
Emerging targets in lipid-based therapy☆

Stephanie C. Tuckera,1 and Kenneth V. Honna,b,*

aDepartment of Pathology, Wayne State University School of Medicine, and Karmanos Cancer
Institute, Detroit, MI 48202, USA

bDepartment of Chemistry, Wayne State University School of Medicine, and Karmanos Cancer
Institute, Detroit, MI 48202, USA

Abstract

The use of prostaglandins and NSAIDS in the clinic has proven that lipid mediators and their

associated pathways make attractive therapeutic targets. When contemplating therapies involving

lipid pathways, several basic agents come to mind. There are the enzymes and accessory proteins

that lead to the metabolism of lipid substrates, provided through diet or through actions of lipases,

the subsequent lipid products, and finally the lipid sensors or receptors. There is abundant

evidence that molecules along this lipid continuum can serve as prognostic and diagnostic

indicators and are in fact viable therapeutic targets. Furthermore, lipids themselves can be used as

therapeutics. Despite this, the vernacular dialog pertaining to “biomarkers” does not routinely

include mention of lipids, though this is rapidly changing. Collectively these agents are becoming

more appreciated for their respective roles in diverse disease processes from cancer to preterm

labor and are receiving their due appreciation after decades of ground work in the lipid field. By

relating examples of disease processes that result from dysfunction along the lipid continuum, as

well as examples of lipid therapies and emerging technologies, this review is meant to inspire

further reading and discovery.
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1. Introduction

The imbalance between lipid mediators that regulate inflammation or resolution, leads to a

number of diseases, many of which are only now being appreciated for their underlying lipid

origins. “Physiological” inflammation has its place. In the gastrointestinal tract it is

necessary for proper development of the mucosal immune system, and is a tempered

response that does not manifest in disease [1]. Ovulation can be considered another example

of regulated physiological inflammation [2–4]. However, dysregulated lipid signaling can
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lead to a host of ailments including fibrosis, cancer, and neurological disorders to name a

few. The term rheostat has been used frequently in the lipids field to refer to the yin and

yan, or balance of activities along the continuum depicted in Fig. 1. A case can be made for

nearly every direction suggested by the figure and for nearly all lipid pathways. There are

volumes written on lipid mediators or bioactive lipids and their associated pathways, these

include the leukotrienes, lysophospholipids, prostaglandins, platelet activating factor,

endocannabinoids, and prostanoids. Collectively the pathways with their receptors, enzymes,

accessory proteins and associated lipid products are the subject of intense development for

their usefulness as diagnostic and prognostic biomarkers as well as therapeutic targets,

particularly in cancer. While this cast of players is better known for the roles they play in

many diseases as a result of environment (e.g., diet) or genetics, it is the context of the

activity along lipid pathways that determines outcome with regard to disease development,

prevention or healing. New characters continue to emerge including novel receptors that are

providing additional therapeutic targets, and lipids themselves are being used

therapeutically.

Instead of a class by class comparison, which would again require volumes, the purpose of

this review is to relate some loosely associated new and revisited ideas from the overall field

by using pointed examples as they relate to the theme of this issue, and to highlight some

exciting technologies being adapted to lipidomics from our colleagues in bioengineering/

physics. It is hoped that for the veterans of the field as well as the uninitiated and curious,

this review will encourage exploration into new ways to use lipids and their pathways to our

advantage.

2. Lipids used as therapeutic pharmacologic agents

The omega-6 polyunsaturated fatty acid arachidonic acid (AA) is an eicosanoid precursor

that can be acquired in cells by metabolism of linoleic acid or can be taken up by cells

directly through dietary intake, which is the most common source. Once in the cell, this

precursor of many lipid mediators is mobilized to lipid pools that are actively remodeled,

such as the nuclear membrane. From there it is subsequently reassigned back to other

cellular membranes that are the presumed sites of synthesis [5]. Arachidonic acid becomes

anchored to membrane phospholipids like phosphatidylethanolamine, but primarily

phosphatidylcholine and phosphatidylinositol, by esterification catalyzed by a fatty-acylCoA

synthetase. The release of AA from the phospholipids is the signaling cascade lynchpin. The

most common release mechanism is through the action of a Ca2+-dependent cytosolic

phospholipase A2 (cPLA2), particularly cPLA2α (group IVA), (also referred to as GIVA

PLA2), in response to a cell stimulus [6–8]. The cPLA2 apparently evolved simultaneously

with eicosanoid receptors, and more than 30 genes for phospholipase are encoded in

mammalian genomes, including the secreted (sPLA2), the Ca2+-independent (iPLA2), and

Ca2+-dependent (cPLA2) enzymes. These three classes have been the most studied to date

[9,10]. Similarly the omega 3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic

acid (DHA) can be released from the membrane stores as well. The stimuli that lead down

the signaling pathway are obviously diverse and include those that are “complete activators”

such as calcium ionophores, microorganisms, and oxidants, as well as agonists that

potentiate the cascade by “priming” the response in preparation for a more complete
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stimulus [11]. Furthermore, the regulatory mechanisms for biosynthesis and secretion of

lipid mediators are highly varied and depend on factors such as the expression levels and

functional state of the metabolic enzymes, compartmentalization of the enzymes and finally

expression levels and functional state of accessory proteins such as the transport proteins

[11]. The cyclooxygenase (COX), lipoxygenase (LOX) and P450 epoxygenase enzymatic

pathways can metabolize AA after its release from the cell membrane to generate numerous

lipid effector molecules.

One of the most exciting recent advances in lipid research involves the discovery of a subset

of eicosanoid lipid mediators that are actively involved in mitigating inflammatory

responses. The first hint that recovery from inflammation was not just a waning of

proinflammatory signals, but in fact an active recovery process came from studies of

“spontaneously resolving inflammatory exudates” [12]. Through cooperative interactions of

cells within the inflammatory microenvironment, transcellular synthesis of the pro-resolving

lipoxins occurs by two routes [13]. As part of this functional redundancy, leukocytes can

provide LTA4, a leukotriene intermediate from 5-LOX metabolism of AA, to neighboring

cells such as platelets that in turn use this substrate to produce lipoxins LXA4 and LXB4

through the action of their own 12-LOX. Alternatively, LXA4 and LXB4 can be synthesized

by cells through the uptake of a 15-LOX intermediate, and subsequent 5-LOX activity.

Aspirin-triggered lipoxins also exist, but production of these occurs either through the

COX-2 or P450 pathway [14]. The yin and yan transition of pro-inflammatory lipid

production to that which resolves inflammation is modulated by still other lipid mediators

such as a subset of prostaglandins.

The resolvins include the E-series (RvE1–E2) and D-series (RvD1–D6) lipid metabolites

that originate from the omega 3 fatty acids, EPA and DHA respectively. DHA is also the

source of maresins (MaR1) and neuro/protectins (NPD1/PD1). These newly characterized

lipid mediators are thought to drive the benefits attributed to omega 3 up take [14].

Lipoxins, resolvins, maresins, and protectins (not to be confused with the membrane

complement attack complex inhibitor protein (CD59) with the same name [15]) all target

specific cell populations through defined surface receptors such as GPR32, FPRL1 (ALX/

FPR2), cysLT1, ChemR23 (also activated by the protein chemerin), and BLT1 and have

various immunoregulatory functions so as to regulate acute inflammation (reviewed in [16–

18]).

This “resolution pharmacology” has already had a major impact on treatment modalities of,

for example, periodontal disease [19,20]. In a lapine periodontitis model, leukocyte-

mediated bone loss was prevented by RvE1, and it was demonstrated further that osteoclast

differentiation was also abolished with resolvin treatment ([21] and references therein).

These exciting preliminary studies on the effects of the pro-resolving arm of lipid mediators

portend a blow to the resistance mechanisms of many diseases. The therapeutic effects of

lipids in general, as well as from targeting their pathways, are heralding major advances in

diverse disciplines.

Tucker and Honn Page 3

Biochem Pharmacol. Author manuscript; available in PMC 2014 July 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2.1. Types of therapeutic lipids

Highly or polyunsaturated fatty acids (HUFA, PUFA) are the predominant source of lipid

mediators, with both the eicosanoid (C20) and docosanoid (C22) fatty acid metabolites

driving many phenotypes targeted for therapy including apoptotic pathways [22,23]. The

direct consumption of preformed DHA and EPA has been demonstrated to have many

therapeutic effects, particularly when derived from marine sources, as these substrates tend

to skew the lipid continuum toward a healthy balance [24,25]. However, defined lipid

mediators are being singled out of numerous lipid reaction pathways to treat specific

diseases.

