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Abstract: Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous neurodege-
nerative disease that can result from either frontotemporal lobar degeneration (FTLD) or Alzheimer’s
disease (AD) pathology. It is critical to establish statistically powerful biomarkers that can achieve
substantial cost-savings and increase the feasibility of clinical trials. We assessed three broad catego-
ries of neuroimaging methods to screen underlying FTLD and AD pathology in a clinical FTD series:
global measures (e.g., ventricular volume), anatomical volumes of interest (VOIs) (e.g., hippocampus)
using a standard atlas, and data-driven VOIs using Eigenanatomy. We evaluated clinical FTD
patients (N 5 93) with cerebrospinal fluid, gray matter (GM) magnetic resonance imaging (MRI), and
diffusion tensor imaging (DTI) to assess whether they had underlying FTLD or AD pathology. Linear
regression was performed to identify the optimal VOIs for each method in a training dataset and
then we evaluated classification sensitivity and specificity in an independent test cohort. Power was
evaluated by calculating minimum sample sizes required in the test classification analyses for each
model. The data-driven VOI analysis using a multimodal combination of GM MRI and DTI achieved
the greatest classification accuracy (89% sensitive and 89% specific) and required a lower minimum
sample size (N 5 26) relative to anatomical VOI and global measures. We conclude that a data-driven
VOI approach using Eigenanatomy provides more accurate classification, benefits from increased
statistical power in unseen datasets, and therefore provides a robust method for screening
underlying pathology in FTD patients for entry into clinical trials. Hum Brain Mapp 35:4827–4840,
2014. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Disease-modifying agents are emerging for clinical trials
of frontotemporal lobar degeneration (FTLD) [Boxer et al.,
2013a,b]. However, at autopsy approximately 20% of
behavioral variant frontotemporal degeneration (bvFTD)
cases actually have pathology consistent with Alzheimer’s
disease (AD) [Harris et al., 2013] and an even higher pro-
portion of corticobasal syndrome (CBS) patients have AD
pathology at autopsy [Hassan et al., 2011; Lee et al., 2011].
Previous power calculations suggest that neuroimaging
measures outperform cognitive measures [Ard and
Edland, 2011] and therefore a statistically robust and accu-
rate neuroimaging screening tool would maximize statisti-
cal power and therefore yield substantial cost-savings and
increase the feasibility of identifying optimal clinical trial
entry criteria. Moreover, such a systematic analysis would
address concerns that have been raised recently about
power in neuroscience studies [Button et al., 2013].
Throughout this manuscript we adopt the standardized
use of the term FTLD to refer to an autopsy-confirmed
consensus diagnosis [Mackenzie et al., 2010] and we use
FTD to refer to a spectrum of clinical syndromes com-
monly, but not necessarily, associated with FTLD pathol-
ogy, including bvFTD [Rascovsky et al., 2011], primary
progressive aphasia (PPA) [Gorno-Tempini et al., 2011],
and CBS [Armstrong et al., 2013].

Neuroimaging methods are noninvasive and widely
available and therefore may provide an ideal quantitative
biomarker for screening candidate AD and FTLD patients
for entry into clinical therapeutic trials. There is mounting
evidence that a variety of neuroimaging modalities can
reliably provide sensitive and specific classification of indi-
vidual subjects with AD and FTLD [Davatzikos et al.,
2008; Kl€oppel et al., 2008; McMillan et al., 2012; Zhang
et al., 2009, 2011; Zhou et al., 2010]. The majority of these
studies have suggested that a distribution of neuroanatom-
ical changes that include frontal, temporal, and parietal
regions is necessary to achieve accurate classification.
However, each of these studies has used different methods
of quantifying regional atrophy.

In this article, we focus on three broad methods of quan-
tifying regional atrophy that have previously been sug-
gested to perform magnetic resonance imaging (MRI)-based
classification. These include global MRI measures such as
ventricular and gray matter (GM) volume [Chou et al.,
2010; Knopman et al., 2009] that can be measured relatively
reliably and have been associated with clinical decline
[Chou et al., 2010]. An alternative approach is the use of
anatomically defined volumes of interest (VOI) such as hip-
pocampal volume [Morra et al., 2009; Mu~noz-Ruiz et al.,

2012]. These anatomical approaches may benefit from
increased regional specificity in comparison to global meas-
ures, but are potentially limited owing to user-defined
boundaries or other sources of individual variability such
as genetic modifiers [Go~ni et al., 2013]. A third approach
involves data-driven VOIs. These benefit from both regional
specificity and user independence [Avants et al., 2012;
Pelaez-Coca et al., 2011]. One example of this approach is
Eigenanatomy, a dimensionality reduction approach that
identifies VOIs accounting for the greatest statistical var-
iance in the brain independent of a priori anatomic- or
user-defined regions [Avants et al., 2012]. Instead, Eigena-
natomy identifies a rank-ordered series of eigenvectors,
each of which captures a cluster of voxels that explains a
segment of the variance in the imaging dataset. By using a
data-driven dimensionality reduction approach we can
reduce imaging data that contain over a million voxels to a
more computationally feasible set of predictors. This
approach has been previously reported to be robust in
MRI-based classification studies of AD [McMillan et al.,
2013a] and FTLD [McMillan et al., 2013a,b].

In addition to different neuroimaging analysis
approaches, there is increasing evidence that various neuro-
imaging modalities may improve discrimination between
AD and FTLD. Beyond the MRI analyses of GM considered
above, diffusion tensor imaging (DTI) of white matter
(WM) is robust for discriminating between FTLD subtypes
[McMillan et al., 2013b] and a multimodal combination of
DTI and GM MRI achieves increased specificity for discrim-
inating between FTLD and AD [McMillan et al., 2012].

