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Abstract

Carbon monoxide (CO) and hydrogen sulfide (H2S) used to be thought of simply as lethal and (for

H2S) smelly gaseous molecules; now they are known to have important signaling functions in the

gastrointestinal tract. CO and H2S, which are produced in the gastrointestinal tract by different

enzymes, regulate smooth muscle membrane potential and tone, transmit signals from enteric

nerves and can regulate the immune system. The pathways that produce nitric oxide (NO) H2S and

CO interact—each can inhibit and potentiate the level and activity of the other. However, there are

significant differences between these molecules, such as in half-lives; CO is more stable and

therefore able to have effects distal to the site of production, whereas NO and H2S are short lived

and act only close to sites of production. We review their signaling functions in the luminal

gastrointestinal tract and discuss how their pathways interact. We also describe other physiologic

functions of CO and H2S and how they might be used as therapeutic agents.
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The discovery that mammalian cells synthesize nitric oxide (NO), carbon monoxide (CO),

and hydrogen sulfide (H2S) caused a paradigm shift that led to a large amount of research

over the past 20 years into the roles of these molecules in human physiology and disease.

Early studies focused on NO, which was soon found to be a signaling molecule that

regulates a large number of biologic processes, including blood flow, neurotransmission,

immune reactions, and smooth muscle contraction. NO is an inhibitory neurotransmitter in

the human small intestine.1, 2 CO has also emerged as an important signaling molecule.
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Under physiologic conditions, endogenously produced CO functions as a neurochemical

signaling molecule in the brain,3–6 as a messenger molecule in the gastrointestinal tract,7–13

and as a paracrine messenger molecule that causes hyperpolarization of circular smooth

muscle cells.7, 8, 13 CO also has anti-inflammatory and anti-apoptotic effects.14 For hundreds

of years, H2S was thought of as only a toxic gas that smelled like rotten eggs, but it is now

known to be an important signaling molecule in bacteria, plants, and animals including

mammals.15, 16 H2S is ubiquitous in the mammalian body and has been reported to serve as

a messenger molecule in the central and peripheral nervous, immune, endocrine,

reproductive, and gastrointestinal systems.17, 1819, 20

There are fundamental differences between the mechanism of action of CO, NO, and H2S.

At physiological pH, H2S exists in whole blood for approximately 15 sec in fish, 51 sec in

cows, 130 sec in rats, and 76 sec in pigs.21 Unlike H2S and NO, CO is stable, is not a

radical, and does not alternate between different oxidative species. NO is highly reactive,

existing as a radical (NO•), as a nitroxyl anion (NO−), and as a nitrosonium cation (NO+).

H2S and HS− are each detected in animal cells.

The biological stability of CO means that, unlike NO and H2S, CO is able to have effects

that are distant from the site of production. Most of the action of CO is exerted through the

binding of CO to Fe2+ and other metals present in various proteins, including heme proteins,

that may be far from the site of production or from the lungs where CO is inhaled. CO was

thought to cross cell membranes by dissolving into and diffusing across the lipid membrane.

There is now evidence that ion channels, particularly aquaporins, can transfer CO across

lipid membranes.22–24 Preliminary studies have linked levels of heme oxygenase with those

of aquaporin.25 NO and H2S have been assumed to enter and leave cells via free diffusion

through lipid membranes. However, in recent experiments aquaporin 1 (AQP1) channels

were found to facilitate NO efflux from endothelial cells into aortic vascular smooth muscle

cells.22, 26 Rhesus proteins facilitate diffusion of CO2 and NH3 in xenopus oocytes.27 AQP1

and rhesus protein channels are also called gas channels.27

CO

Most biologically relevant CO is produced by the action of heme oxygenase (gene symbol

HMOX) catabolizing heme into CO, biliverdin and free iron.28 While each product of heme

breakdown has separate effects on cellular function, our focus in this review is solely on CO

which appears to be the predominant mediator of the effects of HO induction.29

Three mammalian isoforms of HMOX have been described, although only HMOX1 and

HMOX2 have been shown to be biologically active. HMOX3 may be a pseudogene in some

species. HMOX1 and HMOX2 have separate and different functions which are reflected in

how CO is generated as a result of the action of these isoforms. Heme oxygenase 1 is

usually expressed at very low levels in the luminal gastrointestinal tract but can be markedly

induced to high levels within hours by a large variety of molecules including cellular

stressors.30–34 For example, in the stomach muscle wall, reactive oxygen species will

markedly induce expression of heme oxygenase 1 in macrophages and in the mucosa.35