2.2. Specific examples of disease/pathobiology studies that suggest beneficial impact of
lipids

Gynecological applications—Numerous studies on prostaglandins and their receptors in

pregnancy have been reported [26]. Cervical ripening and the onset of labor are induced

through the E and F series prostaglandins with a concomitant reduction of progesterone

[27,28]. In a recent study that garnered national attention, midtrimester administration of

progesterone was shown to decrease preterm delivery [29], an effect that is likely due to

antagonistic effects on the lipid mediators.

Oral use of the prostaglandin E1 analog, misoprostol, was indicated for treating peptic ulcers

and then adopted in the 1990s for use as a uterotonic (contracts the womb after child birth)

in management of postpartum hemorrhage [30]. Oxytocin and ergometrine are two

uterotonic drugs that are conventionally used to manage postpartum hemorrhage. While

considered the gold standard, there are some drawbacks when considering their application

in areas of the world where standard medical care may not be readily available. They are

heat labile, require injection, and can elevate blood pressure. A recent Cochrane review of

72 randomized trials (52,678 women) reported that misoprostol was effective in reducing

severe hemorrhage and reduced the need for blood transfusion. Given the lower cost, ease of

administration, and its temperature stability, in addition to the fact that it can be used in

hypertensives, oral administration of misoprostol was determined to be a viable treatment

option particularly in low or middle-income countries despite some of the side effects such

as fever and nausea that could impact maternal-infant bonding [31].

Misoprostol is now being used prophylactically to maintain uterine tone during C-section

under anesthesia and to reduce blood loss during myomectomy for fibroids [32,33]. In 1995,

and again in 2012, misoprostol was evaluated for its ability to reduce oral mucositis in

response to chemotherapy and radiation [34,35]. Unfortunately the radiation study was cut

short due to funding cuts and the chemotherapy pilot was never expanded to greater patient

numbers. Therefore, the efficacy of prostaglandin treatments on oral mucositis in response

to cancer treatments awaits further evaluation.

Diabetes studies—Gurgul-Convey et al. have proposed a new mechanism that involves

prostacyclin or PGI2 to improve the treatment of type II diabetes. Rat islet cells have low

levels of the enzyme prostacyclin synthase (PGIS). However, they ramp-up production in

response to glucose stimulation. While the parental version of the beta-cell line, INS1E, did
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not have the same response to glucose, they were made to artificially overproduce PGIS,

which then significantly increased insulin production and secretion in response to nutritional

cues. The prostacyclin analog iloprost, also used in other studies to mitigate pulmonary

fibrosis [36], induced insulin secretion in parental INS1E cells, and the IP (prostacyclin)

receptor antagonist CAY10441 attenuated the response in the PGIS over expressing

transfectants. In addition to the IP receptor, it was determined that Epac2, a protein

responsive to cAMP and present in exocytic machinery as a guanine nucleotide exchange

factor (GEF), was also required for the observed effects [37]. Interestingly, in another study,

palmitate was shown to induce autophagy and cell death in the same INS1E cell line as well

as in isolated rat and human islet cells [38].

In a meta-analysis to determine the association of Omega-3 fatty acids and type II diabetes,

Wu et al. concluded that regular intake levels were neither harmful nor helpful and that

alphalinoleic acid was associated with “nonsignificant trends toward lower risk” [39]. A

group looking at the cardioprotective effects of pioglitazone in diabetic patients, found that,

like aspirin, it elevated the pro-resolving lipoxin metabolite of the omega 6 arachidonic acid,

15-epi-lipoxin A(4) (15-epi-LXA(4)) [40,41]. Clearly more research into specific effects of

lipid mediators in diabetes phenotypes is warranted.

Cardiovascular studies—Similar questions have arisen with regard to efficacy of n-3

long chain polyunsaturated fatty acids (LCPUFA) in cardiovascular disease. However, the

disparate study results on the beneficial effects of omega 3 on arrhythmia were recently

reconciled by proposing that they serve as an “upstream therapy” by suppressing cell

damage responses to inflammation, apoptosis, ischemia, etc., that is to say that they impart

their benefits by preventing pathological structural remodeling of cardiac tissue particularly

when applied during early stages of disease [42,43].

A recent study by Khairallah et al. has demonstrated that DHA supplementation increases

overall mitochondrial n-3 PUFA content and dramatically alters mitochondrial cardiolipin, a

tetraacyl phospholipid that is required to form the junctions between inner and outer

mitochondrial membranes [44,45]. In general, depletion of total cardiac mitochondrial

cardiolipin, and reduction of the tetralinoleoyl cardiolipin (L4CL) that makes up 60–80% of

the cardiac mitochondrial cardiolipin pool, is associated with cardiac pathologies. Moreover,

mitochondrial dysfunction overall has diverse repercussions and is known to impact diabetes

and neurodegeneration in addition to heart failure (reviewed in [45]).

The findings by Stanley et al. that fish oil supplementation could prevent cardiomyocyte

apoptosis in a rat model of chronic aortic hypertension led the investigators to uncover a link

between DHA and the mitochondrial permeability transition pore (MPTP) [46]. Specifically

it was determined that moderate DHA supplementation delayed Ca2+-induced opening of

the pore, which is significant as opening of the MPTP leads to a permeability transition that

results in depolarization and cell death [46]. Therefore, the contribution of mitochondrial

dysfunction to cardiac pathologies may be mitigated by DHA-mediated membrane

remodeling. In the clinic, administration of 0.9–3.6 g/d of DHA + EPA to heart failure

patients lessened hospitalization and mortality as well as improved left ventricular function

[46]. It is known that increased uptake of DHA and EPA decreases inflammatory mediators
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in the lipid pathways, reduces pro-inflammatory cytokine gene expression, and elevates

beneficial resolvins and eicosanoids such as PGE3 and LTB5, for example. An additional

potential benefit stems from elevation of the less cytotoxic peroxidation products from the

long chain n-3 PUFAs, such as 4-hydroxy-2-hexanal (HHE), in comparison to those

generated from n-6 PUFAs, such as 4-hydroxy-2-nonenal (HNE), which has deleterious

effects on mitochondria and is also associated with left ventricular function [46]. The

complexity and impact of dietary ratios of beneficial fats to carbohydrates in relation to

healthy versus unhealthy weight, and the role of these ratios in cardiovascular disease onset

or progression is an area actively being investigated [46].

Nevertheless, despite the numerous benefits of targeting the eicosanoids in cardiovascular

diseases, there are significant consequences to global disruption of the physiological yin and

yan, and specific targeting of individual components on the lipid continuum such as the lipid

receptors or lipid enzymes would be more desirable. This has been covered in an excellent

review by Capra et al. [47].

Critical care—In critically ill patients, such as those with sepsis, elevated circulating

PLA2 can predict the risk of acute respiratory distress syndrome (ARDS), and it has long

been recognized that modulation of systemic inflammatory response syndrome (SIRS) by

targeting the lipid continuum could benefit critical care medicine [48,49]. In clinical trials,

enteral administration of EPA and gamma-linolenic acid (GLA) could prevent progression

to sepsis [50]. However, others reported that this regimen did more harm and could not be

recommended for treating the critically ill patient [51]. In the pediatric setting, as reported

by Shimizu, alprostadil (PGE1) and dinosprostone (PGE2) are used to treat primary

pulmonary hypertension as well as ductus-dependent congenital heart disease. Similarly,

misoprostol has improved juvenile rheumatoid arthritis and has been used to stave-off

NSAID and corticosteroid damage to the gut in children [52]. For premature infants with

hypoxemic respiratory failure due to respiratory syncytial virus (RSV) pneumonia, it is the

inhalation of PGI2 together with high frequency oscillatory ventilation that improves clinical

outcome [53]. Thus lipids continue to be utilized in novel critical care treatments.