We report a comparative study that assesses the classifi-
cation accuracy and statistical power of global, anatomical,
and data-driven VOI methods for screening FTLD and AD
in the context of clinical FTD. We evaluate a representative
sample of approximately 80% FTLD cases and 20% AD
cases that is consistent with proportions of FTLD to AD in
previously published young onset dementia autopsy series
of clinical FTD. Each type of neuroimaging measure was
evaluated using a multimodal combination of volumetric
GM MRI and DTI of WM. Analyses were also performed
using each of these modalities alone to allow comparison
to the large number of previously published single modal-
ity neuroimaging studies. We use a full training and test-
ing design to maximize generalizability and to minimize
limitations associated with post hoc power estimates [But-
ton et al., 2013]. After training a linear regression using
each VOI approach and each neuroimaging modality we
evaluate AD and FTLD classification accuracy and esti-
mate minimum sample sizes for replication in an inde-
pendent cohort. On the basis of our previous observations
[McMillan et al., 2012], we hypothesized that a multimodal
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assessment using a data-driven approach would prove to
be most robust at distinguishing between AD and FTLD.
This study confirms that hypothesis.

METHODS

Participants

We investigated 93 patients clinically diagnosed with a
FTD-spectrum neurodegenerative disease from the Penn
Frontotemporal Degeneration Center and Cognitive Neu-
rology Clinic at the University of Pennsylvania. As thera-
peutic targets in a clinical trial would ideally be
administered to patients with mild disease, we restricted
our cohort to mild patients [Mini-Mental State Exam
(MMSE)� 20]. A board-certified neurologist who has
extensive expertise in neurodegenerative diseases diag-
nosed all patients a FTD-spectrum disease using published
criteria, including behavioral variant FTD [Rascovsky
et al., 2011], PPA [Gorno-Tempini et al., 2011], CBS [Arm-
strong et al., 2013], and progressive supranuclear palsy
(PSP) [Litvan et al., 1996] (see Supporting Information
Table 1 for a summary of clinical syndromes). All patients
participated in a high-resolution volumetric T1-weighted
MRI scan and a diffusion-weighted imaging protocol. All
patients also participated in a lumbar puncture, described
below. Patient groups were comparable for all demo-
graphic features (all P> 0.1), including education, disease
duration, and disease severity measured with the MMSE
(see Table I for a summary of demographics). On average
FTLD patients were younger than AD patients
[t(91) 5 2.77; P 5 0.007] by �5 years; therefore, we include
age as a nuisance covariate in all statistical models. Writ-
ten informed consent was obtained from all patients using
a University of Pennsylvania Institutional Review Board
approved protocol.

Cerebrospinal Fluid Analysis

Cerebrospinal fluid (CSF) analytes of total tau and beta-
amyloid1–42 were obtained using previously reported pro-
cedures and evaluated with either a sandwich ELISA 2

(INNOTEST, Innogenetics, Ghent, Belgium) or a LUMI-
NEX xMAP platform (INNO-BIA AlzBio3, Innogenetics).
A ratio of total tau to beta-amyloid (t-tau:Ab) was gener-
ated across platforms using an autopsy-validated conver-
sion factor that has been cross-validated across two
independent series [Irwin et al., 2012]. Specifically, it has
been demonstrated that a t-tau:Ab ratio above threshold
(>0.34) is 95.5% accurate across two autopsy series [Irwin
et al., 2012]. In this study cohort, 11 patients had autopsy
or a genetic mutation consistent with FTLD pathology and
all of them were correctly classified with CSF as having
FTLD pathology. Using this threshold we identified 72
patients with a CSF profile not consistent with AD, which
we presume is FTLD, and 21 patients had a CSF profile
consistent with AD. Our cohort that contains 22.5% AD
cases provides a representative sample that is consistent
with previous reports, suggesting that �20–30% of clinical
FTD cases have AD pathology [Harris et al., 2013; Lee
et al., 2011].

Volumetric T1 MRI Acquisition and

Preprocessing

All participants underwent a structural T1-weighted
MPRAGE MRI acquired from a SIEMENS 3.0T Trio scan-
ner with an eight-channel coil using the following parame-
ters: repetition time (TR) 5 1,620 ms; echo time (TE) 5 3
ms; slice thickness 5 1.0 mm; flip angle 5 15�; matrix 5 192
3 256; and in-plane resolution 5 0.9 mm 3 0.9 mm. MRI
volumes were preprocessed using highly accurate [Klein
et al., 2010] PipeDream (http://sourceforge.net/projects/
neuropipedream/) and Advanced Normalization Tools
(ANTs) [Avants et al., 2008], as previously reported
[Avants et al., 2011]. Briefly, PipeDream deforms each
individual dataset into a standard local template space in
a canonical stereotactic coordinate system. A diffeomor-
phic deformation was used for registration that is symmet-
ric to minimize bias toward the reference space for
computing the mappings, and topology-preserving to cap-
ture the large deformation necessary to aggregate images
in a common space. These algorithms allow template-
based priors to guide GM. We then computed a
registration-based measure of cortical thickness [Das et al.,
2009] and smoothed the cortical thickness images using a
1.5-mm sigma kernel.