Heme oxygenase 1 is therefore referred to as the inducible form of heme oxygenase. The net
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result is that CO can be produced on demand by the actions of heme oxygenase 1. In

contrast, heme oxygenase 2 is referred to as the constitutive form of heme oxygenase. It is

constitutively expressed in the luminal gastrointestinal tract, in enteric nerves and interstitial

cells of Cajal (ICC);36, 37 its levels are relatively stable and few inducers have been found. A

major exception comes from glucocorticoids which act by binding to the promoter of

HMOX2.38 Others include Ca2+ influx, activation of protein kinase C (PKC), CK239, 40 and

tyrosine kinases.41 The net result is that cells that express heme oxygenase 2 stably produce

CO, although when CO functions as a messenger molecule, pulsatile release is also possible.

Although heme synthesis is usually associated with hematopoietic cells, heme synthesis can

and does take place in most mammalian cells, which enables local production of CO

wherever heme oxygenase 1 is induced or heme oxygenase is constitutively present. The

exact local concentration of CO in different organs is not known. The best estimates come

from the brain, where extracellular CO can be measured in cerebrospinal fluid.42

Concentrations of up to 1 µM have been reported, indicating that intracellular concentrations

under stimulation could be higher.

CO is often characterized as an anti-inflammatory, anti-proliferative, and anti-apoptotic

molecule,14 but this view is too simplistic. Given that HMOX1 is rapidly inducible, CO can

have different effects on the same cell type, based physiological and pathophysiological

states. For example, inhalation of very low levels of CO (100 ppm) in by non-obese diabetic

(NOD) mice has no effect on gastric emptying or cellular oxidative stress levels. Inhalation

of CO by diabetic NOD mice reduces oxidative stress without changing gastric emptying,

whereas inhalation of CO in diabetic NOD mice with delayed gastric emptying reduces

oxidative stress and normalizes gastric emptying.29 These diverse effects are likely due to

the actions of heme oxygenase 1/CO on the macrophage-ICC-enteric nerve-smooth muscle

syncytium. There is little heme oxygenase 1 in non diabetic NOD mice and high levels of

heme oxygenase 1 in M2 macrophages in diabetic NOD mice. CO converts the cellular

profile of M1 non heme oxygenase 1 expressing macrophages to M2 macrophages.43

A Smooth Muscle Hyperpolarizing Factor

One of the main mechanisms of action of CO is to activate guanylyl cyclase resulting in

production of cGMP.44, 45 cGMP activates several types of K+ channels leading to

hyperpolarization.46, 47 CO also can directly activate K+ channels.48 All animal species

studied so far have a smooth muscle membrane potential gradient across the circular muscle

layer. In the stomach and small bowel, smooth muscle closer to the myenteric plexus region

is hyperpolarized compared to circular smooth muscle cells closer to the submucosa.49–51

The gradient varies from species to species but is in the order of 10 mV. In the colon, the

same gradient is present but in the opposite direction, that is the region of circular muscle

that is more hyperpolarized is closest to the submucosa and the region most depolarized

closest to the myenteric plexus.7 This membrane potential gradient is highly CO-dependent

and appears to be due to CO produced from heme oxygenase 2 constitutively expressed in

myenteric ICC from the stomach and small intestine and from heme oxygenase 2

constitutively expressed in submucosal ganglion neurons from the colon.10, 11, 52 The

transwall gradient enables the circular muscle layer to produce weak contractions that

involve only a portion of the circular muscle layer, strong propulsive contractions that
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involve the entire circular muscle layer to gradations in strength between these two

extremes.53 The transwall gradient may be considered to function as a biological rheostat

regulating how much of the circular muscle layer contacts with each electrical slow wave.11