Fibrosis and kidney disease—Epithelial to mesenchymal transition (EMT) occurs in

both normal biology, as in development and response to injury, and pathobiology, as in

cancer and organ fibrosis and is classified according to context [54]. Tissue and organ

fibrosis are currently being debated as a form of EMT (reviewed in [55]). EMT onset and

regulation is governed by numerous factors such as growth factors, reactive oxygen species,

epigenetic factors, and relay of mechanosensory information [56,57]. As an aside, the

mechanosensory stimulation of PGE2 production by low-intensity pulsed ultrasound (LIPU)

has been demonstrated to induce cell differentiation albeit in osteoblasts through osteocytes,

which leaves open the possibility of modulating EMT phenotypes in the future [58].

Currently though, diseases such as systemic sclerosis (SSc) and idiopathic pulmonary

fibrosis (IPF) are still an enigma and remain difficult to treat [59]. Interstitial fibrosis in end-

stage renal failure has also been correlated with EMT phenotypes [57]. Increasingly, lipid

mediators are being substantively implicated in fibrosis and are currently the targets of

emerging therapies (reviewed in [59]). In a study out of Italy, EPA and DHA were
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demonstrated to counter the kind of inflammation and extracellular matrix (ECM)

accumulation seen in renal disease [60]. Meanwhile, several animal models have

demonstrated that renal proximal tubule inflammation and dysfunction in diabetic

nephropathy could be linked to altered levels of cannabinoid receptors, where for example

AM251, a CB1 receptor agonist, ameliorated albuminuria and CB2 receptor agonists such as

AM1241 could reduce monocyte chemoattractant protein MCP-1 as well as chemokine (C-C

motif) receptor 2 (CCR2) (reviewed in [61]). In another report of the antifibrotic effects of

lipid mediators, dihydrosphingosine-1-phosphate (dhS1P) was shown to affect scleroderma

fibroblasts through its up regulation of phosphatase and tensin homolog (PTEN), and

normalization of proteases and transcription factors [62].

Neurobiology—Lipid mediators are associated with traumatic brain injury, cerebral

ischemia, subarachnoid hemorrhage, and exicitotoxic injury. Numerous diseases including

epilepsy, Alzheimer’s, amyotrophic lateral sclerosis, Parkinson, and Creutzfeldt-Jakob

disease have some form of underlying component along the lipid continuum [63,64].

Arachidonic acid metabolites are implicated in affective disorders, where studies have

shown a clear benefit associated with omega 3 fatty acid consumption [65,66], and

neuroprotectin D1 (NPD1; 10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15E,19Z hexaenoic

acid), the 15-LOX product of DHA, effectively improves lipid bilayer properties, reduces

apoptosis, and down regulates inflammation to positively impact many neurological diseases

[67]. Furthermore, omega 3 fatty acids also protect against long term injury from neonatal

hypoxicischemic brain injury [68], perhaps also through the actions of resolvins. A

competitive inhibitor of the COX enzymes and 5-LOX called licofelone is able to abate

symptoms of Huntington’s disease in a mouse model, and may prove useful in the treatment

of Alzheimer’s disease as well, as a recent study has demonstrated that transfer of the 5-

LOX gene to mice worsened their Alzheimer’s phenotypes [69,70]. Simultaneous inhibition

of the COX enzymes and 5-LOX with licofelone appears to improve drug delivery of

riluzole in spinal cord injuries by lowering the efflux drug transporter P-glycoprotein

(abcb1), which is upregulated in many cancers as well [71]. However, in Alzheimer’s β-

amyloid itself can down regulate Abcb1 at the blood brain barrier to exacerbate the

condition [72], which again speaks to the balance that pharmaceutical targeting of lipid

mediators must achieve.

Arthritis—Proresolving lipid mediators have been steadily developed alongside synthetic

anti-rheumatic drugs to target rheumatic diseases with success, though side effects have

sidelined some prominent drugs [73–77]. A new lipidomics study has begun to identify and

profile those natural products within synovial fluids of rheumatoid arthritis patients that

could be targeted for further development in treatment including the maresins, the D-series

resolvins, and lipoxins [78]. Conceptually the high density lipoproteins (HDL), like

resolvins, are protective and anti-inflammatory, and part of their function is to prevent the

oxidation of low density lipoprotein (LDL). However, in an acute phase response, they

become pro-inflammatory (pi-HDL), and should the acute phase become chronic then

diseases associated with chronic inflammation such as arthritis develop [79]. As oxidized

LDL has also been found in synovial fluid, and LDL are seeded with metabolites of linoleic
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and arachidonic acids, it will be interesting to see what crosstalk occurs between the pro-

resolving fatty acid derivatives and the pi-HDL or oxidized LDL [40].

Cancer—Studies to modulate the lipid continuum have been most concentrated in an effort

to impact cancer in all its forms and permutations. The use of natural lipids has many

benefits not the least of which is patient acceptability. The usefulness of nutritional agents

and their derivatives has repeatedly been borne out in their impact on a diverse array of

cancers including colorectal cancers as well as breast cancer [80,81]. In a newly published

breast cancer study, it was determined that colony stimulating factor 1 (CSF1) could be

suppressed by the effects of fish oil induced elevation of PTEN levels mediated by the

reduced expression of the microRNA miR21 [82]. Another study has suggested that omega

3 consumption would counter the potential for breast cancer invasion by progestin hormone

replacement therapy [83]. On the flip side where estrogen depletion is desired, there are a

host of issues associated with antiestrogen therapy with agents such as Tamoxifen and

Raloxifene. Aside from the fact that they do not prevent the expansion of estrogen receptor

negative breast cancer, they can also cause thromboembolism [84]. Therefore studies are

underway to determine if Raloxifene in combination with an omega 3 regimen, like Lovaza

could be of some benefit. More promise for the benefit of omega 3 in skewing the lipid

continuum comes from a recent study that suggested it may ameliorate the debilitating side-

effects of peripheral neuropathy associated with paclitaxel therapy [85].

Just as has been reported in animal models of prostate cancer, the administration of EPA and

DHA can also attenuate the growth of pancreatic cells in a xenograft model of MIA-PaCa-2

and is even more effective in combination with inhibitors of autophagy [86]. In the same

study, growth of both Capan 2 and MIA-PaCa-2 cells were attenuated by EPA and DHA

through the activation of caspase-8 and production of reactive oxygen species (ROS).

Unfortunately, cancer cells are always evolving mechanisms to outsmart our best efforts,

and a fatty acid binding protein (FABP) has just been described in triple negative breast

cancer that is associated with poor prognosis. When bound to DHA, FABP7 can stimulate

the retinoid-activated nuclear receptor, RXRbeta, to promote transcription and cell survival

[87]. Therefore, despite the growing arsenal of lipid mediators used to attack cancer, there is

still a need to evaluate combinatorial therapies and to explore new sources of therapeutic

molecules. Ultimately though, such strategies together with the anti-inflammatory, or pro-

resolving, lipid mediators may soon finally force recalcitrant cancers, such as those of the

pancreas and colon, to meet their match [88,89].

3. Targeting lipid pathways

The therapeutic use of lipids is coming into its own. However, there are plenty of examples

along the lipid continuum where lipids and their signaling pathways are the culprits of

disease, and often these lipid systems are inter-related by means of shared regulatory nodes

[90,91]. The ceramide pathway is involved in many patho/biological functions including

cancer and metabolic syndrome to name a few [92,93]. The eicosanoids are culprits in

asthma and allergic inflammation [94]. Likewise, they are intimately associated with

carcinogenesis and metastasis and have been shown to regulate nearly every phenotype
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associated with cancer and its progression, from angiogenesis to integrin modulation for

adhesion, and endothelial cell retraction to tumor cell invasion [95]. Lipoxygenases have

been the targets for development of many cancer chemopreventive inhibitors [96,97].

However, many additional enzymes along the lipid continuum can be targeted for

pharmaceutical intervention, including those in the ceramide/sphingolipid as well as the

endocannabinoid pathways [98,99].

