium-methionine, 32 mg/l thiamine, and 32 mg/

l thymine, and induced when OD600 reached 0.6.

Purification and Crystallization of AfUbiA
Cell membranes were solubilized with 40 mM n-decyl-b-D-

maltoside (DM, Anatrace), and the His-tagged protein was

purified with TALON Metal Affinity Resin (Clontech Inc.). After

removal of the N-terminal His-tag with TEV protease, the native

protein was subjected to size exclusion chromatography with a

Superdex 200 10/300 GL column (GE Health Sciences) pre-

equilibrated in a buffer of 150 mM NaCl, 20 mM HEPES,

pH 7.5, 5 mM b-mercaptoethanol (bME), and 40 mM n-Octyl-b-

D-Glucopyranoside (OG, Affymetrix). The protein was concen-

trated to 10 mg/ml as approximated by ultraviolet absorbance.

The selenomethionine-incorporated protein was purified by the

same procedure. AfUbiA for the ITC assay was also purified with

the same protocol except that 4 mM of DM was used in place of

OG in the size-exclusion chromatography buffer.

Selenomethionine-incorporated AfUbiA crystals were obtained

in mother liquor containing 12.5% PEG20000, 100 mM MES

buffer, pH 6.7. To obtain LCP crystals, the purified AfUbiA

protein was concentrated to around 35 mg/ml as approximated

by ultraviolet absorbance at 280 nm and mixed with monoolein

(1-oleoyl-rac-glycerol; Sigma Aldrich) at a 2:3 ratio (protein/lipid,

w/w) using the twin-syringe mixing method [44]. The protein/

lipid mixture was dispensed manually in 30–50 nl drops onto 96-

well glass Laminex plates (Molecular Dimensions) and overlaid

with 1.7 ml precipitant solution per drop. Crystals reached full size

within 2 wk at 20uC in 34% (w/v) PEG400, 0.1 M Tris-HCl

pH 8.2, 0.1 M NaCl, and 0.1 M MgCl2. Before harvest, crystals

were soaked in 1 mM GPP or 1 mM DMAPP. The LCP crystals

were flash frozen in liquid nitrogen without additional cryopro-

tectant. Crystals of native AfUbiA bound to Cd2+ were obtained in

30% PEG 550 MME, 100 mM MES buffer, pH 6.6, 5 mM

MgCl2, and 100 mM CdCl2. Before flash-freezing in liquid

nitrogen, these crystals were cryoprotected in serial mother liquor

solutions containing 5%–25% (v/v) glycerol.

Structure Solution and Analysis
X-ray data were collected at beamlines X29 at the National

Synchrotron Light Source and 24ID-C and 24ID-E at the

Advanced Photon Source. A data set collected on a selenomethi-

onine crystal was processed and scaled with a 3.2 Å cutoff using

HKL2000 [45]. Four selenium sites were located with phenix.hyss

[46], and phases and a partial polyalanine model were obtained

with phenix.autosol [47]. The locations of the selenium atoms and

clear side chain densities from aromatic side chains in the

experimental maps (Figure S2B,C) were used to manually assign

the sequence register, and the structure was refined through

iterative rounds of manual model building and automated

reciprocal-space refinement using Coot [48] and phenix.refine.

The final refined model has R and Rfree values of 25.1% and

28.9%, respectively, and contains residues 15–73 and 86–300 of

one UbiA monomer and one molecule of OG, which was used to

solubilize the protein. The native GPP-bound and DMAPP-bound

structures were solved by molecular replacement using the

selenomethionine structure as a search model and refined with

phenix.refine using strong NCS restraints that were gradually

relaxed over the course of refinement. The final structures each

contained four molecules of AfUbiA, 8 Mg2+, and 4 molecules of

GPP or DMAPP. The Cd2+-bound structure was solved by a

similar protocol. The final Cd2+-bound structure contained two

molecules of AfUbiA in the asymmetric unit and eight Cd2+ ions.