DTI Acquisition and Preprocessing

Diffusion-weighted images were acquired with either a
30- or 12-directional acquisition sequence. The 30-
directional sequence included a single-shot, spin-echo,
diffusion-weighted echo planar imaging sequence
(FOV 5 245 mm; matrix size 5 128 3 128; number of
slices 5 57; voxel size 5 2.2 mm isotropic; TR 5 6,700 ms;
TE 5 85 ms; and fat saturation). In total, 31 volumes were

TABLE I. Mean (SE) demographic profiles of clinical

FTD patients with cerebrospinal fluid profiles consistent

with Alzheimer’s disease (AD) or frontotemporal lobar

degeneration (FTLD)

Measure AD FTLD

N (female) 21 (12) 72 (31)
Age 67.81 (1.62) 62.61 (0.90)
Education 15.05 (0.66) 15.47 (0.41)
Disease duration 2.52 (0.31) 3.53 (0.32)
MMSE 25.19 (0.63) 26.29 (0.34)
Total-tau/Ab 0.67 (0.08) 0.17 (0.01)
DTI sequence (12/30) 7/14 29/43
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acquired per subject, one without diffusion weighting
(b 5 0 s/mm2) and 30 with diffusion weighting (b 5 1,000
s/mm2) along 30 noncollinear directions. The 12-
directional sequence included a single-shot, spin-echo,
diffusion-weighted echo planar imaging sequence (matrix
size 5 128 3 128; number of slices 5 40; voxel size 5 3 mm;
TR 5 6,500 ms; and TE 5 99 ms). In total, 12 noncollinear,
noncoplanar, isotropic diffusion-encoding directions were
acquired. An equal proportion of DTI data from each
sequence was available per subject group (X2 5 1.42,
P> 0.1; see Table I for a summary) and across training
(50%) and test (50%) cohorts (X2< 0.1; P> 0.1), thus reduc-
ing potential DTI-sequence bias within any one group. We
additionally included a nuisance covariate for DTI
sequence in all DTI analyses, as previously reported
[McMillan et al., 2013b].

Diffusion-weighted images were preprocessed using
ANTs [Avants et al., 2008] and Camino [Cook et al., 2006]
within the associated PipeDream (http://sourceforge.net/
projects/neuropipedream/) analysis framework. Motion
and distortion artifacts were removed by affine co-
registration of each diffusion-weighted image to the
unweighted (b 5 0) image. Diffusion tensors were com-
puted using a linear least squares algorithm implemented
in Camino [Salvador et al., 2005]. Each participant’s T1
image was warped to the template via the symmetric dif-
feomorphic procedure in ANTS (as above). Distortion
between participants’ T1 and DT images was corrected by
registering the FA image to the T1 image. The DT image
was then warped to template space by applying both the
intrasubject (FA to participant T1) and intersubject (partici-
pant T1 to template) warps. Tensors were reoriented using
the preservation of principal directions algorithm
[Alexander et al., 2001].

Calculation of Neuroimaging Classifiers

Once MRI and DTI images were preprocessed and nor-
malized to standard stereotactic space we computed VOIs
for classification using three methods. To calculate global
measures we generated a probabilistically defined GM
mask and we generated a lateral ventricle mask using an
edge-based snake algorithm implemented in ITK-SNAP
(http://www.itksnap.org). Each of these masks was gener-
ated in our local template. We then used the inverse warp
from our ANTs registration routine to warp each of these
masks into subject space where we computed the sum of
all voxels to generate a single value for total GM volume
and for total ventricular volume.

To calculate anatomically defined VOIs we used labels
from previously published and widely used anatomical
atlases of GM [Tzourio-Mazoyer et al., 2002] and WM
[Oishi et al., 2008]. Each of these atlases was available for
download in MNI space, which we used for all analyses.
Atlases were masked using a probabilistically defined GM
and WM mask to omit voxels that did not contain a corti-

cal thickness or FA value. Within each atlas we generated
a binary mask for each of the VOIs including 90 GM
regions and 48 WM regions. We then computed the mean
cortical thickness or mean FA within each region yielding
a single value per anatomical VOI for each patient.

To calculate data-driven VOIs we used Eigenanatomy
[Avants et al., 2012; McMillan et al., 2013b], a dimensional-
ity reduction tool based on sparse singular value decom-
position (SVD) and implemented in ANTs (http://stnava.
github.io/ANTs/). To identify VOIs using Eigenanatomy,
all GM thickness volumes or FA volumes are first trans-
formed into a matrix. Then an anatomically constrained
L1-penalized SVD is used to identify a set of 20 eigenvec-
tors that account for 95% of the total variance in the
matrix. The ANTs implementation of Eigenanatomy uses a
sparseness penalty on the eigenvectors such that (1) the
entries of the eigenvector are both sparse (i.e., have many
zero entries) and non-negative and (2) the non-zero voxels
are clustered and exceed a cluster extent threshold. The
extent thresholds selected for this study were chosen to
approximately match the average size of anatomical VOIs
used for the comparative study: 1,000 adjacent voxels for
GM and 500 adjacent voxels for FA. The sparseness and
non-negativity allows the eigenvectors to be interpreted as
weighted averages of the original data, resembling a dis-
tributed version of a traditional region of interest.

Classifier Training

Once GM MRI and WM DTI measures were computed
for the data-driven, anatomical, and global approaches, as
described above, we performed linear regression and
cross-validation (see Fig. 1 for a schematic of the proce-
dure) to identify the optimal neuroimaging classifiers. To
perform cross-validation, our full patient cohort (N 5 93)
was randomly divided into a training (N 5 46) and test
(N 5 47) cohort. For all linear regressions we included nui-
sance covariates that have previously been reported to
contribute to the neuroanatomic distribution of disease.
These included age at MRI, MMSE, disease duration, gen-
der, and APOE status.