As a Neurotransmitter

There is debate over whether NO is a neurotransmitter in the gastrointestinal tract. For a

molecule to be called a neurotransmitter, it must be synthesized and present presynaptically,

released from the synapse in response to specific signals (usually following Ca2+-dependent

depolarization), and interact with post-synaptic receptors. If NO and CO are to be

considered neurotransmitters, these criteria need to be relaxed. How NO is stored and

released has not been fully worked out and the receptor for NO is intracellular. Even with

relaxed criteria, it is still unclear if CO is a neurotransmitter. The strongest evidence comes

from studies of the internal anal sphincter. HO2 is constitutively expressed in the internal

anal sphincter54 and neuronal stimulation results in activation of HO2 via a PKC-CK2

dependent pathway.39 Non-adrenergic, non-cholinergic neurotransmission is markedly

decreased in the upper gastrointestinal tract of Hmox2 knockout mice, but can be restored by

addition of exogenous CO.55 NO produced by neuronal nitric oxide synthase 1 (NOS1) is an

important inhibitory neurotransmission in several species.55 The full actions of NO appear

to require CO. Although non-adrenergic, noncholinergic neurotransmission is reduced in

Hmox2 knockout mice, it is also greatly decreased in Nos1 knockout mice and completely

lost from Hmox2/Nos1 double-knockout mice.55 These findings, along with those from

studies outside of the gastrointestinal tract, indicate that CO and NO function together in

neurons. Until proven otherwise, it is best to refer to CO as a messenger molecule.

Mechanisms

The best known target of CO is soluble guanylyl cyclase. CO binds to guanylyl cyclase,

resulting in increased levels of cGMP. The amount of endogenous cGMP generated through

this mechanism is controversial because the potency of soluble guanylyl cyclase activation

by CO is several fold lower than that of NO. The argument has been made that when NO is

present, only a small amount of cGMP is produced via CO interaction with guanylyl

cyclase. However, there is also evidence that endogenous substances, such as YC1, increase

the sensitivity of soluble guanylate cyclase to CO.56 YC1 greatly enhances binding of CO to

heterodimeric soluble guanylate cyclase (Kd ~1 µM) likely by binding near the heme

domain, inducing a heme pocket conformation with a high affinity for CO.

CO also modulates ion channels. One example is the activation of the large conductance

calcium-activated potassium channel (BK channel).57 CO may bind directly to the alpha

subunit of BK resulting in activation of the channel and leading to membrane

hyperpolarization. This mechanism is proposed for the vasodilatory effects of CO.58 Other

mechanisms of action of CO include binding to other ion channels such as the L-type Ca2+

channel, redox regulation and oxygen transport, signaling molecule synthesis including of

NO, prostaglandins and cytokines, activation of second messenger cascades including

MAPK and Phosphatidylinositol 3 kinase, and activation of transcription factors (HIF1α,

ACOT7, and NPAS2).59–61
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A Modulator of Immune Function

CO has many effects on the adaptive immune system, such as inhibiting mast cell activation

through polymorphonuclear cells, inhibiting activation and proliferation of T effector cells,

and inhibiting basophil histamine release.62 CO also inhibits migration of

polymorphonuclear cells and downregulates inflammatory pathways mediated by activated

macrophages and dendritic cells.62 These actions of CO are thought to be central to how CO

reduces ischemia reperfusion injury and post operative ileus and modulates the immune

response to infection. Release of CO from macrophages is thought to be the main

mechanism for protection against gastroparesis in diabetes.

Heme oxygenase 1 is expressed by Kupffer cells, but little heme oxygenase 1 is expressed in

hepatocytes under normal circumstances. Inducers of heme oxygenase 1 result in robust

upregulation of heme oxygenase 1 in both cell types. Deficiency of heme oxygenase 1

results in a hepatic phenotype including iron overload and hepatitis.63 In contrast,

overexpression of heme oxygenase 1 protects against ethanol-induced injury, ischemia and

reperfusion injury, and rejection of liver transplants by reducing production of cytokines,

infiltration of CD4+ and CD8+ cells, and increased numbers of T regulatory cells.64

