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Abstract

Clinical trials utilizing predictive biomarkers have become a research focus in personalized

medicine. We investigate the effects of biomarker misclassification on the design and analysis of

stratified biomarker clinical trials. For a variety of inference problems including marker-treatment

interaction in particular, we show that marker misclassification may have profound adverse effects

on the coverage of confidence intervals, power of the tests, and required sample sizes. For each

inferential problem we propose methods to adjust for the classification errors.
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1. Introduction

Advances in understanding the genetics and biology of certain cancers have led to the

successful development of novel therapies that target specific pathways. A convincing

example is given in [1] that reported a statistically significant overall hazard ratio estimate

from a randomized clinical trial in which women with ovarian cancer were treated with

either pegylated liposomal doxorubicin or topotecan. The authors further reported that

among patients with platinum-sensitive disease, a more significant hazard ratio was found.

However, among patients with platinum-refractory disease, the hazard ratio was not
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significant. The study results showed an evident interaction between treatment (pegylated

liposomal doxorubicin or topotecan) and a biomarker (platinum).

When biomarker-treatment interaction is the primary research interest in a clinical trial, the

stratified biomarker design is commonly used due to its fully taking the advantage of

randomization and its ability to address various questions of interest; see, among others, [2–

7]. In renal cell carcinoma, novel therapies that target the vascular endothelial growth factor

(VEGF) and mammalian target of rapamycin (mTOR) pathways have been identified and

are being used as treatment option for patients [8–9].

As another example, data from several centers have shown that retinoblastoma function may

help differentiate if the androgen signaling pathway is viable. The loss of retinoblastoma

status plays critical role in cell regulation and it suppresses androgen receptor expression

and activity. It is estimated that 30% – 40% of prostate cancers will be androgen positive

[10–12]. Investigators are interested in whether patients with advanced prostate cancer

respond to treatment differently according to their retinoblastoma status.

Predictive markers for response have been shown to be important in patients with advanced

renal cancer carcinoma. Furthermore, it has been reported that inhibition of the VEGF

pathway prolong clinical outcomes, such as objective response, progression-free survival

and overall survival. A statistically significant interleukin 6 (IL-6) by treatment interaction

in predicting progression-free survival (PFS) was observed in patients with metastatic renal

cell carcinoma (p-value=0.009) [13]. In patients with high IL-6, the median PFS was 33

weeks and 10 weeks in patients treated with pazopanib and placebo, respectively. On the

other hand, the median PFS was 42 weeks and 24 weeks in low IL-6 patients treated with

pazopanib and placebo, respectively [13].

We consider a two-arm trial (treatment versus standard) with T being the treatment

indicator, where T = 1 if treatment and T = 0 if standard. We confine attention to a

dichotomous predictive biomarker whose status is denoted by G (=1 if positive and =0 if

negative). The prevalence of the biomarker is denoted by ξG = Pr (G = 1). Then in a

stratified biomarker design, patients with the same biomarker status are randomized into

treatment arm or standard arm, as shown in the following figure:

The primary interest of a stratified biomarker design is to investigate the marker-treatment

interaction on a clinical endpoint, denoted by Y. Other questions that can be answered from

the trial employing such a design include whether the treatments are different within the

same marker status, or whether the clinical outcomes within the same treatment are different

between marker status. These questions all involve inference on some function of the

marker-by-treatment means of the clinical outcomes:
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Define δg = μg1 − μg0 to be the mean outcome difference between treatments in the

population with marker status G = g, and Δt = μ1t − μ0t to be the mean outcome difference

between positive and negative marker status in the same treatment, as a measure of the

marker effects in treatment arm T = t. We are interested in testing separately or

simultaneously the null hypothesis H0 : δg = 0, (g = 0, 1), or , (t = 0, 1). The null

hypothesis of no marker by treatment interaction is then , where

Because the independence between test statistics, the simultaneous null hypotheses can be

tested by separately testing each individual null hypothesis with adequate allocation of the

overall type I error rate, as demonstrated below for testing H0.