Within the training dataset we performed two stages of
feature selection for each of the anatomical and data-
driven approaches; we did not, however, perform feature
selection for the global measures because these models, by
definition, only include a single neuroimaging classifier.
First, we performed an initial stage of feature selection
using the Bayesian information criterion (BIC) to select
VOIs that are potentially useful as classifiers. To achieve
this we performed an exhaustive comparison of linear
regression models using all possible combinations of fea-
tures. These models were computed and ranked according
to BIC using the Leaps package implemented in R (http://
cran.r-project.org/web/packages/leaps/). We retained a
total of 50 models with the lowest BIC and then hand-
selected the features that appeared most frequently in
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these models. Second, we refined our initial selection of
features using fivefold cross-validation to select the most
stable combination of features that most reliably achieved
the highest prediction accuracy. This was accomplished by
randomly dividing the dataset into five equally sized folds
to identifying the optimal set of features. This fivefold pro-
cedure was then permuted 1,000 times in an effort to mini-
mize bias that may be associated with unbalanced
demographical features, unbalanced DTI parameters, or
uneven assignment of pathological groups to each fold.

This was done using the bestglm package in R (http://
cran.rproject.org/web/packages/bestglm/). Using this
approach, we generated a single, optimal linear regression
model for our training dataset for each imaging measure
(e.g., data-driven VOIs and anatomical VOIs) and modality
(GM, FA, and multimodal combination of GM and FA).
Each of these linear regression models contained the most
stable VOIs identified during cross-validation.

Classification Accuracy

To evaluate classification accuracy of the global, anatom-
ical, and data-driven approaches, we generated receiver
operator characteristic (ROC) curves for each of the GM
MRI, DTI, global, and multimodal analyses. In this study,
we use sensitivity to refer to accuracy of diagnosing an
individual as having AD when they do have AD. We
report the area under the curve (AUC) and report sensitiv-
ity and specificity using the threshold that achieves the
highest Youden-J index, a measure of the overall accuracy
of a diagnostic test (sensitivity 1 specificity 2 100). We
report accuracy in the independent test cohort and include
accuracy for our training dataset in Supporting
Information.

Statistical Power Analysis

To quantify the statistical power associated with each
neuroimaging analysis we calculated the minimum sample
size required for classification of AD and FTLD in the
independent test cohort. We first performed a regression
analysis that only included the demographic nuisance
covariates. We then compared the r2 value of the demo-
graphic nuisance covariate model relative to each neuroi-
maging regression model that included the neuroimaging
classifiers selected during training together with the demo-
graphic nuisance covariates. This resulted in a relative cal-
culation of power (1 2 b) for values ranging from 0.1 to
1.0. These analyses were performed using the MBESS
package implemented in R (http://cran.r-project.org/
web/packages/mbess/).

TABLE II. Summary of test prediction results: Power (minimum sample size) and classification accuracy for MRI,

DTI, global, and multimodal combination of measures

Modality Method Minimum N AUC P Sensitivity Specificity Youden-J

Volumetric MRI Data-driven 14 0.778 0.010 81 89 70
Anatomical 87 0.802 0.005 54 100 54

DTI Data-driven 14 0.808 0.005 46 100 54
Anatomical 118 0.649 ns 78 56 34

Global GM volume 82 0.820 0.003 65 100 65
Ventricular volume 235 0.826 0.003 65 100 65

Multimodal Data-driven 26 0.874 0.001 89 89 78
Anatomical 66 0.742 0.026 70 78 48

Figure 1.

Schematic overview of training and test prediction procedures.

(A) Cohort is randomly divided into training and test datasets.

(B) Initial feature selection is performed by determining which

VOIs minimize Bayesian information criterion (BIC). (C) Fivefold

cross-validation is performed within the training dataset by ran-

domly dividing the cohort into five sets, calculating the features

that achieve highest prediction accuracy, and permuting this pro-

cess 1,000 times to identify the most stable VOIs for prediction.

(D) Stable VOIs are entered into a power analysis in training

cohort to confirm that there is a sufficient sample for test pre-

diction. (E) ROC curve to calculate prediction accuracy in train-

ing cohort. (F) Power analysis in independent test cohort. (G)

ROC curve to evaluate prediction accuracy in independent test

cohort.
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RESULTS

Classification Accuracy

All training analyses achieved statistically significant accu-
racies (P< 0.05) and are summarized in Supporting Informa-
tion Table 2 and illustrated in Supporting Information
Figure 1. In an independent evaluation of the test cohort
(N 5 47), we used VOIs generated in the training classifica-
tion and their corresponding regression models to evaluate
classification accuracy in an unseen group of patients. Clas-
sification accuracy is summarized in Table II and corre-

sponding ROC curves are illustrated in Figure 3. Overall,
these analyses revealed that the data-driven approach con-
sistently outperformed anatomical and global measures in
each comparison and that the date-driven multimodal analy-
sis achieved the highest overall classification accuracy.

The data-driven multimodal approach included VOIs in
left parietal cortex (purple), bilateral precuneus (orange),
and the body of the corpus callosum (red) (Fig. 2E). As
illustrated in Figure 3D, the data-driven multimodal
approach thus achieved the highest overall classification
accuracy with 89% sensitivity and 89% specificity
(AUC 5 0.874; P< 0.001). The anatomical multimodal
approach, which selected the precuneus (orange), right
ventral-medial prefrontal cortex (red), and the left superior
longitudinal fasciculus (green) (Fig. 2F), achieved only
modest classification accuracy (AUC 5 0.742; P 5 0.026).