In Gastrointestinal Diseases and Therapy

Heme oxygenase 1 is highly inducible and protects against inflammation. CO and biliverdin

are thought to mediate this protective effect of heme oxygenase 1; with most evidence for

the role of CO. In animal models, CO reverses delayed gastric emptying associated with

diabetes, reduces post-operative ileus, increases survival of grafts, increases survival from

sepsis. CO also reduces intestinal inflammation in animal models of human inflammatory

bowel disease model.59, 62 The data from human studies is severely limited. The best studied

disorders are diabetic gastroparesis and post-operative ileus. Post-operative ileus animal

models have shown that post-operative ileus is characterized by release of inflammatory

mediators from activated macrophages. Early studies showed that a 24 hour exposure to 250

ppm of inhaled CO reduced the expression of inflammatory mediators and normalized

muscle function.65 A subsequent study found that exposure of rats to even a very low dose

of CO (75 ppm) for 3 hours before surgery (or pigs to 250 ppm for 3 hours) increased

gastrointestinal transit and contractility, producing average carboxyhemoglobin levels of

5.8%—significantly lower than the upper limit set by the US Food and Drug Administration

(FDA).66 In a mouse model of diabetic gastroparesis, loss of upregulation of heme

oxygenase 1 by macrophages resulted in damage to ICC and nerves; upregulation of heme

oxygenase 1 reversed the delay in gastric emptying and the cellular damage. These effects

appear to be mediated by a decrease in reactive oxygen species and can be replicated with

inhalation of CO.29 Upregulation of heme oxygenase 1 by type 2 alternatively activated

macrophages is required for its protective effects. Loss of these macrophages, accompanied

by activation of type 1 activated macrophages, results in release of injurious mediators that

disrupt ICC and neural networks.67 CO therefore appears to have significant promise as a

therapeutic agent.

However, although several studies have shown that the amount of inhaled CO required to

have a therapeutic effect is far below toxic levels, and despite the FDA statement that levels
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of carboxyhemoglobin below 12% are acceptable, there have been few clinical studies of

inhaled CO. Reasons for this include the cumbersome equipment required to deliver precise,

fixed amount of gas and the public perception of the toxicity of CO. There are currently only

2 active studies listed in clinical trials.gov testing the effects of inhaled CO. One study is

investigating inhaled CO (range of 150 ppm for 3 hours once weekly to 150 ppm for 3 hours

three times weekly) for treatment of pulmonary arterial hypertension. Another is assessing

the ability of CO, inhaled 1 hour before and 1 hour after colon resection, to determine its

utility to prevent or reduce post-operative ileus.

The real and perceived difficulties in administering inhaled CO have led to the development

of transition metal compounds that covalently bind and deliver CO (CORMs). Initial

compounds were lipid soluble, whereas the more recently developed are water

soluble.68Although these compounds have shown efficacy in animal models of disease,

including post-operative ileus, chronic colitis, necrotizing enterocolitis, and acute liver

failure (see Table 1 of Gibbons et al.),59 none have tested in humans, because their safety for

human use has not been resolved. More recently, products have been studied that use

pegylated carboxyhemoglobin to deliver CO. One such product is being tested in a phase 1b

study, in patients with sickle cell disease (NCT01848925). Safety analyses have shown good

tolerability, despite the potential for binding and removal of NO.

H2S

H2S has been labeled as a gasotransmitter.69, 70 Feelisch and Olson71 stated that it is not

accurate to label H2S, CO, or NO “gasotransmitters”, because “they do not move about and

signal in the form of tiny gas puffs.” Instead, they are dissolved gases. The term

gasotransmitter is a misnomer also because there is no definitive evidence that H2S

functions as a transmitter in the classical meaning.18 Endogenous H2S has many regulatory

functions throughout the gastrointestinal tract, but, there is no evidence that its production is

regulated.18 Although exogenous H2S has several well-defined physiological effects, a

receptor for H2S has not been identified.18 For these and other reasons outlined by Linden et

al.,18 we refer to H2S as a signaling molecule or as a messenger molecule. The molecular

entity that accounts for the biological effect is not known. At physiologic pH, nearly two

thirds of H2S exists as hydrosulfide anion (HS−), a powerful nucleophile, rather than the

acid (H2S).15 This is important because HS− is similar in size to Cl− and might be involved

in Cl−-mediated processes.72 In this review, no distinction will be made, H2S can refer to

HS− or H2S.