Most lipid mediators initiate cell signals through either paracrine or autocrine mechanisms

by binding to Rhodopsin-like seven-transmembrane G-protein coupled receptors (GPCR),

and these too have been the focus of targeted therapeutic development [100]. As of 2010

there were five prostanoid receptors with an additional four subtypes, four leukotriene

receptors, and eleven lysophospholipid receptors that include six lysophosphatidic acid and

5 sphingosine 1-phosphate receptors [101]. Additionally there are two cannabinoid receptors

and the platelet activating receptor. The classic and currently accepted International Union

of Pharmacology (IUPHAR) receptor names, according to class of lipid as well as the

historical context of their discovery, as well as a phylogenetic study are summarized in

succinct reviews by Howlett and Mizutani [101,102]. A number of receptors whose ligands

were previously undefined, the so-called “orphan” receptors, have been paired with

bioactive lipids [103,104]. Historically, thromboxane and the prostaglandins, which are both

products of arachidonic acid metabolism by the COX enzyme, were the first bioactive lipids

to have their receptors characterized, followed a decade later by the receptors for

leukotrienes and lipoxins, which are arachidonic acid metabolites of the 5-LOX and 15-LOX

enzymes respectively. Recently receptors for 12(S)-HETE and several autacoids, small

molecules with short half lives similar to hormones that act near the site of synthesis, such as

maresins, resolvins, protectins and lipoxins have been identified [16,103]. The receptor for

12(S)-HETE was identified as the orphan receptor GPR31 and christened 12-HETER1

[103]. Its expression and signaling activity was associated with prostate cancer progression

and was demonstrated to be essential for cancer cell invasion in vitro.

In an unrelated study meant to determine the underlying mechanism of periventricular

leukomalacia, linked to cerebral palsy in premature infants, 12-LOX enzymatic activity

(leukocyte type) was determined to contribute to oligodendrocyte death in response to

glutathione depletion [105]. This would suggest that attenuation of neuronal receptor

isoforms of 12HETER1 identified in the prostate study would benefit oligodendrocytes by

inhibiting cell death, whereas in prostate cancer, receptor inhibition would promote cell

death. Furthermore, in a study of neuronal excitotoxicity from cerebral ischemia, several

HETE isoforms, particularly 12(S)-HETE, could actually protect against AMPA receptor-

mediated toxicity [106]. While the 15(S)-HETE and 5(S)-HETE isoforms also offered some

protection, it is unlikely that they are acting through the same receptor. In diseases such as

amyotrophic lateral sclerosis, epilepsy, and ischemia, direct targeting of the AMPA receptor

function has not met with much success [107]. Therefore, in the future the novel 12(S)-

HETE receptor may offer an attractive alternative target. These observations speak again to

the lipid continuum where the yin and yan balance of lipid mediators and targeted therapy

depends on context.
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Endocannabinoid receptors

There are two known cannabinoid receptors, CB1 and CB2 [108]. However, suggestive

evidence is accumulating in support of additional receptors such as in the endothelium as

well as a novel isoform for analgesia [109]. GPR55 shares a mere 14–15% homology with

either CB1 or CB2. However, it is responsive to cannabinoids as well as to

lysophosphoinositol (LPI) and its crosstalk with CB1 and CB2 has been proposed based on

pharmacological data. It is also upregulated in enteric epithelial cells and neurons in

response to systemic inflammation and is being investigated for its role in the

gastrointestinal tract, where it has also been associated with mechanoreceptors in the gut

[110]. The CB1 antagonists SR141716A and AM251 have the opposite effect on, and

apparently stimulate, GPR55, which may speak to the fact that the CB receptors are

interacting with different downstream G-proteins than those interacting with GPR55, whose

interaction with Gα13 predominates and activates RhoA and ROCK, leading ultimately to

transcriptional activation. Additionally, it has been shown that GW405833, which is a CB2

ligand, can serve as an agonist of GPR55 and stimulate LPI signaling [111]. Because of the

putative role of GPR55 in such diverse processes such as cancer, nociception, and insulin

secretion, and its involvement in many organ systems, it is currently the focus of much

attention in the lipid receptor field [110]. GPR55 clearly binds LPI, which has also been

shown to be protective for cerebral ischemia and glutamate excitotoxicity in culture.

Furthermore, GPR55 and its signaling pathway are involved in decidual tissue regression,

angiogenesis, bone resorption (in addition to CB2 [112]), and cancer cell proliferation and

migration, where elevated GPR55 has been correlated to poor prognosis in a number of

cancers, and arachidonyl-LPI is elevated in the plasma and ascites of ovarian cancer patients

compared to their healthy counterparts (reviewed in [113]). In light of the recent issues with

the antagonists/inverse agonists of CB1, and their adverse effects such as nausea and

psychiatric disturbances, such as were seen with rimonabant [114], GPR55 may offer an

alternative or augmented route for therapies meant to target the endocannabinoid system.

Sphingosine 1-phosphate (S1P) receptors

S1P is the end product of a complex lipid pathway that originates at the plasma membrane

with the release of sphingomyelin by sphingomyelinases followed by the action of

ceramidases and ultimately the sphingosine kinase to produce the ligand for the S1P

receptors [115]. The S1P receptors (S1P1-05, called previously Edg-1,3,5,6,8) represent

another example of a lipid continuum that requires perfect balance. Their ligands are

essential for endothelial health and vascular development. However, acute ligand excess can

cause cardiac death (reviewed in [116]). S1P can also be found on HDL particles, and

dependent on the receptor subtype present, can mediate numerous phenotypes including

cancer-associated angiogenesis, proliferation and stem cell migration, as well as

oligodendrocyte progenitor and immune cell migration [117–119]. The S1P3 receptor has

been associated with a worsening of sepsis, and can potentiate epidermal growth factor

receptor (EGFR)-mediated cancer phenotypes in lung cancer cells [116,120]. Reportedly,

the first antagonizing antibody of a lipid-activated receptor was developed for S1P3 that

shows therapeutic promise for treating sepsis and breast cancer progression [117]. S1P1

receptor antagonists have also been forthcoming,as the latest to be developed show promise
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in treating autoimmune inflammation such as in multiple sclerosis (reviewed in [119]).

Other lysophospholipid receptors have been reviewed nicely by Ishii et al. [121].

The S1P1 receptor structure has just been resolved [122]. Moreover, the recognition of lipid

receptors as therapeutic targets has given rise to intensive comparative modeling of these

challenging membrane bound receptors, where careful selection of the template on which to

model can give insight into the development of antagonists [123]. Likewise, the exciting

development of new infrared (IR) probes that are genetically encoded is enabling us to track

receptor activation [124].

Others

The prostanoid and thromboxane receptors as druggable targets are the subject of nice

reviews by Anderson and Kontogiorgis [125,126]. Likewise the cognate nuclear lipid

GPCRs can be found described by Marrache et al. [127].

3.1. Natural products

Natural products have been interrogated for use in anti-cancer therapies as well as in cancer

prevention [128]. It has been appreciated for some time that flavonoids modulate lipid

mediators [129–131]. They continue to inspire drug design as new inhibitors of the lipid

pathways as well as antimicrobials are discovered [132–135].

3.1.1. Flavonoids—Baicalin, a glucuronide of Baicalein (12-LOX inhibitor), is a

flavonoid out of Asian herbals that is known for its anti-inflammatory properties. It has been

reported to prevent differentiation of Th17 cells, which are a CD4+ T helper (Th) subset that

is currently the subject of intense study for their role in immunity and inflammation [136–

138]. Differentiation of Treg and Th17 cells is reciprocally regulated by TGFβ and

accessory cytokines through differentially utilized transcriptional regulators such as the

Forkhead family transcription factor (Foxp3), the Retinoic Acid-related Orphan Receptor

(RORgammaT), as well as the Aryl Hydrocarbon Receptor (AHR), which is best known for

regulating gene expression in response to environmental contaminants but is also stimulated

by non-toxic endogenous ligands [137,139–141]. The latter receptor appears to harbor a

promiscuous ligand binding site insomuch as it binds numerous synthetic and natural ligands

including the flavonoids and lipid products. Both lipoxin A4 and prostaglandin G2 are AHR

ligands that lead to AHR-dependent gene expression including, CYP1A1 (Cytochrome

P4501A1), prostaglandin endoperoxide H synthase 2 (COX2), murine epiregulin (EREG),

and multidrug resistance genes such as MDR1 and BRCP (breast cancer resistance protein)

[142,143].