Using MRI GM thickness alone, by comparison, Figure
3A shows that the data-driven approach achieved good sen-
sitivity (81%) with high specificity (89%; AUC 5 0.778;
P 5 0.010). The data-driven GM approach included seven
VOIs as classifiers, illustrated in Figure 2A. These com-
prised a large bilateral VOI extending from angular gyrus
to precuneus (orange), two adjacent VOIs in left anterior
temporal cortex (green and yellow), left superior temporal
extending into occipital cortex (blue), bilateral posterior cin-
gulate (purple), left parahippocampal and fusiform gyri
(red), and bilateral anterior cingulate extending into
ventral-medial prefrontal cortex (magenta). In contrast, the
anatomical MRI approach was poorly sensitive (54%), but
was highly specific (100%; AUC 5 0.802; P< 0.005). As illus-
trated in Figure 2B, the most stable VOIs for the anatomical
GM MRI approach overlapped with some regions identified
by the data-driven approach, including the right precuneus
(orange) and right ventromedial prefrontal cortex (red).

Using DTI alone (Fig. 3B), the data-driven approach had
poor sensitivity (46%) with high specificity (100%), and this
was statistically robust (AUC 5 0.808; P 5 0.005). This analy-
sis included three adjacent clusters in left superior longitu-
dinal fasciculus (dark red, green, and yellow), right
superior longitudinal fasciculus (blue), body of the corpus
callosum (bright red), and genu of the corpus callosum
(light blue) (Fig. 2C). However, the anatomical analysis of
DTI did not achieve significance for classification accuracy
(AUC 5 0.649; ns). This anatomical analysis included left
superior longitudinal fasciculus (green) and right uncinate
fasciculus (blue) (Fig. 2D). The data-driven and anatomical
approaches overlapped in the left superior longitudinal fas-
ciculus. The global measure analyses achieved only modest
sensitivity (65%) with high specificity (100%) for GM vol-
ume (AUC 5 0.820; P 5 0.003) and ventricular volume
(AUC 5 0.826; P 5 0.003) and are summarized in Figure 3C.

In follow-up analyses we assessed the classification accu-
racy of each clinical syndrome included in our series and
these results are summarized in Table III. Of particular inter-
est is the classification accuracy of atypical syndromes that
are more equally associated with AD or FTLD pathology,
including CBS [Hu et al., 2009] and logopenic variant PPA

Figure 2.

Selected volumes of interest (VOIs) for volumetric MRI and DTI

methods. (A) Data-driven MRI; (B) anatomical MRI; (C) data-

driven DTI; (D) anatomical DTI; (E) data-driven multimodal

(MRI 1 DTI); and (F) anatomical multimodal (MRI 1 DTI).
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(lvPPA) [Mesulam et al., 2008]. Our results suggest that a
multimodal approach achieves 100% accuracy of CBS and
78% accuracy of lvPPA. All other, more typical FTLD-
associated syndromes achieve greater than 80% accuracy. The
only exception includes PSP that only achieved 67% accuracy
in which one of three cases was misclassified and this indi-
vidual had AD-consistent CSF, suggesting that they may
have comorbid underlying pathology [Toledo et al., 2012].

Statistical Power

To evaluate whether our independent test cohort (N 5 47)
was large enough to evaluate classification prediction accu-
racy, we first estimated the minimum sample size required

for replication based on our training classification analyses.

These results are summarized in Supporting Information

Table 2 and illustrated in Supporting Information Figure 2.

Overall, training power analyses suggested that our sample

size for data-driven and anatomical approaches is indeed suf-

ficiently large for VOI-based approaches. However, the global

approaches required over 200 cases for both GM and ventric-

ular volume analyses. As the performance of the global

approach was much more modest than data-driven and ana-

tomical approaches, we performed two post hoc quality con-

trol analyses reported in Supporting Information A.
The power analyses in the independent test cohort sug-

gested that the data-driven approach requires approximately
a third of the samples size to perform prediction

Figure 3.

Receiver operator characteristic (ROC) curves for volumetric, DTI, and multimodal combination

of neuroimaging approaches in independent test dataset.
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classification in comparison to the anatomical approaches.
These are all summarized in Table II and illustrated in Fig-
ure 4. Specifically, the data-driven MRI GM thickness and
DTI approaches have the smallest overall minimum sample
size of 14 cases in comparison to a minimum sample of 87
cases for the GM anatomical approach and 118 cases for the
DTI anatomical approach. The data-driven multimodal
approach requires a slightly larger minimal sample size
(N 5 26) than unimodal methods, but was the most accurate
approach (see above). Power analyses for the global meas-
ures suggested considerably larger sample sizes compared
with the data-driven approach: 82 cases for GM volume and
235 cases for ventricular volume.

DISCUSSION

Neuroimaging has been suggested as a candidate bio-
marker to screen neurodegenerative patients for entry into
clinical trials [McMillan et al., 2012, 2013a]. We evaluated
the accuracy and statistical power of three published
approaches for quantifying regional atrophy observed with
neuroimaging using a multimodal combination of GM MRI
and DTI. Because many prior publications use GM MRI or
DTI alone, we also performed analyses using single modal-
ity datasets. Our findings suggested that a data-driven sta-
tistical approach using multimodal data provides the most
accurate and powerful approach. In the sections below, we
discuss the implications of data-driven neuroimaging meth-
ods for classification, statistical power, and broader research
goals concerned with neurodegeneration and neuroimaging.