H2S is endogenously generated by the trans-sulfuration enzymes cystathionine β synthase

(CBS) and cystathionine ɤ lyase (CTH).73 Both enzymes use L-cysteine as a substrate and

depend on pyridoxal phosphate, NHDPH, and calcium and calmodulin.18, 73, 74 CBS and

CTH have each been detected in the cytoplasm and the mitochondria.73, 75

Endogenous Production and Catabolism

H2S is synthesized by human cells, from head to foot. The rate of generation of H2S in the

presence of non-physiologic concentrations of its substrate, L-cysteine (10 mM), has been

reported to be 20 nM min−1 g protein−1 in brain tissue,76, 77 3.6 to 8.7 nM min−1 g tissue−1
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in blood vessels,78 0.45 pmol/min/mg tissue in intact muscle layers of the mouse colon,18, 79

and 15.6 nmol/min/g tissue in rat colon muscle.80 In the absence of endogenous substrate,

H2S production in the rat gastrointestinal tract was approximately 75 nmol/g/hr17 In the

presence of 2 mM L-cysteine, the rate of production and release in the rat stomach, jejunum,

and ileum was 750 nmol/g/hr, 590 nmol/g/hr, and 250 nmol/g/hr, respectively.17 According

to these production rates, tissues that produce H2S appear to be exposed to endogenous

concentrations close to the effective concentration range of exogenous H2S.

Perhaps the watershed discovery of the physiologic effects of endogenous H2S came when

Abe and Kimura,76 who found that H2S functioned as an intracellular messenger during

induction of long-term potentiation in the hippocampus. The discovery of the physiological

role of H2S in the peripheral vasculature came when it was shown in mice that deletion of

Cth, significantly decreased the endogenous level of H2S in the vasculature, and markedly

altered vasorelaxation and resting blood pressure.81 Cth knockout mice were also found to

have delayed gastric emptying of liquids, indicating a role for endogenous H2S in the

regulation of gastrointestinal motility.82 In mice with wild-type Cth, endogenous H2S

modulates gastric emptying of liquids through activation of KATP channels and TRPV1

receptors on gastric primary afferent nerves.82 Researchers recently reported a significant

increase in colonic intraluminal pressure in conscious Cth knockout mice83 The

physiological effects of endogenously generated H2S is summarized in Figure 2.

A specific catabolic pathway of signal transduction and termination is required to link the

endogenous production of H2S with specific cells and protein targets. Few messenger

molecules rely on passive diffusion for signal termination and inactivation. Enzymatic

degradation and reuptake mechanisms by the releasing cell are used throughout the body.

There is no evidence that any of these mechanisms terminate H2S signaling. The

mitochondrial enzyme sulphide quinone reductase (SQR) contributes to catabolism in

peripheral tissue, including the muscularis externa of mouse colon.79 The oxidation of H2S

to thiosulphate and sulfate by SQR terminates H2S signaling.79, 84 Because of the low SQR

threshold of 16 nM and half inhibition of the enzyme at 20 µM, the overall tissue

concentrations of H2S are maintained at low levels, preventing inhibition of cytochrome C

and thereby preventing H2S-induction of cytotoxicity. This catabolic pathway can be

inhibited by stigmatellin, a mycobacteria-derived antibiotic.85 Stigmatellin significantly

reduces H2S consumption in colonic musculature and potentiates fast nicotinic synaptic

transmission in peripheral sympathetic ganglion.83 A second mechanism by which H2S-

mediated signaling can be terminated is by binding of H2S to sulphane-sulfur pools and

bound sulfate pools.86, 87 Ishigami et al.86 applied exogenous H2S to homogenates of mouse

brain, liver, and heart and detected bound sulfur, rather than acid-labile sulfur.

The physiologic signal that leads to endogenous production and release of H2S is not

known. H2S could be released immediately after its biogenesis, by enzymatic activity.