Th17 cells are implicated in numerous pathological and physiological processes including

rheumatoid arthritis, immune tolerance, mucosal infections and allergy, and tumor cell

microenvironment (Reviewed in [140,144,145] and references therein). Th17 cells have also

been invoked as a link between inflammatory bowel diseases and preterm birth [146], but

their role in cancer is unclear [147]. A study of Th17 cells and their associated cytokines in

pancreatic cancer by He et al., found that Th17 cells were in greater abundance in the

circulation of cancer patients versus healthy individuals [148]. Likewise, Th17 cells were
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positively correlated with microvessel density and were more abundant in lymph node

metastases and cancer tissues, particularly Stage III and IV, than in neighboring normal

tissue. While there was no apparent association of Th17 cells with histological grade, age or

gender, specific cytokines from this Th subset were reportedly higher in patients with poorer

prognosis [148]. Interestingly, although Th17 cells were associated more with breast cancer

than with healthy tissue, the study by Yang et al. reported a negative association between

Th17 numbers and stage, lymph node metastases, and blood vessel invasion, and suggested

that the increased presence of Th17 cells in breast cancer was indicative of a favorable

prognosis [149]. In the future it may be determined that the balance between Treg, the

regulatory T cells, and Th17 cells in relation to lipid mediators is the reason for such

disparate results.

As with Baicalin, the catechin of green tea, epigallocatechin-3-gallate (EGCG) also impedes

Th17 differentiation, regardless of whether they are induced under normally polarizing

stimuli such as TGF-β +IL-6, or through combinations of IL-6 or IL-23 with IL-1β [150].

EGCG down regulated phosphorylated STAT3, which resulted in reduced levels of

RORgammaT, a transcription factor necessary for Th-17 development. In their model of

autoimmune encephalomyelitis (EAE), Wang et al. likewise showed that EGCG could lower

circulating IL6 as well as the soluble form of the IL6 receptor [150].

With regard to other cancers and cancer-related phenotypes, in HepG2 hepatocellular

carcinoma cells EGCG suppresses PGE2 secretion as well as EP1 prostanoid receptor levels.

Moreover, HepG2 viability and motility in response to either PGE2 or ONO-DI-004, an EP1

receptor agonist, was also inhibited by addition of EGCG [151]. It should be noted that

PGE2 can promote Th17 differentiation through EP2 receptor activation, which suggests

that additional targets of EGCG may be forthcoming (reviewed in [152]).

EGCG has anti-thrombotic activity in that it can inhibit release of AA as well as AA-

induced platelet aggregation [151]. Coadministration of EGCG with photodynamic therapy

(PDT) in a mouse mammary tumor model was determined to increase responsiveness to

therapy by reducing PDT-induced PGE2 and promoting apoptosis through attenuation of

both GRP-78 and survivin [153].

The soy isoflavones have also featured in recent prostate cancer studies where it was

determined that they could be used to sensitize cancer cells to radiotherapy, and in a porcine

model they were shown to affect lipid metabolism in adipose, liver, and skeletal muscle

through their activity on adipokines and myokines [154,155]. The effect of lipid mediators

on adipocyte function and metabolic syndrome is another area that is rapidly expanding in

lipidomics [156].

3.1.2. Others—Scientific literature is rich with compelling examples, as presented by

Wallace in 2002, of why lipid mediators should be at the forefront when considering

complementary cancer therapies [157]. Nutritional pharmaceuticals or nutraceuticals

continue to be developed as we collectively gain a greater appreciation for the wisdom of

ancient ways. Curcumin, a compound derived from the spice turmeric, has been the subject

of many studies and the source of emerging drugs that target bioactive lipid pathways. It is

Tucker and Honn Page 12

Biochem Pharmacol. Author manuscript; available in PMC 2014 July 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



an anti-inflammatory agent and can sensitize existing chemotherapies. This synergism is

likely due to its concomitant effect on both COX and LOX enzymes as well as cPLA2

phosphorylation, which has been described [158–160]. While curcumin can be consumed in

great quantity without adverse effect, its bioavailability is limited [161]. In a study meant to

address the underlying mechanisms of colon cancer resistance to chemotherapy, a synthetic

analogue of curcumin (known as 3, 4-difluorobenzo curcumin or CDF) in synergy with 5-

fluorouracil and oxaliplatin (5-FU + Ox) dramatically inhibited the growth of chemo-

resistant cells including CD44 positive stem cells [162]. In the latest effort to improve

bioavailability, a curcumin-cyclodextrin conjugate was tested for its efficacy in reducing

lung tumor burden in an orthotopic mouse model with some success [163]. Additionally, this

conjugated form potentiated the effect of Gemcitabine, a nucleoside analog used for

chemotherapy of a number of cancers. The IC50 of CDF in cultured cells was also improved

with cyclodextrin. When tested in a mouse model this combination resulted in the pancreas

having tenfold more CDF over serum concentrations [164]. While the relatedness of the

following observations remains to be determined, it is noteworthy that CDF regulates the

tumor suppressive microRNAs miR34a/miR34c, and that a regulatory binding site for these

microRNAs, which are actually elevated in a model of hepatic fibrosis, was identified in the

gene for acyl-CoA synthetase long-chain family member 1 (ACSL1) [165,166].

Furthermore, a study of palmitate-induced pancreatic β-cell dysfunction, found that miR34a

modulated VAMP2, a protein on secretory vesicles involved in insulin secretion [167]. The

apparent disparate functions of miR34 likely reflect tissue-based differences of gene

expression perhaps related to bioactive lipid pathways. Curcumin and its derivatives appear

to be viable therapeutics in the treatment of cancer, and have the additional benefit of

serving as useful tools for studying several disease states that may fall under the regulation

of curcumin-responsive microRNAs in relation to lipid mediators. Synthetic curcuminoids

have been identified through protein modeling studies of known LOX enzyme structures in

combination with biochemical assays [168]. Using this approach, two such inhibitors were

identified (E22C, E26C) that successfully inhibited endothelial sprout formation, an early

step in angiogenesis, in an in vitro assay with human umbilical vascular endothelial cells

(HUVEC).

As a result of impaired AA mobilization, cPLA2α knockout mice are protected from

metabolic syndrome, ischemic injury of the brain, and Alzheimer’s, but have impairments

with regard to implantation and parturition [9]. In an effort to knockout cPLA2 activity from

a pharmacological standpoint, several curcumin analogs, identified as rosmarinic acid,

tetrahydrocurcumin, dihydrocurcumin and hexahydrocurcumin, have been discovered that

can inhibit the PLA2 hydrophobic binding pocket from binding substrate thereby preventing

the release of AA and downstream metabolic events [169]. Extracts from the white oatmeal

Avena sativa can also attenuate the stimulated mobilization of AA in keratinocytes, though

not completely, through the reduction of PLA2 transcription and protein production [170].

Phlorotannins from the brown algae Eisenia bicyclis are also potent inhibitors of PLA2,

albeit of the secretory type, and are even more effective in some instances at inhibiting LOX

enzymes than EGCG [171].

Tucker and Honn Page 13

Biochem Pharmacol. Author manuscript; available in PMC 2014 July 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3.2. Pharmaceuticals

In a search for additional drugs that could target lipoxygenases and protect against, for

example, neurodegenerative diseases, an initial computer screen of compounds that could

bind the 15-LOX active site was paired with a screen for inhibition of recombinant

enzymatic activity. Then, using a cellular assay to screen 20 hits that were originally found

from the virtual screen of 50,000 compounds, two novel lipoxygenase inhibitors were

discovered, called LOXBlock-1, and −3, that could protect neuronal and oligodendroglial

cells from oxidative stress-induced cell death [172].

The Cytochrome P450 enzymes add epoxides to arachidonic acid to generate

epoxyeicosatrienoic acids or EETs, which are additional lipid mediators that have a role in

inflammation and platelet aggregation, as well as cancer [173]. The soluble epoxide

hydrolase, or sEH, in turn degrades the EETs into dihydroxyeicosatrienoic acids or DHETs,

thereby attenuating EETs. Small molecule inhibitors of the sEH are currently in

development for the treatment of chronic inflammation [174].

3.2.1. New agents—In 2012, several new, modified NSAIDs have been reported that

have differing effects on the lipid pathways. Elkady et al. have developed membrane

prostaglandin E synthase (mPGES1) and 5-LOX inhibitors that show no COX-1 inhibition

[175]. This was done by modifying the carboxylic acid functional group to sulfonamide

derivatives, where “lonazolac derivative 22” and “indomethacin derivative 17” were found

to be the best at inhibiting mPGES1 and 5-LOX respectively.