Classification Accuracy of Neuroimaging

Biomarkers

In our comparative assessment of different neuroimag-
ing approaches we observed that our data-driven VOI

approach achieved the greatest accuracy using multimodal
measures. This finding is consistent with a previous com-
parative study reporting that statistically defined measures
generated with a principal components analysis outper-
formed anatomically defined measures for discriminating
between AD and controls [Pelaez-Coca et al., 2011]. The
observation that a multimodal dataset achieved the highest
performance is also consistent with a previous report dem-
onstrating that a multimodal combination of MRI, CSF,
and FDG-PET was more powerful statistically than any of
these modalities individually [Kohannim et al., 2010].

The observation that a multimodal neuroimaging
approach achieves high classification accuracy converges
with prior evidence in our laboratory that demonstrated a
combination of GM MRI and WM DTI performs better
than a single imaging modality [McMillan et al., 2012].
Both studies suggest that GM in parietal cortex and WM
in the corpus callosum are the most accurate regions for
classification, but this study contributes several additional
advances. First, this study evaluated accuracy in an inde-
pendent dataset using cross-validation, which is necessary
to assess the generalizability of our method. Second, the
DTI analyses in this study were identified using data-
driven, and user-independent, WM VOIs rather than tract-
specific analyses in our prior report, which required a pri-
ori assumptions about the loci of WM tracts and was lim-
ited to only 11 tracts that could be reliably parcellated.
Third, this study additionally evaluated the statistical
power of our classification methods, which we discuss in
detail in a later section.

The selection of parietal regions and corpus callosum
identified with our data-driven approach also overlapped
substantially with VOIs identified by the anatomical
approach. The major difference between these two
approaches was the limited generalization of the regions
identified by the anatomic approach from the training
dataset to the independent cohort of test patients. In con-
trast, the data-driven approach proved to be nearly as
robust in the independent test cohort as it was in the train-
ing cohort. One potential reason that anatomical VOI
approaches may be suboptimal in this context is because
of individual differences in anatomic structure and the
anatomic distribution of disease. For example, FTLD
patients may or may not have observable medial temporal
lobe atrophy [Galton et al., 2001; Hornberger et al., 2012;
Josephs et al., 2006] and atypical AD patients may have
hippocampal sparing [Murray et al., 2011]. Findings such
as these emphasize that strictly anatomical approaches
may have limited value in comparative classification stud-
ies. Although the anatomical VOI approach used in this
study used widely reported atlases of anatomically defined
VOIs [Tzourio-Mazoyer et al., 2002], it is possible that
alternative atlases may achieve better performance in
future studies.

Global neuroimaging approaches have previously been
suggested for use in clinical trials [Knopman et al., 2009].
However, although the global approaches reported in this

TABLE III. Classification accuracy for each data-driven

neuroimaging biomarker approach across clinical

syndromes

Clinical syndrome N

Grey
matter
MRI

White
matter

DTI
Multimodal
MRI 1 DTI

Corticobasal syndrome
(CBS)

5 60 60 100

Logopenic variant PPA
(lvPPA)

9 78 67 78

Nonfluent/agrammatic
PPA (naPPA)

4 75 25 100

Progressive supranuclear
palsy (PSP)

3 100 33 67

Semantic variant PPA
(svPPA)

5 80 40 80

Behavioral variant
FTD (bvFTD)

20 90 65 90
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study achieved very high specificity (100%), we only
observed modest sensitivity (65%). Relative to anatomic
approaches, global approaches are easy to implement and
have the advantage that they are insensitive to individual
differences in the anatomic distribution of disease.
Although global approaches may be sensitive to detecting
the presence of disease in patients compared with controls
our findings suggest that global approaches are unlikely to
be informative in comparative studies where two patient
groups may have relatively equal amounts of two different
diseases that are uniquely distributed throughout the
brain. One possibility is that global measures may be more
useful as clinical endpoints rather than as a screening tool
in the context of a clinical trial. Indeed, global measures
yield a single value reflecting overall disease that can eas-

ily demonstrate change over time, and this has been corre-
lated with clinical and neuropsychological measures of
disease progression [Chou et al., 2010; Knopman et al.,
2009]. Although a single value can also be derived from
data-driven and anatomic approaches [McMillan et al.,
2013a], future research is necessary to comparatively eval-
uate the statistical power of each of the neuroimaging
approaches for quantifying longitudinal decline. In a pre-
liminary study, Eigenanatomy was demonstrated to have
increased sensitivity to longitudinal decline relative to a
standard voxel-based morphometry approach [Avants
et al., 2012].

Although this study used linear regression to evaluate
classification accuracy across three different VOI approaches,
it is important to consider how our observations compared

Figure 4.