Alternatively, it could be released from bound sulphane sulfur86, 87 and/or from acid labile

sulfur pools located mainly in mitochondria pools.86 H2S is released from bound pools in

neurons and astrocytes in mouse brain.86 The potential importance of release of bound H2S

as a signaling mechanism in gastrointestinal tissue has not been determined. However, the
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release from acidlabile pools in the mitochondria occurs only when the pH falls below 5.5,

which is unlikely because the mitochondrial pH is approximately 8.0.

Actions of Sodium hydrosulfide (NaHS)

NaHS is commonly used in in vivo and in vitro experiments as a source of H2S to study the

possible physiologic functions of endogenous H2S. NaHS immediately dissociates and

forms the hydrosulfide anion HS−, which then reacts with H+ to form H2S. The general

construct is that NaHS mimics the physiologic environment of H2S-producing and/or

targeted cells. As our emphasis is on the effect of H2S on gastrointestinal enteric system, we

will discuss only briefly the potential role H2S has on mucosal function. For further

information, the reader is referred to the following review articles.69, 73, 88–91

Effects on Smooth Muscle

The effect of exogenous NaHS on motility is site specific and species dependent. In the

mouse gastric fundus, NaHS relaxes the muscle—an effect that is not blocked by K-channel

blockers.92 In muscle strips of the guinea pig antrum, high concentrations of NaHS (0.3 to

1.0 mM) suppress the amplitude of spontaneous contractions, by opening KATP channels.

Low concentrations (0.1 to 0.3 mM) increase basal tension—an effect mediated by the

inhibition of voltage-gated K-channels.93 Likewise in muscle strips of the stomach, low

concentrations (<100 µM) of NaHS increase basal tension and the amplitude of contraction

of muscle strips, and depolarize the resting membrane potential.94 This excitatory effect is

mediated by inhibition of current carried through the potassium delayed rectifier channel.

Inhibition of CBS, but not CTH, increases potassium current, indicating that release of

endogenous H2S acts as an excitatory messenger molecule. H2S donors accelerate gastric

emptying of liquids in conscious mice.82 These findings indicate that H2S relaxes antral

smooth muscle and decreases antral-duodenal resistance, via activation of KATP channels,

although the exact mechanisms of these processes are not known.82 The effect also involves

TRPV1 receptors located on afferent nerves.82 In mouse stomach, endogenous H2S acts on

KDR, KATP channels and TRPV1 receptors co-expressed on primary gastric afferents. The

target sites for NaHS that have been identified are listed in Figure 3.

With few exceptions, NaHS inhibits smooth muscle contraction and motility (in the small

intestine and colon of mice, rats, and guinea pigs)80, 95, 96 and inhibits field-stimulated and

acetylcholine-induced contractions.97 The direct inhibitory effect on smooth muscle is

largely mediated through an action on multiple potassium channels, particularly apamin-

sensitive small conductance and glibenclamide-sensitive KATP channels.88, 98 In contrast to

the involvement of TRPV1 receptors in the mouse stomach, where H2S-donor molecules

accelerates gastric emptying,82 the inhibition of the peristaltic reflex in the mouse ileum and

colon is preserved in Trpv1 knockout mice.96 In the rat colon, the constitutive endogenous

production of H2S by CTH maintains the membrane potential in circular smooth muscle

cells.80 The CO-dependent transwall gradient of resting membrane potential that exists

across the circular muscle layer in the mouse colon is modulated by the ongoing release of

H2S.83 There is therefore sufficient data to support the hypothesis that ongoing,

endogenously generated H2S in the circular smooth muscle layer maintains the resting

membrane potential in the hyperpolarizing range.
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Effects on Visceral Nociceptors

In the mouse, H2S acts as a pro-nociceptor via CaV3 channels99 whereas in the rat it acts as

an anti-nociceptive molecule—an effect mediated by KATP channels.100 NaHS increases the

frequency of action potentials in gut afferent neurons and in dorsal root ganglion

neurons.101, 102 The effect is reduced by capsazepine, so TRPV1 has been implicated. NaHS

and H2S donor molecules reduce pain-related behaviors in healthy rats and rats with colitis