In the SeMet, GPP- and DMAPP-bound structures, the putative

substrate tunnel is partly occupied by a strong, tubular, nonprotein

electron density (Figure S10); however, the resolutions do not

allow a definitive identification of this ligand. The GPP-bound,

DMAPP-bound, SeMet, and Cd2+-bound structures have been

deposited in the PDB under the accession codes 4TQ3, 4TQ4,

4TQ5, and 4TQ6, respectively.

Chain A in the GPP-bound structure had the highest quality

2Fo-Fc density, as well as the lowest average B-factors of the four

protein chains in the asymmetric unit, and was therefore used to

generate figures and for distance measurements unless otherwise

noted. All structure figures were made using PyMol (Schrödinger).

Sequence conservation scores in Figure 2B were calculated with

the ConSurf server [49], using the seed sequences for the UbiA

family from Pfam [39] for the multiple sequence alignment. The

alignment of AfUbiA, EcMenA, and human UBIAD1 used for

Figure 5A was generated by aligning the sequences to the Hidden

Markov Model profile for the UbiA family in Pfam.

ITC of GPP Binding to AfUbiA
The ITC buffer comprised 20 mM HEPES (pH 7.5), 150 mM

NaCl, and 4 mM n-decyl-b-D-maltopyranoside (DM). The

chamber contained ITC buffer plus 50 mM AfUbiA and either

2 mM MgCl2 or 1 mM EDTA. The syringe contained ITC buffer

plus 0.6 mM geranyl pyrophosphate (GPP) and either 2 mM

MgCl2 or 1 mM EDTA, whichever matches the chamber

condition. The buffer-alone control had no AfUbiA in the

chamber. For experiments with mutant proteins, 50 mM AfUbiA

mutant proteins were in ITC buffer containing 2 mM MgCl2 with

either 0.6 mM GPP (for R22A, N68A, D72A, K146A) or 2 mM

GPP (for D198A and D202A) in the syringe. Solutions were

filtered and centrifuged at 18,0006 g for 5 min prior to the

experiments. All binding measurements were performed using a

MicroCal iTC200 System (GE Healthcare) at a constant

temperature of 25uC. For experiments with apparent binding,

thermograms were processed and fit in Origin to a one-site model

to obtain n (stoichiometry), K (association constant), and DH

(enthalpy). The dissociation constant (KD) was calculated from

KD = 1/K, and DS was calculated from DG =DH2TDS. All

experiments were performed at least three times.

MenA Complementation Assay
The menA-deficient E. coli strain AN67 [25], which exhibits a

grow defect under anaerobic conditions, was obtained from the

Coli Genetic Stock Center and transformed with a pET31 plasmid

containing WT and mutant EcMenA genes, or an unrelated

protein (the TrkH potassium transporter from Campylobacter
jejuni) as a negative control. The transformants were grown

aerobically in Luria broth to an optical density of

1.0%60.05%, supplemented with 20% glycerol, flash frozen,
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and stored at 280uC. The EcMenA genetic rescue experiments

were carried out using a protocol adapted from Suvarna et al. [7].

The 10 mL cultures of a glycerol/trimethylamine N-oxide

minimal media [50] containing 0.5 mM IPTG and 0.1 mg/mL

ampicillin were inoculated with 10 ml of the glycerol stocks and

then incubated in an anaerobic chamber at 37uC. At 24 h

postinoculation, OD600 was measured for each culture. Values

shown in Figure 5C are averages for three experiments.

Prenyltransferase Activity Assay
Purified E. coli membranes were prepared by harvesting 1 l of

cells overexpressing WT and mutant EcMenA, grown to 1 OD as

described for AfUbiA. The proteins were expressed as SUMO

fusion proteins to increase yield. The cell pellets were resuspended

in 20 ml lysis buffer (20 mM Hepes pH 7.5, 150 mM NaCl,

2 mM bME, 5 mM MgCl2, 1 mM PMSF, 25 mg/ml DnaseI).