Estimated minimum sample sizes for volumetric, DTI, and multimodal combination of neuroimag-

ing approaches in independent test dataset.
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to previous reports using alternative neuroimaging classifi-
cation methods to discriminate between FTLD and AD
[Avants et al., 2010; Davatzikos et al., 2008; Du et al., 2007;
Kl€oppel et al., 2008; Lindberg et al., 2012; Lu et al., 2014;
McMillan et al., 2012, 2013a; Rabinovici et al., 2007; Zhang
et al., 2009, 2011; Zhou et al., 2010]. The vast majority of
these studies converge by emphasizing the contribution of
parietal regions [Avants et al., 2010; Du et al., 2007; Kl€oppel
et al., 2008; McMillan et al., 2012; Zhang et al., 2011] and
corpus callosum [Avants et al., 2010; Lu et al., 2014; McMil-
lan et al., 2012; Zhang et al., 2009] for accurate classification.
Another GM region commonly reported to accurately dis-
criminate between FTLD and AD is ventromedial prefrontal
cortex [Avants et al., 2010; Davatzikos et al., 2008; Kl€oppel
et al., 2008; McMillan et al., 2013a], which contributed to our
GM-only classification but did not contribute to classification
accuracy when WM was added to the multimodal analysis.
Other than the use of multiple imaging modalities, another
major difference between our approach and other whole-
brain approaches is related to the choice of statistical classi-
fier such as support vector machine [Davatzikos et al., 2008;
Kl€oppel et al., 2008] or canonical correlation analysis
[Avants et al., 2010]. Our analyses focused on logistic regres-
sion in an effort to facilitate interpretation, but future work
is required to directly compare different types of statistical
classifiers. Other studies have also focused on sophisticated
analyses of an anatomical structure such as shape-based
analyses of the hippocampus [Lindberg et al., 2012] or puta-
men [Looi et al., 2012] and these detailed anatomical analy-
ses may prove to be more sensitive than voxelwise
anatomical analyses such as those reported in this study.

Statistical Power for Neuroimaging Biomarkers

The results of this study suggest that a data-driven
approach requires fewer participants than anatomical or
global approaches to perform accurate classification. We
observed a small trade-off between accuracy and sample
size because our data-driven sample size estimate is
slightly larger for the multimodal approach compared to
single modalities. However, despite this trade-off, the
data-driven approach using a multimodal dataset can be
used for clinical trial screening with as few as 26 cases in
comparison to the multimodal anatomical assessment that
estimated as many as 66 cases would be required and
over 80 cases would be required using a global measure.
Sample size is an important consideration in the context of
designing a cost-effective, statistically robust, and feasible
method to screen patients for an etiologically driven treat-
ment trial. The ability to classify with smaller sample sizes
is especially important in the context of less common dis-
eases like FTLD in which there is a relatively limited pool
of individuals to recruit for clinical trials.

Critically, our power analyses were based on an inde-
pendent test cohort and thus address recent objections
concerning adequate power in neuroscience studies. If

post hoc power analyses are performed in the absence of
an independent sample, studies may have based their
observed power on overfitted data and therefore may
have underestimated the sample size required for replica-
tion [Button et al., 2013]. A comparison of estimated mini-
mum sample sizes in our training and testing analyses
emphasizes this potential pitfall.

Additional Advantages of Data-Driven Statistical

Approaches for Neuroimaging

There are several additional advantages to data-driven
statistical methods that extend beyond high classification
accuracy and increased statistical power. Although ana-
tomical approaches are constrained to regions that have
previously been clearly defined, data-driven approaches
may facilitate the detection of novel regions that are
important for improving our understanding of FTLD and
AD. This is of particular concern for DTI analyses in
which anatomical protocols are not well defined owing to
challenges associated with defining regions that contain
crossing fibers or U-shaped subcortical fibers.

Another potential advantage of data-driven approaches
is that multivariate statistics can be used to identify latent
signals that may not be captured by more simplistic uni-
variate statistical procedures [Moeller and Habeck, 2006].
In a recent study, we used a similar statistical procedure
as reported here to identify cortical networks of neurode-
generation in AD and FTLD that were associated with dis-
tinct domains of cognition, including social, linguistic,
executive, and memory neuropsychological measures
[Avants et al., 2014]. These findings suggest that distrib-
uted networks of correlated voxels, rather than a single
cluster of adjacent voxels, best account for cognitive defi-
cits observed in neurodegenerative diseases. A similar
study in our laboratory suggests that distributed networks
of GM and WM are associated with genetic risk factors in
FTLD [McMillan et al., 2014]. The advantages of multivari-
ate approaches have also been highlighted in other imag-
ing modalities such as BOLD measures of functional
connectivity [Seeley et al., 2009; Zhou et al., 2010] and
FDG-PET [Seo et al., 2013] studies that emphasize the
importance of network-level variance in FTLD and AD.

As clinical trials emerge it will be necessary to develop
statistical methods that are protected from potential chal-
lenges associated with multicenter studies such as variance
associated with different MRI scanners. We speculate that
the data-driven VOI approach may be ideal for multicenter
studies because any scanner-to-scanner variance may
potentially be captured by an additional nuisance eigen-
vector that can be residualized during analysis, though
future research is required to evaluate this.

Although data-driven approaches appear to have several
advantages, detailed anatomical analyses are likely to con-
tinue to contribute to an improved understanding of neu-
rodegeneration in FTLD and AD. In particular there has
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been an emergence of promising high-field imaging meth-
ods [Kerchner, 2011] in AD, some of which include ex
vivo histopathological validation [Adler et al., 2014;
Augustinack et al., 2013]. However, there is still substan-
tial work required to translate these sophisticated techni-
ques into clinical practice. Some studies suggest that data-
driven methods may lack the level of detail required to
make subtle and detailed neuroanatomical distinctions
required for challenging diagnoses [Klauschen et al., 2009].
Preliminary evidence suggests that data-driven methods
can be leveraged to refine anatomically defined cortical
regions in order to provide an optimal “hybrid” approach
for neuroimaging analysis [Dhillon et al., 2013].