Let Wg be a standardized test statistic for testing H0g : δg = 0. The null hypothesis H0 =

H00∩H01 is rejected if |Wg| > cg, for g = 0 or 1, where cg are properly chosen critical values.

Assuming that W0 and W1 are independent, which is the case in most trial settings, the

power of the test is given by

where ωg(δg) = Pr (|Wg| > cg) is the power of the test that rejects H0g if |Wg| > cg. The type I

error rate is thus given by ω(0, 0) = ω0(0) + ω1(0) − ω0(0)ω1(0) where ωg(0) is the type I

error rate for testing H0g.

With significance level α to test the null hypothesis H0 and power 1 − β to detect marker-

specific treatment differences δ0 and δ1, one can allocate adequately the type I error rate and

the power to test separately the two null hypotheses, H00 and H01. Suppose the allocation for

H0g is αg for type I error and 1 − βg for power at δg, then these allocated errors must satisfy

α = α0 + α1 − α0α1, and β = β0β1. In practice one can assign smaller error rates to the more

important hypotheses, e.g. H01 that concerns the treatment difference in the marker-positive

group. With equal allocation of type I error rates and power, we have α0 = α1 = 1 − (1 −

α)1/2 and β0 = β1 = β1/2. The null hypotheses : Δt = 0, (t = 0, 1) can be dealt with

similarly.

In the present article, we investigate, both analytically and numerically, the adverse effects

of biomarker classification errors on the design of a stratified biomarker clinical trial. For a

variety of inference problems including marker-treatment interaction, we show that marker

misclassification may have profound adverse effects on the coverage of confidence

intervals, power of the tests, and required sample sizes. For each inference problem we

Liu et al. Page 3

Stat Med. Author manuscript; available in PMC 2014 August 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



propose methods to adjust for the classification errors. Sample size calculations adjusting for

misclassification are presented in particular for testing marker-treatment interactions.

The paper is organized as follows. In Section 2, we present notations and preliminary results

concerning the design of a stratified biomarker trial in the presence of marker

misclassification. We then discuss the effects of misclassification on estimating treatment

means in each marker stratum, and present a method to correct for misclassification in

Section 3. We investigate the effects of misclassification on estimating treatment differences

in each marker stratum in Section 4, followed by a method to correct for misclassification.

We evaluate the effects of misclassification on marker differences in each treatment arm in

Section 5, with a method to correct for marker misclassification. In Section 6, we address

the marker-treatment interaction, starting with the investigation of the effects on power and

sample size of misclassification, followed by a method to correct for misclassification and

an approach to compute sample sizes to warrant adequate power to detect potential

interaction. We then present an example and then discuss the findings in Section 7.

2. The Design in Presence of Misclassification

We assume that a gold standard exists to determine the true status G of the biomarker, with

G = 1 being positive and 0 if otherwise. Due to reasons such as cost, ethics or

administration, an imperfect assay is used, resulting in classification errors in determining

the biomarker status. This is common in assaying a diagnostic biomarker; see, among others,

[14–16]. Wang et al. [16] demonstrated that misclassification can inflate type I error rates in

a noninferiority trial with binary outcomes.

Let M be the observed status of G, with sensitivity π1 = Pr (M = 1 | G = 1) and specificity π0

= Pr (M = 0 | G = 0). For the biomarker to be practically useful, we assume that 1/2 < π0, π1

≤ 1. It thus follows that the probability that the observed status of the marker is positive for a

patient is

(1)

We refer to ξM as the observed prevalence which is bounded by 1 − π0 and π1 because 0 ≤

ξG ≤ 1, and π0 + π1 > 0.

The actual stratified design is carried out according to the figure with the observed marker

status M replacing the true status G.

Suppose that a total of N patients are enrolled into the trial. Let Yi be the observed clinical

outcome of the ith (i = 1, …, N) patient with observed marker status Mi(= 0, 1), in treatment

arm Ti(= 0, 1).

