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Abstract

High-resolution (HR) electrical mapping is an important clinical research tool for understanding

normal and abnormal gastric electrophysiology. Analyzing velocities of gastric electrical activity

in a reliable and accurate manner can provide additional valuable information for quantitatively

and qualitatively comparing features across and within subjects, particularly during gastric

dysrhythmias. In this study we compared three methods of estimating velocities from HR

recordings to determine which method was the most reliable for use with gastric HR electrical

mapping. The three methods were i) Simple finite difference ii) Smoothed finite difference and a

iii) Polynomial based method. With synthetic data, the accuracy of the simple finite difference

method resulted in velocity errors almost twice that of the smoothed finite difference and the

polynomial based method, in the presence of activation time error up to 0.5s. With three synthetic

cases under various noise types and levels, the smoothed finite difference resulted in average

speed error of 3.2% and an average angle error of 2.0° and the polynomial based method had an

average speed error of 3.3% and an average angle error of 1.7°. With experimental gastric slow

wave recordings performed in pigs, the three methods estimated similar velocities (6.3-7.3 mm/s),

but the smoothed finite difference method had a lower standard deviation in its velocity estimate

than the simple finite difference and the polynomial based method, leading it to be the method of

choice for velocity estimation in gastric slow wave propagation. An improved method for

visualizing velocity fields is also presented.
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Index Terms

Slow waves; finite difference; polynomial fitting; dysrhythmia; multi-electrode

I. Introduction

A rhythmic electrical activity known as slow waves coordinate the motility of the stomach.

Slow waves are initiated and propagated by a specialized network of cells termed the

‘interstitial cells of Cajal’ (ICC), which are located in and between the muscular layers of

the stomach wall [1]. In the normal human stomach, slow waves propagate from a

pacemaker region near the greater curvature of the upper body (corpus) toward the pylorus

at a frequency of around three cycles per minute [2]. Dysrhythmic slow wave activity has

been associated with several significant motility disorders, including gastroparesis and

functional dyspepsia, but abnormal propagation patterns and signal characteristics in humans

remain poorly understood [3], [4], [5].

Traditionally sparse serosal electrical mapping or cutaneous electrogastrogram (EGG) have

been performed to record and analyze gastric slow wave activity. Due to the sparseness of

the electrode configurations or far-field recordings in EGG, propagation patterns and

velocities could not be determined accurately [6], [3]. In HR mapping dense arrays of many

electrodes are used to track slow wave propagation sequences in spatiotemporal detail [7]. It

has recently been shown that gastric serosal HR mapping is a vital technique for evaluating

slow wave activity in rhythmic and dysrhythmic states [2], [8], [9]. A major advantage of

HR mapping over alternative techniques is the ability to accurately quantify spatial slow

wave propagation patterns, providing detailed insights into the initiation, movement and

interaction of normal and abnormal wavefronts [8], [9].

Accurate determination of slow wave propagation velocities has become a central focus of

gastric HR mapping analysis because substantial changes in velocity have been associated

with gastric dysrhythmias indicating abnormal circumferentially propagating wavefronts

[10]. Identifying velocity features may therefore allow a better understanding of

dysrhythmic slow wave propagation and contribute to an improved foundation for clinically

diagnosing gastric dysrhythmias using HR mapping. A reliable and accurate velocity

estimation method is therefore required.

In the field of cardiac electrophysiology a number of studies have quantitatively validated

different methods of velocity estimation and have guided appropriate usage [11], [12]. Some

of the commonly used velocity estimation methods include the use of finite difference,

polynomial fitting, and wavelets [11], [12], [13]. However no such validation studies have

been conducted for gastric slow wave recordings. Cardiac methods cannot be directly used

because of the different signal characteristics of the slow wave events and their propagations

patterns during both normal and abnormal activation [14], [15]. As the use of HR

gastrointestinal (GI) recording becomes more widespread, there is a pressing need to

develop, validate and standardize methods to reliably and efficiently estimate and visualize

velocities of slow wave propagations. This would also allow for a fair comparison of

velocity outcomes between patient and studies.
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In this study we compare three different velocity estimation methods, (i) Finite difference

(FD) (ii) Smoothed finite difference (FDSM) and (iii) Polynomial based method

(POLY4×4), for gastric HR mapping. These three possible approaches were validated using

simulated and experimental data, and outcomes were quantitatively and qualitatively

compared to identify the most suitable method for velocity analysis. Improved visualisation

methods for velocity fields are also presented.