Additionally, another class of modified NSAIDS in a new form of aspirin penned NOSH-

aspirin for “nitric oxide- and hydrogen sulfide-releasing hybrid (compound NBS-1120) has

been in the news for its extremely potent inhibition of mouse colon cancer xenografts in

vivo, in addition to its attenuation of numerous other malignant cell types, including

pancreatic, breast, lung, prostate and leukemic cells [176,177]. Derivatization such that

nitric oxide and hydrogen sulfide are released, has the dual benefit of protecting against the

gastric side-effects as well as potently killing cancer cells by apoptosis and attenuating cell

cycle progression. Whereas the indomethacin and lonazolac derivatives of the former aspirin

compound did not impact COX1, the NOSH aspirin did. The impact of these drugs on the

lipid continuum with regard to other mediators such as the lipoxins will be of great interest.

3.2.2. Manufacturing of therapeutic lipids—The creative use of natural systems such

as single cell green algae to successfully manufacture fully functional antibodies was

described nearly a decade ago and pharmaceutical production of proteins in algae continues

to expand [178,179]. Similarly, the study of lipid production in algae from the field of

aquaculture has led to novel insight and the potential for scale-up production of therapeutic

lipids in addition to alternative energy lipids [180– 182]. Cross-discipline studies have led to

the identification of novel lipid enzymes such as elongases and destaturases in eukaryotic

algae that can be directly exploited for DHA production [183,184]. Organic extracts of

microalgae have potential antioxidant and antiproliferative effects, and contain

antineoplastic lipids, including glyco- and phospholipids, from brown and red algae, which

have been determined to impact Meth-A fibrosarcoma [185–189]. Endogenous lipids from
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marine algae have proven to be useful antineoplastic agents as well. The EPA fraction of

diethyl ether extracts of the diatom Cocconeis scutellum reportedly attenuated BT2 breast

cancer cells, and marine derived EPA and DHA have been shown to sensitize animal tumor

models to numerous cancer drugs, an observation that is being supported in various phase II

and III clinical trials [190,191]. The commercial use of microalgae in the development of

therapeutic lipids is a burgeoning area of development [192,193]. Additionally, and as an

alternative to microalgae, the budding yeast Saccharomyces cerevisiae has the capacity to

produce lipids of pharmaceutical interest whose production can be monitored at the single

cell level by another technology coming into the lipidomics field; Coherent Anti-Stokes

Raman Spectroscopy or CARS [194] (described in Section 4.2 of this review).

3.3. Applications (single and multi target)

The term rheostat has been used frequently in the lipidomics field to refer to the yin and yan

of lipid activities along the continuum where the balance in the lipid signaling pathways

may dictate health or disease progression. The diversity of lipid signaling pathways that can

be targeted by lipids and novel drugs to impact diseases is offering a wealth of therapeutic

possibilities that is increasingly recognized and being developed in both academia and by

pharmaceutical companies alike, as both single and multi-targeted, synergistic therapies

continue to be explored.

3.3.1. Single target (lipid centered)—Co-administration of the arachidonic acid

metabolite 12-HETE with NSAIDs and opioids has been shown to reduce reperfusion injury.

Recently the drug Fingolimod (FTY-720), which is an S1P1 antagonist that has been

approved for treatment of multiple sclerosis, was shown to be effective as well [195,196].

While it did not afford protection against glutamate excitotoxicity, it did reduce infarct size.

Incidentally, FTY-720 has also been used in animal models of fibrosis (reviewed in [59]).

Regardless of context be it sepsis or cancer, and regardless of where the lipid continuum is

targeted either at the level of enzymes, lipid products, or receptors, clearly lipid mediators

are leading us into new therapeutic avenues.

3.3.2. Multi-target (synergism of lipid therapy with existing chemotherapy)—A

prime example of our knowledge gap with regard to the synergistic effects of targeting the

lipid enzymes was revealed with the advent of COX inhibition [197]. As another recent

study demonstrated, Celecoxib, a COX-2 inhibitor was found to cause off-target effects that

led to increased amphiregulin (AREG) expression by myofibroblasts and subsequent

stimulation of the EGFR. The study found that while Celecoxib was able to stave-off new

adenomas, patients who were treated with the drug did not experience a reduced incidence

of colon cancer, and in fact saw a greater incidence of adenomas which were more

aggressive within 2 years [198]. While the desired benefit may be ultimately achieved by

targeting the growth factor pathways in combination with COX-2, it nevertheless illustrates

the need for alternate strategies. Using a different approach, Lim et al. demonstrated that

administration of DHA in combination with Sulindac sulfide did suppress growth of human

colon cancer xenografts, and this was through the death receptor (DR)5-dependent extrinsic

apoptotic pathway [199]. DHA has also been shown to synergize with the effects of
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clioquinol (5-chloro-7-iodo-8-hydroxyquinoline) against tumor cells in a PPARalpha-

dependent mechanism to affect a lower IC50 of clioquinol. The effect was attributed to the

attenuation of NF-κB and prosurvival molecules such as Bcl-2, Akt and p65 [200].

Subsequently DHA was shown to target SOD1 in a PPARalpha dependent manner [201].

DHA also synergizes with and enhances curcumin activity against breast cancer cell

proliferation [158].

Tumor cell-induced platelet aggregation (TCIPA) is a recognized process involving

crosstalk between the two cell types in their microenvironment, whereby lipid metabolism of

the platelets can induce integrin upregulation of tumor cells and promote tumor cell

metastasis [202,203]. Rao et al. have demonstrated that DHA can inhibit platelet AA

metabolism by COX into the bioactive thromboxane A2, resulting in less platelet

aggregation [204]. After nearly three decades of research, thromboxane inhibitors are still

actively being developed for a host of other diseases impacted by COX activity including

lupus nephritis, asthma, and septic shock to name a few, and many are used in a

combinatorial approach to restore the yin and yan along the lipid continuum [126,205].

As another example of the pleiotropic effects wrought by some of the lipid mediators, the

enzyme 12-LOX from the lipoxygenase pathway produces a metabolic product from

arachidonic acid called 12(S)-HETE that is clearly linked with much pathology (Table 1). It

is known to stimulate angiogenesis in tumors as well as induce metastasis, and it can lead to

TCIPA [202,206–209]. However, there is evidence that it could be therapeutic as well. In

the context of wound healing, 12(S)-HETE is known to be a mitogen for endothelial cells

and inhibition of the 12-LOX enzyme with BMD122 (formerly called BHPP; N-benzyl-N-

hydroxy-5-phenylpentamide) prevents injured endothelial cell monolayers from responding

to serum-induced repair [210]. Another potential benefit from 12(S)-HETE is implied by the

results from a study meant to evaluate the cardioprotective effects of concomitant

administration of NSAIDS with opioids [211]. Administration of 12(S)-HETE prior to

reperfusion appeared to reduce infarct size. When 12(S)-HETE production was inhibited by

the 12-LOX enzyme inhibitor baicalein, prior to the coadministration of ibuprofen and

morphine, the protective effects of the NSAID-opioid combination were lost.

Synergism between lipid pathways and chemotherapies has been studied in other models

too. In a model of acute lymphoblastic leukemia, manipulation of the sphingolipid pathway

could overcome cell resistance to the retinoid 4HPR N-(4-hydroxyphenyl)retinamide (4-

HPR, fenretinide) [212], and ceramide has been proposed to drive resistance to doxorubicin

[213]. Decursin, which is a putative anti-cancer coumarin out of the roots of the Korean

Angelica gigas was determined to induce cell death in myeloid leukemia cells through its

inhibition of COX2-dependent expression of survivin protein [214]. These data suggest

there could be additional targets in lipid pathways that could provide a beneficial synergism

with existing pharmaceutical applications. For years studies have been reporting on lipid

pathways being modulated in combination as a means to therapy and a sample of recent

studies are listed in Table 2. While there are numerous reports on the efficacy of modulating

lipid mediators in tandem with standard chemotherapy, there does not appear to be a

standard that correlates the class of pharmaceutical, e.g. microtubule inhibitors, with the
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lipid pathway most likely to impact it. Systems biology may eventually allow us to establish

such correlations.