—an effect mediated by the opening of KATP channels.100 In mice, luminal release of H2S is

nociceptive, involving CaV3 calcium channels.99 Intraluminal administration caused visceral

pain-like behavior and abdominal hyperalgesia.99 The differences in the effects of NaHS on

visceral nociceptors might be species related; in the rat, NaHS has anti-nociceptive effects,

whereas in the mouse it has nociceptive effects. Development of chronic visceral

hyperalgesia by 0.5% acetic acid increased expression of CBS in dorsal root ganglion

neurons,102 and perfusion of dorsal root ganglion neurons with 25 µmol/L NaHS increased

the number of action potentials102 in isolated colonic afferent neurons.102

Effects on Colonic Secretion

In the human and guinea pig colon, NaHS promotes secretion, acting through TRPV1 on

colonic afferents, which causes the release of SP, which acts on tachykinin receptors

(TACR1–3) to activate cholinergic secretomotor neurons.103 In the rat colon, NaHS

increases secretion of chloride from the apical membrane of epithelial cells and secretion of

potassium from the basolateral membrane.104 These secretory effects are mediated by nerves

and via direct actions on calcium storage organelles in epithelial cells, through ryanodine

receptors.104

Effects on ICC

ICC are another putative target for endogenous H2S. NaHS inhibits spontaneous

intracellular Ca oscillations in cultured mouse ICC and inhibits pacemaker amplitude current

and pacemaker frequency, and increases resting membrane currents in an outward direction

—most likely through changes in oscillation of internal calcium.105 If endogenous H2S acts

on ICC in mice, the source of H2S would have to be from surrounding cells, because CBS

and CTH transcripts have not been detected in ICC.105

Mechanisms of H2S

H2S activates KATP channels; inhibits and activates CaV1.2 calcium channels in different

tissues; and activates CaV3 calcium channels, TRPV1 and TRPA1 channels, and NaV1.5. For

reviews, please see.18, 88, 90, 91 The mechanism by which H2S mediates these functions in

gastrointestinal tissue is receiving increasing attention. One mechanism involves post-

translational modification of protein cysteine residues (a process referred to as

sulfhydration). The development of the modified biotin-switch technique106 and maleimide

procedure107 has provided direct evidence that many proteins are sulfhydrated during basal

and physiological contractions.107, 108 Sulfhydration, which adds an -SSH moiety to

proteins, has been shown to increase activity,106 in contrast to NO-nitrosylation, which

reduces activity.109 The EC50 of H2S required for S-sulfhydration in vascular tissue is

within the range of levels detected in mouse tissues.106
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In inflamed colons of rats, NaHS (100 µM) allosterically modulated KATP channels through

sulfhydration of the SUR2B subunit,98 in contrast to the sulfhydration of the Kir6.1 subunit

in vascular smooth muscle,106 resulting in activation of the channel. This activation alters

motility under inflammatory conditions.98 These studies, which used tissues from inflamed

colons, were performed using patch clamp recordings of isolated circular smooth muscle

cells and from heterogeneously transfected cells.98 This was the first study to show that H2S

had a specific effect on the SUR2B subunit. In a recent study investigating the potential role

of H2S and KATP channels, placing rats in a water avoidance stress test, which increased

colonic motility, was found to increase expression of the pore-forming Kir6.1 and SUR2B

subunits.110 Although KATP channels appear to be regulated by H2S during mucosal

secretion and in smooth muscle and visceral afferents, it is not clear whether sulfhydration is

a form of cell signaling or a reversible process.

A number of questions need to be answered before we can understand the physiologic

significance and importance of H2S as a messenger or signaling molecule in the enteric

system. First and perhaps foremost is the molecular identity that confers biologic activity. Is

H2S or HS− the ligand, or are both? Although a number of proteins are post-translationally

modified by H2S and HS−, can these be considered to be receptors for these molecules?