II. Materials and Methods

A. Experimental Setup

HR gastric mapping was performed on cross-breed weaner pigs following ethical approval

from the University of Auckland Animal Ethics Committee. The data was recorded using an

ActiveTwo Biosemi System, with 160-256 simultaneous unipolar recordings taken using

flexible printed circuit board (PCB) arrays (at 4 mm inter-electrode spacing in a regular

grid). The reference (common mode sense) electrode was placed in the lower abdomen in

the body, and the right-leg drive electrode was placed on the right hind leg of the body. The

electrode array was constructed using multiple flexible PCBs (each 2×16 electrodes - Fig.

1a), which were tessellated together to form a regular recording array, and placed on the

serosal surface of the stomach (Fig. 1b). Our methods of anaesthesia, surgery, physiological

monitoring and euthanasia have previously been described [16], [9].

The data was recorded using a sampling frequency of 512 Hz for periods of five to ten

minutes. The recorded data was analyzed using Matlab (version 2010a), where the data was

first downsampled to 30 Hz, after which a moving median and a Savitzky Golay filter were

applied to remove noise from the signals [17]. Then the slow wave activation times were

automatically detected using a variable threshold method [15], and clustered into respective

propagating waves using a region growing method utilizing a polynomial based surface

estimate as a stabilization step [14].

B. Analytic Test Cases

Three synthetic test cases with known velocities were created to test the effectiveness and

sensitivity of the velocity estimation methods. The electrode configurations for the test cases

were the same as experimental recordings. The first time map follows the form,

(1)

where T(x, y) represents the time in a 2D activation time map at coordinate locations x and y,

while a and b are the coefficients in the equation . The second and third

synthetic time maps were created from an elliptical wave of the form,

(2)

and approximated with known anisotropic propagation of gastric slow waves [6]. The

second synthetic time map was a single source propagation with coefficients K = −30, kr =
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−0.25, a = 0.02, b = 0.02 and x0 = y0 = 10. The third synthetic time map represented two

clashing wavefronts, where the coefficients were K = −30, kr = −0.25, a = 0.02, b = 0.02,

and x0 = y0 = 0 for the one of the source and x0 = y0 = 60 for the other source.

The first synthetic time map mimics orderly antegrade or retrograde slow wave propagation

(Fig. 2a) [2], [9]. The second synthetic time map was an elliptical wave with propagation

emerging from the bottom left of the electrode array (Fig. 2b), and mimics ectopic focal

activities [8], [9]. The third synthetic time map has two elliptical waves propagating from

opposing edges of the electrode array to clash in the center of the array (Fig. 2c), and mimics

interacting dysrhythmic activities and gastric pacing [2], [9]. These synthetic time maps

were perturbed with random noise (described in III-B) to simulate experimental recordings.

III. Velocity Estimation Methods

Velocity mapping has been used extensively in cardiac electrophysiology and the methods

trialled and validated herein were adapted and developed from a range of previously

established techniques. Three methods of velocity estimation are described and compared

here with two of the methods in current use in the GI field, and a third new method being

introduced. The advantages and disadvantages of the methods are compared and discussed

in further detail.

In simple terms, velocity describes the speed and direction of a moving object, which in this

context is the slow wave propagation. This is computed by taking the gradient of the time at

defined distances. In a two dimensional (2D) case, velocity is computed as follows [11],

(3)

where Tx = ∂T/∂x and Ty = ∂T/∂y are the gradients of the time map with respect to the x and y

directions of the recording array.