4. Lipidomic methodologies

With the advent of “omics” technologies, proteomics and genomics have advanced at

breakneck speeds and are performed routinely at many institutions. However, after decades

of ground-breaking lipid research, the field of lipidomics is also having a major impact on

numerous basic and clinical disciplines. Therefore, a brief overview of methodologies to

study lipids is presented here in the context of their applications.

The tools and techniques commonly applied to the study of proteins such as chemical probes

or antibody-based assays are currently available and are actively being developed for

lipidomics [215,216]. Likewise, molecular sensors have been described recently for in situ

quantitative imaging of cellular lipids, where lipid binding motifs from lipid receptors are

repurposed as they are engineered together with inducible fluorophores to yield reporters of

spatio-temporal signals on binding of the lipid ligand [217]. The translation of this

technology to interrogate lipid mediators in general will become possible as more lipid

receptor binding sites are described. Other technologies are described below.

4.1. LC–MS

Liquid chromatography–mass spectrometry (LC–MS), coupled with electrospray ionization

techniques, is most commonly used in lipidomics [218–220]. The basic principle couples

liquid phase separation with spectroscopy, which allows for quick and precise separation,

identification and quantitative analyses of lipid species by providing size, sequence, and

structural information.

Lipids present in biological fluids such as urine have been analyzed by separation and

spectroscopy methods to evaluate disease states such as essential hypertension and prostatic

diseases including prostate cancer [221–223]. Further application of the method has been

extended recently to an LC–MS/MS screen for lipids and lipid mediators of synovial fluid

from rheumatoid arthritis patients where the profiles of various inflammatory mediators and

resolvins have been reported [78]. While LC–MS is routinely used for discovery and/or

quantitative lipidomics of biological fluids, it has been proposed that use of these methods

could discover regulatory lipids in breath aerosols that could be predictive of pulmonary

pathobiology [224,225]. The use of breath aerosols to test for bioactive lipids is being

applied to study conditions such as aspirin-exacerbated respiratory disease (AERD), where

high baseline levels of 15(S)-HETE are associated with aspirin sensitivity and activate the

TRPV1 cough receptor [226– 228]. These methods are also being applied to study exercise

induced asthma brought on by inflammatory lipid mediators [229]. The use of LC–MS on

breath condensates could also be reapplied to earlier studies such as those on the effects of

ozone injury to airway epithelial cells at an early phase [230] as well as to detection of lung

cancer, whose feasibility was reported using gas chromatography coupled with mass

spectroscopy [231].
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Mass spectroscopy is the most commonly used tool to study lipids. However, as biophysics

and bioengineering blend with lipidomics, terms such as Raman spectroscopy as well as

Coherent anti-Stokes Raman Spectroscopy (CARS) are entering the lipidomics parlance.

These techniques are powerful for their ability to enable label-free study of molecules in

three dimensions [232,233].

4.2. Raman spectroscopy

One of the perceived drawbacks of LC–MS is that by nature it cannot give spatial

information about lipids in defined cellular compartments and relies on bulk or fractionated

analyses of extracted lipids [234]. While matrix-assisted laser desorption/ ionization

(MALDI) can give spatial information and identify precise molecular compositions of large

biomolecules, the equipment is more expensive than for Raman and it requires some initial

processing such as pre-coating of the samples with crystal matrix material. The analysis also

tends to destroy the tissue. The following references offer an excellent accounting of the

process either alone or in combination with imaging modalities [235–237].

Raman spectroscopy (RS) is an optical technique that exploits inherent differences between

the vibration frequencies of molecules in response to laser excitation and the consequent

effect on inelastic light scattering to generate unique spectra or “fingerprints” for individual

molecules. One of the most exciting adaptations of RS has been the use of intrinsic RS

spectra to profile biological samples in vitro and in vivo. This type of label-free, pattern

profiling from spontaneous Raman scattering can reflect cell-specific protein, lipid and

phosphate content, and can even reveal intracellular distribution of metabolites. There are

numerous permutations of RS, including Tip-enhanced RS for optical spectroscopy on a

nano-scale (TERS), Coherent anti-Stokes RS for overcoming fluorescence interference of

basic RS and increasing resolution (CARS), and Resonance RS for polypeptide analysis.

Raman scattering can be amplified (e.g., Stimulated Raman Scattering-SRS), which can

facilitate in vivo imaging at speeds approaching real time [238]. Utility of the method has

been demonstrated in a variety of applications, but particularly in cancer studies [239].

Raman spectroscopy overcomes the need for label that could interfere with lipid packing,

and can provide real time information on lipid accumulation and metabolism throughout a

living cell over brief or extended time courses [240]. To examine the compartmentalization

of EPA after uptake into living cells, spontaneous Raman spectra were generated for DHA,

EPA, AA and OA (oleic acid), which have 6, 5, 4 and 1 C=C bond(s) respectively. The

Raman shift for the unsaturated fatty acids was mapped to a band at 3015 cm−1, where the

peak intensities are roughly proportional to the amount of unsaturation in the lipids, so that

the tallest peak at 3015 cm−1 is DHA and the lowest is OA. After incubating A549 human

lung carcinoma cells in EPA, cells were profiled and subcellular localization of EPA was

found in lipid drops based on the peak height at 3015 cm−1 [241]. Another advantage to the

method is the absence of photo damage on repeated imaging. Additional studies have used

the technique to examine cholesterol and DHA in the outer segment of retinal rods, and to

look at lipid distribution in Caenorhabditis elegans [242–244]. Direct label-free observation

of these molecules in relation to the relative microenvironment without the need for

biochemical or histochemical analyses is proving to be an exciting new tool in lipidomics

[245]. Single-cell laser-trapping Raman spectroscopy has been used for lipid profiling in real

Tucker and Honn Page 18

Biochem Pharmacol. Author manuscript; available in PMC 2014 July 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



time of microalgae under varied growth conditions. Therefore, the technique will likely find

additional applications in cell culture overall [238,246]. To that end, the Raman-generated

spectra on autophagic cells was recently used to identify a reporter peak of phospholipids at

718 cm(−1) that appeared to reflect cellular autophagy on starvation [247].

Early neoplastic changes can be detected with RS, and malignancies can be discriminated

from normal tissue based on the multiplexed RS spectral profiles [248–250]. The desired

Raman scattering can be filtered from spectral background noise and fluorescence to

generate cellular “fingerprints” that are unique and precise [234]. Algorithms that organize

the comprehensive Raman spectrum, and that sort malignant and normal profiles through

assignment by discriminant function analyses, already exist and have been applied, for

example, to the analysis of human ductal carcinoma cells in a mouse model of human

pancreatic cancer [251]. In addition to tissue analyses, biofluids such as serum appear to

have potential spectral reporters of carcinoma as well with this methodology [252–254]. The

technique was appreciated for its potential in medical applications more than a decade ago

and has been steadily proving its value since then [255–257]. Raman spectra of neoplastic

tissue are now actively being explored for novel cancer biomarkers [258]. Using Raman for

optical biopsy, inflamed buccal mucosa has been profiled for oral cancers [259]. The

applications have even found their way into dermatological research where Raman can

report on the reaction of skin to cosmetics or therapeutic creams at a molecular level,

including the packing of ceramides [260–262]. The source of tissue being imaged can be

fresh or frozen and non-invasive measurements of tissue up to 50 mm have become possible

with surface-enhanced RS (SERS) probes [263,264]. Theranostic SERS probes have also

been developed that allow them to be used for both imaging and heat ablation [265]. With

the arrival of near infrared receptor-targeted nanoprobes, the multimodal platform of Raman

spectroscopy and microscopy is proving to be a powerful imaging combination whose

application yields precise information in both time and space [266].