After breaking the cells by sonication, the cell lysates were

centrifuged for 30 min at 3,0006g and 4uC. The supernatant was

then transferred to clean centrifuge tubes and centrifuged a second

time for 60 min at 100,0006 g and 4uC. The membrane pellet

was resuspended in 3 ml 50 mM Tris pH 7.5, flash frozen, and

stored at 280uC. Overexpression of WT and mutant SUMO-

EcMenA was verified by running 0.5 ml of the membrane

suspension before and after a 30 min digestion with 1 mg SUMO

protease on an SDS-PAGE gel (Figure S8C). In addition to the

WT and mutant EcMenA proteins, membrane fractions were

prepared in the same manner for cells expressing SUMO-EcUbiA,

which does not utilize DHNA as a prenyl acceptor, for the

negative control.

For the enzymatic assay, 30 ml reaction mixtures were prepared

with the following components: 3 ml purified membrane fractions,

2 mM DHNA, 1 mM GPP, 5 mM MgCl2, 5 mM bME, 5%

acetonitrile (ACN), and 50 mM Tris pH 7.5. The reaction

mixtures were incubated for 10 min at 37uC, quenched with the

addition of 2% formic acid, and extracted with 10 volumes of

chloroform. The chloroform was dried under air and the residue

resuspended in 60 ml 65% ACN/35% 50 mM Tris pH 7.5 in

dH2O. The resulting samples were then separated using reverse

phase HPLC with a gradient of 65%–75% ACN for the mobile

phase. Enzyme activity was quantified as the area of the product

peak, normalized by the activity for the WT protein. Values shown

in Figure 5D are averages for three experiments.

Supporting Information

Figure S1 Metabolic pathway for the conversion of phylloqui-

none to menaquinone-4. FPPS, farnesyl diphosphate synthase;

GGPPS, geranylgeranyl diphosphate synthase. The enzyme

responsible for cleaving the phytyl tail from phylloquinone is not

currently known.

(TIF)

Figure S2 Purification and structure solution of Archaeoglobus
fulgidus UbiA. (A) Elution profile of AfUbiA solubilized in the

detergent b-octylglucoside from a size-exclusion column. (B) The

structure of AfUbiA overlaid with electron density from the

anomalous difference map contoured at 4 s (orange mesh).

Selenium atoms from selenomethionine residues are shown as blue

spheres. (C) A representative region of the electron density map

calculated from the experimental phases, after solvent flattening

and density modification, for the SeMet/detergent crystal used for

phasing. The blue mesh corresponds to a contour level of 1.5 s.

(D) The same region in the 2Fo-Fc maps in the GPP-bound native

structure, contoured at 1.5 s. (E) One cross-section of the crystal

lattice in the P3112 detergent crystals (left) and the P21 LCP

crystals (right). Molecules from one asymmetric unit in each are

colored red.

(TIF)

Figure S3 Pseudosymmetry in the UbiA fold. (A) Transmem-

brane helices TM1–4 (left) and TM5–8 (right) of AfUbiA. (B)

TM1–4 and TM5–8 are shown superposed on each other from

two different orientations.

(TIF)

Figure S4 Structural similarity to soluble isoprenoid synthases.

(A–B) The structures of AfUbiA (A) and an FPPS from E. coli
(PDB accession code 1RQI) (B) are shown as cartoon represen-

tations from the same orientation. For consistency with AfUbiA,

the helices in 1RQI are numbered 0–8 and the helices in both

proteins are colored according to the same scheme as in Figure 1C.

(C–D) The structures of AfUbiA (C) and 1RQI (D) are shown as

cartoon representations from the same orientation. All histidine,

lysine, and arginine residues in both structures are shown as blue

spheres, and all aspartate and glutamate residues are shown as red

spheres.