The simplest approach to estimate velocity on a 2D surface is to take a finite difference (one

sided difference for the edges and central difference for the internal points) of the time array.

This approach is implemented in the ‘SmoothMap’ software and has been used in several GI

electrical mapping studies [18], [19], [2]. In practice, we have observed limitations with this

method. Notably any noise in the activation time map would be amplified after taking a

difference in time values, leading to misleading estimates of velocity and would undermine

the vector visualization of the slow wave propagating wavefront. Also if surrounding time

values are not present in the time map, the velocity in the surrounding the area would not be

estimated. This is particularly significant in clinical mapping studies when recordings are of

reduced quality due to intra-operative recording restrictions, requiring some data

interpolation [14].

To counter the disadvantages of the finite difference method, an interpolation and smoothing

scheme was applied to generate a second method, introduced here, which we call a

smoothed finite difference approach. Once ∂T/∂y and ∂T/∂x are found, any missing data
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points are interpolated using an inverse distance squared interpolation [20], which is defined

as,

(4)

where Y is the unknown value to be interpolated, Xi is the known value at point i, Di is

distance between the known and unknown value, and N is the number of the known values

in the grid. The values of Vx and Vy were then smoothed using a Gaussian filter (Eqn (5))

using a 2D convolution in order to reduce any noise amplification by the finite difference

approach. The Gaussian filter is defined as,

(5)

where x̂ and ŷ define the size of the filter and σ is the standard deviation of the filter. The

values for the Gaussian filter were empirically chosen to be x̂ = ŷ = 1,…, 5 in integer steps

and σ as 0.75.

Bayly et al. [11] introduced a method of estimating velocities in cardiac electrical mapping,

which eliminates the problem of noise amplification present in the finite difference

approach. A second order polynomial of the form,

(6)

was fitted to the activation time map, where the coefficients (a-f) were found using a least

squares fit computed via singular value decomposition. The derivatives of the second order

polynomial were then used to approximate the velocity. The polynomial fit of the activation

time acts as an interpolant and a smoothing function. The criteria for selection of window

size for fitting the polynomial was suggested as being four times the sampling interval [11].

In this experimental set-up, the sampling interval was 4 mm and thus a window size of 16 by

16 mm (or 4 by 4 electrodes) was used. In some previous GI electrical mapping studies, the

polynomial based method was applied to the whole array of 60 by 60 mm, to visualize

velocity fields [6], [21], [16] even though this application of the method effectively erodes

spatial resolution for complex patterns.

A. Visualization of Velocity Fields

Visualization plays an important role in screening normal and abnormal gastric slow wave

propagation wavefronts. Activation time maps are displayed as isochrones where blank

electrode sites are interpolated using a spatial interpolation and visualization scheme [14].

The traditional approach to display velocity fields is to use arrows to show direction and its

length is defined by its magnitude of the velocity, otherwise known as speed [8], [2].
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This method works well for normal slow wave propagation patterns and has been used in

several GI mapping studies to display velocity fields. The major disadvantage that we have

observed with this form of display is that if large velocity gradients exist across the map, it

will diminish the magnitude of arrows in regions where there are lower speeds, rendering the

direction of the arrows to be indistinguishable. This is particularly significant during

dysrhythmic activity which can result in an uninterpretable map. Thus we have plotted here

the velocity as two overlaid maps, which are speed and direction. The direction is

represented by arrows of unit length and the magnitude of the velocity is plotted as pseudo-

colored speed map. This approach shows both regions of high and low velocities without

‘swamping’ the map with extreme velocities.

B. Experimental Noise and Error

A potential limitation for velocity estimation comes in the form of noise in the data set. We

have identified two main potential sources of noise: activation time error and electrode-drop

out noise. These were simulated in the synthetic time maps to quantify the performance of

the velocity estimation techniques.