A multi-platform or “multi-modal” approach, where several technologies are bundled with

Raman spectroscopy, can be used to examine tumor heterogeneity. For example, hypoxic

regions can be visualized in breast solid tumor models using signatures of elevated lipid

metabolism and other molecules that occur in response to hypoxia by using magnetic

resonance (MR) imaging, MR spectroscopic imaging (MRSI), and optical imaging in

combination [267]. Likewise, confocal Raman microscopy revealed that there are more lipid

bodies (13.8%) in human colorectal adenocarcinoma Caco-2 cells than in the “normal” rat

intestinal epithelial cell line IEC6 (1.8%). Furthermore, from the spectra of the two cell lines

in comparison to reference standards, it was determined that lipid bodies in Caco-2 cells

have a larger peak corresponding to arachidonic acid [268]. RS has been used in several

breast cancer studies [248,269,270]. In the study by Brozek-Pluska et al., cancerous and non

cancerous cells from the same patient were profiled for lipid content. The Raman spectra

from the cancer cells were similar to the spectral profiles of gamma linolenic acid and

arachidonic acid, a known precursor of procarcinogenic lipid metabolites, whereas the

spectra from the normal tissue were comparable to those seen for oleic acid and omega 3

fatty acids. It should be noted though, that in the cancer cells the spectrum was dominated

more by protein rather than lipid peaks as might be expected for cells that are actively

growing.
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The determination of lipid localization in addition to cellular lipid composition by Raman

spectroscopy is proving to be valuable for studying such issues as cell polarity, which is an

important factor in metastasis. The basal and apical sides of 3D-cultured breast acini were

probed by Raman spectroscopy where it was found that lipids on the apical side were more

ordered in comparison to the basal side. When polarity was disrupted by calcium chelation

or by addition of arachidonic acid, which caused two tight junction proteins (ZO1 and ZO2)

to move from the poles, the inverse order was observed [271]. Interestingly, in endothelial

cells ZO1 is also mobilized by the activity of sphingosine-1-phosphate [272].

Defects in phosphatidylinositol processing are associated with dissolution of the primary

cilium in response to serum, and inhibition of ceramide synthesis severely impairs cilium

formation in Madin-Darby Canine Kidney (MDCK) cells but can be rescued by exogenous

application of ceramide or ceramide analogs [273,274]. Centrosomes and primary cilia have

been shown to be effective reporters of cell polarity, and the loss of the primary cilium

appears to be associated with breast cancer [275–277]. Therefore, given the examples of

Raman spectroscopy to study lipids in breast cancer, this would appear to be another novel

application of the technology, i.e., linkage of lipids, cell organelles, polarity and cancer.

5. Conclusion

The paths less traveled along the lipid continuum are actively being paved by researchers in

their quest for additional therapeutics targeted at diseases whose underlying culprit is lipid-

mediated inflammation. New therapeutic targets have emerged as novel receptors are de-

orphaned and paired with their lipid ligands or as the synergistic effects of lipids with

existing chemotherapies are revealed through systems biology and proteo/ lipidomic

approaches. Lipids are also being applied as therapeutic agents, as novel pathways that

mitigate inflammation are mapped out and marine-enhanced sources are explored for new

activities. The evolving convergence of basic and clinical science with biophysics and

bioengineering has opened exploration into what lipids have to tell us regarding their place

and function in such complex diseases such as cancer. On September 19, 2012 the United

States House of Representatives passed the Recalcitrant Cancer Research Act (H.R. 733) in

a unanimous vote. The goal of the National Cancer Institute under this bill is to identify

major advances for prevention and treatment as well as detection and diagnosis of cancer.

Lipidomics together with emerging spectroscopy methods will be leading the way.
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Fig. 1. The continuum of bioactive lipid pathways
Whether prostaglandins or resolvins bind lipid receptors in a therapeutic context, or HETE

molecules interact with receptors to push cancer toward metastasis, there is evidence to

support nearly every direction and sub circuit depicted on the schematic. Every major class

of lipid enzymes has been determined to contribute in some form or other to disease

progression and/or healing. Lipidomics, systems biology, and biophysics technologies are

paving the paths between the mile markers established over decades of ground breaking

work.

Recommended reading: Chemical Reviews, Special Issue: 2011 Lipid Biochemistry,

Metabolism, and Signaling (October 2011) 111(10). ISSN 0009-2665 Useful sites:

http://www.lipidmaps.org/

http://www.lipidomicnet.org/index.php/Main_Page

http://en.wikipedia.org/wiki/Raman_spectroscopy)

http://en.wikipedia.org/wiki/Coherent_anti-Stokes_Raman_spectroscopy.
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Table 1

Disease etiologies regulated by 12(S)-HETE and potentially 12-HETER1.

Cancer **12(S)-HETE:pleiotropic effects: angiogenesis, cell proliferation,migration, invasion, endothelial cell retraction
[95,278,279]

13(S)-HODE: circadian regulation and cancer [280–282]

Zellweger spectrum of peroxisome biogenesis disorders (PBD-ZSD)

**impaired peroxisome fcn,cells unable to metabolize 12-HETE; blood, organ system metabolism affected, leads to
damage of brain white matter [283,284]

Hypertension **mediation of angiotensin II–induced intracellular calcium transients [223,285,286]

Atherosclerosis **plaque formation [287,288]

Diabetes **ischemic/proliferative retinopathy, human islet cell death [223,289–292]

Parkinson’s ** Glutathione (GSH) depletion–related cell death [293,294]

Alzheimer’s ** c-jun-dependent apoptosis pathway, regulates BACE proteolytic pathway [172,295–297]

Neurological functions **modulates neural peptide secretion, LHRH, the target of chemical castration in PCa treatment, intermediates
activate TRPV1 in sensory neurons [298–300]
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Table 2

Studies on drug development and efficacy of co-modulation of lipid mediator pathways.

LOX(s)/COX-

• Effects of flavocoxid, a dual inhibitor of COX and 5-lipoxygenase enzymes, on benign prostatic hyperplasia PMID: 22471974

• Dual inhibition of 5-LOX and COX-2 suppresses esophageal squamous cell carcinoma PMID: 21652147

• Synthesis of celecoxib analogs that possess a N-hydroxypyrid-2(1H)one 5-lipoxygenase pharmacophore: biological evaluation as
dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity PMID:18945614

• Comparative protection against liver inflammation and fibrosis by a selective cyclooxygenase-2 inhibitor and a nonredox-type 5-
lipoxygenase inhibitor PMID:17766677

• New approaches to the modulation of the cyclooxygenase-2 and 5-lipoxygenase pathways PMID:17305572

• Design, synthesis, and biological evaluation of (E)-3-(4-methanesulfonylphenyl)-2-(aryl)acrylic acids as dual inhibitors of
cyclooxygenases and lipoxygenases PMID:16931030

• Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke PMID:15637091

• Dual inhibition of cyclooxygenases-2 and 5-lipoxygenase by deoxypodophyllotoxin in mouse bone marrow-derived mast cells
PMID:15187418

• Licofelone, a dual lipoxygenase-cyclooxygenase inhibitor, downregulates polymorphonuclear leukocyte and platelet function
PMID:12393068

• Anti-inflammatory activity of a dual inhibitor of cyclooxygenase and lipoxygenase pathways, CBS-1108 (2-acetylthiophene-2-
thiazolylhydrazone) PMID:3935121

LOX/TXA2S-

• In vitro effects of E3040, a dual inhibitor of 5-lipoxygenase and thromboxane A(2) synthetase, on eicosanoid production PMID:
11430933

COX/TPR-

• Cyclooxygenases, thromboxane, and atherosclerosis: plaque destabilization by cyclooxygenase-2 inhibition combined with
thromboxane receptor antagonism PMID:15655126

Other combinations-

• C6-ceramide and targeted inhibition of acid ceramidase induce synergistic decreases in breast cancer cell growth PMID:21935601

• GDC-0941, a novel class I selective PI3K inhibitor, enhances the efficacy of docetaxel in human breast cancer models by increasing
cell death in vitro and in vivo PMID:22586300

• Atorvastatin sensitizes human non-small cell lung carcinomas to carboplatin via suppression of AKT activation and upregulation of
TIMP-1 PMID:22305890

• Inhibition of acid ceramidase by a 2-substituted aminoethanol amide synergistically sensitizes prostate cancer cells to N-(4-
hydroxyphenyl) retinamide PMID:21557271

• Methyl jasmonate down-regulates survivin expression and sensitizes colon carcinoma cells towards TRAIL-induced cytotoxicity
PMID:21486277

• S-adenosylhomocysteine hydrolase inhibition by 3-deazaneplanocin A analogues induces anti-cancer effects in breast cancer cell
lines and synergy with both histone deacetylase and HER2 inhibition PMID:20556507

• Phase 2 trial of weekly intravenous 1,25 dihydroxy cholecalciferol (calcitriol) in combination with dexamethasone for castration-
resistant prostate cancer PMID:20166215

• Drugs that target lipoxygenases and leukotrienes as emerging therapies for asthma and cancer PMID:15032639
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