A more practical potential benefit of neuroimaging bio-
markers, in comparison to CSF or PET, is that it is widely
available, noninvasive, and cost-effective. Nearly every
major hospital has access to an MRI scanner while CSF
analysis and PET imaging may only be available at speci-
alized tertiary medical centers. Although lumbar punctu-
res in practice have minimal risks associated with them,
patients and physicians often vary in their attitudes and
perceived risks of this more invasive procedure. In com-
parison to PET studies, MRI is relatively less expensive
and the acquisition of multiple modalities such as GM
MRI and DTI in a single session is feasible.

Potential Limitations and Future Considerations

Several caveats should be kept in mind when considering
our findings. Our results were based on screening FTLD
and AD in a clinical FTD cohort, but FTLD itself is a histo-
pathologically heterogeneous condition that results from
either tau, TDP-43, or rarely FUS inclusions [Mackenzie
et al., 2010]. It is nonetheless important to screen out AD
patients in the context of a clinical trial. For example, a clin-
ical trial (NCT01626378) is currently recruiting bvFTD
patients independent of tau or TDP-43 pathology, but lists
AD pathology as an exclusion criterion. Prior evidence also
suggests that Eigenanatomy, the data-driven method used
here, provides highly accurate classification of tau and
TDP-43 subtypes of FTLD when using DTI [McMillan et al.,
2013b], and unpublished work demonstrates the utility of
Eigenanatomy analyses of GM and WM in distinguishing
the underlying causes of CBS [Goldmann Gross et al.,
2012]. Thus, these findings suggest that Eigenanatomy may
be a useful tool for resolving diagnostic challenges when
clinical phenotype is less informative. Although our classifi-
cation analyses were based on a CSF t-tau:Ab values rather
than pathologically confirmed cases, the t-tau:Ab cutoff that
we used has been cross-validated across two autopsy series
and has been demonstrated to have greater than 90% sensi-
tivity and specificity across both series [Irwin et al., 2012;
Toledo et al., 2012]. Moreover, the brain regions selected by
an Eigenanatomy analysis have previously been validated
by direct sampling of histopathology in the identified
regions [McMillan et al., 2013b].

When considering the histopathological heterogeneity of
our cohort it is important to acknowledge that the DTI
analyses reported in this study were constrained to FA
measures of WM. However, it is possible that different
DTI metrics may provide more specific measures of dis-
tinct pathological processes in AD or FTLD. For example,
some studies have suggested that radial diffusivity pro-
vides a more sensitive measure of FTD pathology [Zhang
et al., 2009, 2013], but future research with animal models
is required to evaluate the controversial relationship
between DTI metrics and specific pathological processes
[Jones et al., 2013].

In addition to histopathological heterogeneity, the clini-
cal syndromes associated with AD or FTLD pathology can
be heterogeneous. In this study, patients were initially
screened for a clinical diagnosis of an FTD-spectrum syn-
drome and we evaluated the accuracy of neuroimaging
approaches to identify FTLD or AD underlying pathology.
Importantly, clinical evaluation with current criteria [Arm-
strong et al., 2013; Gorno-Tempini et al., 2011; Litvan et al.,
1996; Rascovsky et al., 2011] is a critical first step for iden-
tifying individuals with an FTD syndrome and is impor-
tant for identifying the appropriate treatment and
management of clinical symptoms. However, we argue
that clinical diagnosis alone must be complemented with
other biomarkers to identify the underlying pathological
source of disease. For example, visuospatial difficulties are
observed in CBS and posterior cortical atrophy, behavioral
difficulties are observed in bvFTD and frontal-variant AD,
and language difficulties are observed in PPA, which have
been associated with AD and FTLD. In a post hoc analysis
we observed that our classification procedure performed
well in more heterogeneous clinical syndromes like CBS,
though these analyses were based on small numbers of
cases and require additional validation in a larger series.
Accounting for differences in disease distribution across
clinical syndromes is important given prior evidence that
suggests that underlying pathology mediates the distribu-
tion of disease observed within a given clinical syndrome
[Hu et al., 2010]. For example, within a single clinical syn-
drome such as lvPPA and nonfluent/agrammatic variant
of PPA (naPPA) patients exhibit a more anterior distribu-
tion of disease with FTLD pathology and more posterior
distribution with AD pathology [Hu et al., 2010]. Similarly,
MRI and DTI demonstrate distinct patterns of atrophy in
CBS patients with AD or FTLD histopathology [Goldmann
Gross et al., 2012]. Thus, it appears that clinical syndrome
alone may not be a reliable predictor of regional atrophy
in AD or FTLD.

Lastly, to implement a data-driven and multimodal
screening procedure for clinical trials it may be necessary
to validate our observations in an independent dataset.
This study used independent training and testing cohorts
from our center and demonstrated that Eigenanatomy per-
formed well in both datasets. However, unlike large AD
neuroimaging repositories such as ADNI or OASIS, there
are not publically available datasets that contain a large
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FTD neuroimaging series. Eigenanatomy is available for
free open-source download and we encourage investiga-
tors to independently evaluate the reliability and replica-
bility of our tool in their own FTD datasets.

With these caveats in mind, our results suggest that a
data-driven approach to analyze multimodal neuroimag-
ing provides an optimal strategy for screening patients for
entry into clinical trials. The proposed methods are user-
independent, provide reliable VOIs, and demonstrate
adequate power for use in therapeutic trials of rare neuro-
degenerative diseases such as FTLD.
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