1) Activation Time Error—Activation times are defined as the most negative deflections

in the slow wave [15], and signal noise arises from the judicious selection of the fiducial

point for the slow wave. The process of selecting the fiducial point for the slow wave has

recently been automated [15], but manual review is still used to eliminate and correct

erroneous activation times. From experimental pig recordings, the width of a normal slow

wave was around 0.5 s long (Fig. 3). Noise can be introduced either during manual marking,

or when slow waves are ‘fractionated’ (having multiple components) [15]. For comparison,

the width of the QRS interval (corresponding to ventricular depolarization) generated by the

heart is around 0.04 - 0.12 s, such that the potential for error is markedly reduced.

2) Electrode Drop-out Noise—Another potential source of problem from the electrode

array is when the recorded signals become saturated. This can be due to insufficient

electrode contact with the serosa, inadequate soldering or if the electrode arrays are not

connected properly. When this occurs, an incomplete isochronal time map is obtained which

may not give a complete view of the gastric slow wave propagation pattern.

Of the two potential noise sources described, error in the activation time is the most

encountered noise in HR GI electrical mapping. Careful precautions are taken in order to

avoid electrode drop-out noise. These noise issues present significant problems not only for

velocity estimation but also for isochronal contour mapping and analysis of slow wave

activation wavefront [14]. Synthetic noise was added to test cases to replicate experimental

recording conditions. Errors in the activation times were added to the synthetic cases at each

electrode position as an average random perturbation ranging from 0 to 0.5 s. Electrode drop

out noise was simulated by random removal of between 0 to 40% of the electrodes from the

synthetic data sets.
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C. Validation and Comparison Methods

For synthetic test cases, the computed velocity using three methods was compared to the

analytic velocity vector. Speed error was expressed as a percentage, which was defined as,

(7)

and the angle error as a relative difference in degrees, as introduced by Fitzgerald et al [12].

Once the difference between the estimated and the analytic velocity map was found, the

median difference of the map was taken. Since the noise introduced was of a random nature,

multiple runs (n=100) at the same noise level were taken for stastical robustness. The data is

reported as mean of the median difference and standard deviation of the median difference.

To test if there is a statistical difference between the velocity estimation methods, an

ANOVA test was performed on the results of the simulated tests.

For experimental data, the velocity values were estimated using the three different methods

and the results presented as mean ± SD. As the experimental data were normal organized

gastric slow waves, a high standard deviation in the velocity estimation would confer that

the methods has not performed reliably.

IV. Results

A. Simulated Data

Velocity estimation error in synthetic test cases with the presence of noise is presented in

Fig. 4 and Fig. 5. The two figures are laid out in the same configuration where the speed

error is displayed in the the first column, and the angle error in the second column. A table

of p values are also listed for each test case with each of the specified noise types in

Supplementary Material (Tables I-V). Qualitative and quantitative differences in velocity

estimates are discussed with the presence of noise in synthetic cases, along with applications

in experimental data.

As there was more uncertanity in the accuracy of the activation times, the FD method had a

higher velocity error than the FDSM method and the POLY4×4 method. When compared

for all noise levels, in three synthetic cases, the FD method had an average speed error of

11.9% and an angle error of 7.1°, while the FDSM method and the POLY4×4 method had a

speed error of 5.5% and 6.2% and an angle error of 3.2° and 3.3°. There was a statistical

difference in all levels of signal noise and FDSM had an overall better estimate of speed and

angle (See Supplementary Material). Although FDSM and POLY4×4 both performed well,

POLY4×4 had a slightly higher standard deviation than FDSM. The FD method had an error

of approximately twice that of the FDSM method and the POLY4×4 method for its speed

error and angle error.

With the presence of increasing electrode drop out noise, the FD method had a modestly

better estimate of velocity. The FD method had an average median speed error of 0.2% and

angle error of 0.1°, while the FDSM method and the POLY4×4 method had a speed error of

0.9% and 0.4% and an angle error of 0.8°and 0.2°. However, FD is unable to estimate
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velocities in sections where there are missing electrodes. An interpolation scheme is

required for this, which is implemented in the FDSM method. Fig. 6 shows the percentage

of velocity estimated of the existing time map is recorded with increasing electrode drop out

noise. At 35% of electrode drop out noise, the FD method estimated velocity in 26% of the

array and the POLY4×4 method estimated 95% of the array and the FDSM method

estimated 100% of the array. Although the FDSM method performed the worst in

comparison to the FD and POLY4×4 method, the velocity error is very small and practically

negligible and also provides the benefit of estimating the velocity at all electrode points

where an activation time has been marked.