(TIF)

Figure S5 The DMAPP-bound structure of AfUbiA. (A) A

ribbon representation of the DMAPP-bound AfUbiA structure in

which the thickness of the ribbon indicates the magnitude of the

temperature factor. Residues that are resolved in the DMAPP-

bound structure but disordered in the unliganded structure are

highlighted in red. (B) A cutaway surface of the DMAPP-bound

structure, showing that the central cavity is occluded from the

solvent. (C–D) Stereoviews of the active site in the DMAPP-bound

structure from two orientations. Green mesh corresponds to the

Fo-Fc map calculated with ligand and water molecules omitted,

contoured at 3.0 s.

(TIF)

Figure S6 Ion binding sites in the central cavity. (A) Stereo

view of the active site in the Cd2+-bound structure, viewed from

the cytoplasmic side of the membrane. Yellow spheres

correspond to two Cd2+ atoms, and purple spheres correspond

to the locations of Mg2+ atoms in the GPP-bound structure

when superposed with the Cd2+ structure. Residues that bind to

Mg2+ and the diphosphate are labeled. (B) Stereo view of the

active site from within the plane of the membrane. Conserved

residues predicted to stabilize the intermediate state are labeled.

The green mesh in both figures corresponds to Fo-Fc density

contoured at 4.0 s.

(TIF)

Figure S7 GPP binding to AfUbiA mutant proteins measured by

ITC. (A) Thermograms of four mutant proteins with no detected

GPP binding. (B) Thermograms (top) for two mutant proteins with

measurable affinities for GPP and their corresponding binding

isotherms (bottom). (C) Thermogram of 2 mM GPP injected into

the ITC chamber with no protein present.

(TIF)

Figure S8 EcMenA prenyltransferase assay. (A–B) Membranes

were purified from E. coli overexpressing SUMO-EcMenA or

SUMO-EcUbiA and incubated at 37uC for 10 min with 2 mM

DHNA, 1 mM GPP, and 5 mM MgCl2. The reaction mixtures

were then extracted with chloroform and separated by reverse

phase HPLC. Representative HPLC traces are shown for (A) WT

EcMenA and (B) WT EcUbiA used as a negative control. The

product peak is marked with an arrow. (C) To verify that all

SUMO-EcMenA mutants were overexpressed, 0.5 ml of purified

membrane was run on an SDS-PAGE gel. Lanes marked with

Structure of a Membrane-Embedded Prenyltransferase

PLOS Biology | www.plosbiology.org 9 July 2014 | Volume 12 | Issue 7 | e1001911



minus and plus signs indicate whether samples were cleaved with

SUMO protease prior to loading on the gel.

(TIF)

Figure S9 The soluble polyprenyl synthase fold. (A–B) The

structure of a FPPS from E. coli (PDB accession code 1RQI) is

shown from two perpendicular orientations. For consistency with

AfUbiA, the helices are numbered 0–8 and colored according to

the same scheme as in Figure 1C. Orange arrows indicate the two

pseudosymmetric bundles. (C) Two perpendicular views of the

binding pocket of FPPS bound to Mg2+, thioDMAPP, and IPP. In

the left panel, the red asterisk marks the bond that is cleaved in

DMAPP, and the red arrow indicates where a new bond is formed

between IPP and DMAPP.

(TIF)

Figure S10 Electron density in the putative substrate tunnel. (A)

Electron density in the putative substrate channel of AfUbiA in the

experimental maps from the SeMet, unliganded dataset, con-

toured at 1.5 s. (B) Fo-Fc density contoured at 3.0 s in the same

region calculated from the dataset for the GPP-bound structure.

(TIF)

Table S1 Data collection and refinement statistics.

(DOC)

Table S2 Complementation of menA2 E. coli by WT and

mutant EcMenA. OD600 measurements from three experiments of

E. coli cultures grown under anaerobic conditions, used to

calculate the bar graph in Figure 5C.

(DOC)

Table S3 Prenyltransferase activities of WT and mutant

EcMenA. Normalized activities from three experiments with

WT and mutant EcMenA, used to calculate the bar graph in

Figure 5D.

(DOC)
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