There is no evidence for the reversibility of the interactions between H2S or HS− and

proteins. What is the effective concentration range for H2S and can this be supplied by

NaHS? Although we have not reviewed the effects of inhibitors of CTH and CBS, all of

which are non-specific, it is important to consider their pharmacologic effects in evaluating

the physiological functions of endogenous H2S. There are relatively few studies of the

phenotypic characterization and functional effects of targeted deletion of CTH and CBS on

gastrointestinal motility and enteric function. Lastly, the relative physiological roles of H2S

and CO in gastrointestinal motility require side-by-side comparisons of Cth vs Cbs and

Hmox1 vs Hmox2 knockout mice, and integration of the findings with those from Nos1

knockout mice.

Crosstalk

In the past few years, CO, H2S, and NO have been reported to interact (Figure 3). The

actions of CO and H2S require consideration not only as molecules with specific targets but

also as a network of messenger molecules that interact to produce diverse effects, through

convergent signaling pathways, depending on the cellular state.62 A number of mechanisms

have been identified. For example, CO inhibits the trans-sulfuration pathway.111 The heme

prosthetic groups on the N-terminus of CBS can bind NO and CO. Since CBS binds CO

approximately 200-fold more tightly than it does NO, CO has the potential to inhibit CBS

activity and therefore the generation of H2S.112 CBS has been proposed to be a specific

sensor for CO. The ligand of the 5th coordinate position of CBS is a thiolated anion. The

binding of the thiolated anion to heme is weak and when CO binds to the heme moiety of

CBS the thiolate anion ligand is displaced which results in a change in the enzymatic

activity of CBS.113 The Ki for CO binding to CBS is approximately 5 µM, compared with

approximately 320 µM for NO, indicating its higher specificity for CO.114 Binding of CO to

CBS inhibits its activity. The physiological significance of this finding has been shown in

the brain, where hypoxia inhibits heme oxygenase 1 and more H2S is produced, resulting in
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vasodilation countering hypoxia. CO also has been shown to inhibit NOS activity in vitro as

well as directly stimulate NO formation.115, 116 CO derived from heme oxygenase 1 acts as

a tonic regulator of NO-dependent vasodilation in the rat brain.117 H2S can regulate

generation of NO,102, 118 facilitate release of NO in vascular tissue,119 and regulate

generation of NO in the mouse colon.13 H2S also regulates the availability of NO by

increasing its release from nitrosothiols.120 Heme oxygenase 1 and NOS each require

NADPH as a cofactor, so substrate competition can limit enzymatic activity of one or both

of these enzymes. NO and H2S compete for site recognition of cysteine residues for

nitrosylation and sulfhydration, respectively. Sometimes, H2S and NO are both required for

certain physiological actions.121

Finally, interaction can take place at the level of transcription. NaHS induces the nuclear

localization of the transcription factor NRF2 (nuclear factor, erythroid 2-like 2) in hearts of

rats during myocardial ischemia.122 NRF2, a nuclear basic leucine zipper transcription

factor, controls expression of a number of genes that encode protective enzymes, including

HOMX1 and thioredoxin1. Increased expression of these proteins is thought to limit tissue

(cardiac) damage.

Conclusions

CO and H2S have been established as signaling molecules that have important physiologic

roles in the gastrointestinal tract. CO and H2S signal through distinct pathways, but their

functions overlap and each can influence the production and regulation of the other. To

translate what is known about CO and H2S into therapeutic strategies, it is necessary to

better understand how the enzymes that produce them are regulated, what are the most

relevant biological functions of CO and H2S, and how we might accurately deliver the right

concentration to a specific cell or tissue. Perhaps the key questions are ones that have yet to

be identified.
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Abbreviations

CO carbon monoxide

H2S hydrogen sulfide

AQP aquaporin channels

CO2 carbon dioxide

NH3 ammonia

HOMX heme oxygenase gene

ICC interstitial cells of Cajal
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PKC protein kinase C

NOD non-obese diabetic

cGMP cyclic guanylyl cyclase

CORM CO releasing molecule

CBS cystathionine β synthase

CTH cystathionine ɤ lyase

3MST 3-mercaptopyravate sulfurtransferase

SQR sulphide quinone reductase

NaHS sodium hydrosulfide

Nrf2 nuclear factor erythroid-related factor
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Figure 1.
Delivery forms for CO
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Figure 2.
Physiological effects of endogenously generated H2S
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Figure 3.
Ion channel targets for exogenous NaHS
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