B. Experimental Data

Fig. 7 shows a typical example of dysrhythmic porcine gastric slow wave propagation

pattern that is organised. This representative propagation pattern illustrates that the FD

method has not estimated all of the recorded time map as was quantified earlier for

simulated data. In addition, the polynomial based method has “overshoots” at the edges, and

its vector direction along the horizontal circumferential direction is lacking due to the

intrinsic smoothing in the polynomial. The smoothed finite difference method shows the

regions of interest in a readily appreciable manner and corroborates the qualitative face-

value judgement taken from the activation time map.

Fig. 8 shows the average velocity of gastric slow waves propagation from three pigs (10

waves each), derived from three velocity estimation methods, along with the standard

deviation. Since all the slow wave propagation patterns are of normal organized activity, the

lower the standard deviation, the better the method was at estimating velocities. All of the

methods estimated similar mean velocities (speed and angle), but the smoothed finite

difference method had the lowest standard deviation.

V. Discussion & Conclusion

In this study we have compared three velocity estimation methods in HR GI electrical

mapping and quantified their reliability and accuracy. Various GI studies have utilized either

one of these methods and comparison of velocity estimates across studies would need to

take into account the variability and accuracy of the different methods. In the simulations

performed in this study, the FDSM method performed better than the FD method and the

POLY4×4 method in the presence of activation time error. This finding was further

reinforced in experimental data analyses, where the FDSM method yielded a lower standard

deviation in its velocity estimate than that of the FD method and the POLY4×4 method. We

therefore recommend that the novel FDSM method should be advocated for future

applications in HR GI electrical slow wave mapping.

We have identified the method which gave the least error when estimating velocities, but

have not attempted to define acceptable levels of error. A psychometric analysis would need

to be performed to define acceptable levels of velocity error, similar to the study conducted

by Fitzgerald et al. [22], where isochronal contour maps and velocity maps were compared.

The main barrier in performing psychometric studies in gastric electrical mapping is that the

relationship between and within complex and normal slow wave activation wavefronts have
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not yet been well understood. Qualitative analysis of vector maps can be as important as

quantitative analysis, because clinicians make treatment decisions based on visual

interpretations of the maps. Fig. 7 shows the visualisation of an abnormal gastric slow wave

propagation patters as an isochronal activation map and velocity estimated using three

methods. It shows that that the FDSM method of velocity estimation allowed for better

qualitative visualization of the slow wave propagation pattern.

With the use of 2D HR electrical mapping one has to take into account any presence of

transmural components when analyzing velocity estimates [11]. In the field of cardiology it

is common to analyze conduction velocity with respect to the fiber orientations. We have

assumed that the ICC network in smooth muscles is a 2D plane along the electrode array as

placed in the stomach, and the propagation velocity is defined with respect to the electrode

grid. There are currently no transmural mapping studies of the GI tract, and if such studies

were performed in future, the data would be of use to futher validate the velocity methods

assessed here.

One of the assumptions of the described FD methodologies is that the electrode grid is

regular. If the electrode grid is irregular or in a three dimensional topology, methods taking

into account differing distances would need to be computed such as the use of divided

differences, Lagrange, interpolation or Bessel's central difference. In this context, the

polynomial fitting method would not change significantly, other than adding a third ‘z’

coordinate into the equation, and could offer an advantage. Other velocity estimation

methods which have been used in the cardiac electrophysiology could potentially be

assessed. Gaudette et al. [13] used wavelets to estimate velocities, but mentioned that it was

unreliable with slow velocities. Since our velocities of interest are inherently slow, this

method was not investigated further for our experimental setup. Fitzgerald et al. [12] used a

first order polynomial model to estimate velocities from catheter measurements. This

method is an attractive option for use with a small electrode array. Another method which

has been recently been reported in cardiac electrophysiology, is the use of fitting the

activation times to radial basis functions, which is an extension to the polynomial fitting

method [23]. This method might be better than the method proposed by Bayly et al. [11], but

may be computationally more expensive.

HR electrical mapping has allowed for new insights into the slow wave activity that

coordinates normal stomach peristalsis, and its abnormalities. Velocity estimation from the

isochronal maps generated from HR mapping can provide a complimentary qualitative and

quantitative view of the data on the slow wave propagation patterns, particularly in

dysrhythmic states. Mathematical operations on the velocity vectors such as dot product,

cross product, curl and divergence have been found to yield valuable information about the

underlying electrical activity in cardiac electro-physiology [24]. In cardiology, it has been

shown that the atrial electrogram fractionation [25], a feature in atrial fibrillation, occurs in

regions of slow conduction. To date, in cardiology, velocity vectors have not been used as a

traditional clinical measure [26], but has been a vital and effective tool for understanding

clinical cardiac dysrhythmias. Similarly, identifying velocity features in gastric electrical

recording during normal and dysrhythmic states is anticipated to provide an improved

foundation for understanding dysrhythmic behaviours and mechanisms, and could provide
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additional diagnostic features for identifying abnormal slow wave propagation patterns in

clinical practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
(a) Flexible printed circuit board (PCB) electrode array with an inter-electrode distance

spacing of 4mm. (b) Example placement of flexible recording array tessellated and placed

on the serosal surface on the antral part of a stomach.

Paskaranandavadivel et al. Page 12

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 July 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Paskaranandavadivel et al. Page 13

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 July 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2.
(a) Propagation of a linear plane wave (b) Elliptical wave with activity propagating from the

center of the electrode array, mimicking ectopic focal slow wave activities. (c) Elliptical

wave with activity propagating from the opposing edges of the array to clash in the center,

mimicking dysrhythmic slow wave propagation or propagation during gastric pacing.
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Fig. 3.
A typical extracellular gastric electrical event. The dotted line shows the range along the

negative deflection where the activation time could possibly be chosen via manual marking.

Ideally the activation time would be the steepest negative deflection point in the signal,

which is marked as a cross.
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Fig. 4.
Error in estimating velocity using three velocity estimation methods on synthetic test cases

with the presence of increasing signal noise. Each row represents a synthetic test case. The

data for this graph along with the p values are shown in the Supplementary material section

(Tables I II and III).
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Fig. 5.
Error in estimating velocity using three velocity estimation methods on synthetic test cases

with the presence of increasing electrode drop out noise. Each row represents a synthetic test

case. The data for this graph along with the p values are shown in the Supplementary

material section (Tables IV and V).
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Fig. 6.
Percentage of electrode array being estimated with velocity, in the presence of electrode

drop out noise. The percentage of electrodes estimated with velocity was calculated as

.
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Fig. 7.
Comparison of velocity estimation methods in an experimental recording. a) Isochronal

activation time map (2 second interval) of an organized dysrhythmic gatric slow wave

propagation in a porcine. (b)-(g) are the velocity estimates using FD, FDSM and POLY4×4.

The left hand column and right hand column are the same maps shown with different scales.

(b) and (e) are velocity estimates using the simple finite difference, while (c) and (f) uses the

smoothed finite difference, and (d) and (g) uses a polynomial fitting method. In (a), the red

dots are interpolated time values, while the black dots are recorded values of activation time,

while in the velocity maps the color map represents speed (mm/s) and vectors show the

direction.
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Fig. 8.
This bar graph shows the results of velocity estimates of slow wave propagation from three

experimental pig recordings (10 waves each) from the serosal surface of the stomach.

Velocity (speed and angle) was estimated using the simple finite difference method (FD),

finite difference method with smoothing (FDSM) and polynomial based method

(POLY4×4), and their average values are shown along with their standard deviations as

error bars.
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