Let N1 be the number of patients with observed marker status being positive. Note that N1 is

a random variable following a binomial distribution with size N and success probability ξM;

thus E(N1) = NξM. Write N0 = N − N1, the number of patients with observed marker status

being negative. Let Nmt = λmtNm the number of patients in the subgroup with M = m and T =

t, where the allocation proportions λmt ∈ [0, 1] are usually pre-specified, and λm1 + λm0 = 1.
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The allocation ratio of treatment to standard in the M = m group is then λm1/λm0. Equal

allocation between treatments in the M = m group corresponds to λmt = 1/2. The targeted

biomarker-strategy designs correspond to an extreme allocation with λ01 = 0; see, e.g., [4]

and [16].

To simplify the notations, we assume that all the tests have significance level α and the

confidence intervals have confidence level 1 − α. We will refer as “naive” procedures to

those with no adjustment for classification errors, and as “error-adjusted” procedures to

those that adjust for misclassification errors. Wherever there is no ambiguity, we will omit

these distinctions.

The naive estimators of μgt and  are given by

The naive confidence limits of μgt are calculated as

(2)

where throughout Zr is the rth upper quantile of the standard normal distribution, that is,

Φ(Zr) = 1 − r, where Φ denotes the standard normal distribution function.

The naive testing procedure rejects the null hypothesis H0g if

(3)

where

(4)

Similarly the null hypothesis H̃
0t : Δt = 0 is rejected if

where
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If there are no classification errors, then the aforementioned estimates are unbiased, and, if N

is large enough, the tests have significance level α and the confidence intervals have

coverage probability 1 − α. In the presence of misclassification, however, these claims need

to be carefully examined and corrections need to be made to account for classification error

whenever necessary.

Throughout, unless stated otherwise, distributions and their characteristics of estimators are

unconditional, taking the randomness of the observed sample sizes Nm (m = 0, 1) into

account. Such an unconditional approach will allow us to investigate the effects of the

marker’s prevalence ξG as well. Conditional inference given Nm can be obtained in the

derivation by replacing N with N1/ξM, where ξM is given in (18). To adjust for classification

errors, we assume that the marker’s prevalence ξG, sensitivity π1, and specificity π0 are

known; this implies that the marker’s positive and negative predictive values are also

known, because of the well-know relationships:

(5)

3. Estimating Stratum-Specific Treatment Means μgt

3.1. Effects of Misclassification

If the true marker status of the ith patient is Gi, then by the conditional expectations

arguments we have

noting that the treatments play no role in determining the marker’s status.

This leads to

where τ1 = Pr (Gi = 1 | Mi = 1) and τ0 = Pr (Gi = 0 | Mi = 0) are the marker’s positive

predictive value and negative predictive value, respectively. Similarly we have

and thus
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(6)

(7)

Taking the marker classification errors into account, we have E(μ̂
gt) = ζgt and .

The (unconditional) variances of the mean estimates are given by

(8)

and

(9)

noting that N1/N is a consistent estimator of ξM.

Therefore, in the presence of misclassification, the naive estimators, μ ̂
gt and , are no

longer unbiased for the corresponding parameters (i.e., μgt and σgt) they estimate. The bias

of the mean estimates is given by, respectively

(10)

If we assume that, in the same treatment group, larger clinical outcomes are more likely to

occur in patients with positive marker status, then the treatment mean will be underestimated

for marker positive patients, but overestimated for the marker negative patients.

For large sample, μ̂
1t and μ̂

0t are asymptotically normally distributed with

, where, throughout, “~” reads as “is distributed as”. Then the

coverage probability of the naive confidence interval of μ1t in (2) is approximately

(11)

where

The power, as a function of c1t, strictly increases in (−∞, 0] and decreases in [0, ∞).

Therefore, when the true marker status can be correctly classified, (18) gives the coverage

Liu et al. Page 7

Stat Med. Author manuscript; available in PMC 2014 August 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



probability approximately 100(1 − α)%. Otherwise, the asymptotic coverage probability of

the naive confidence interval in (2) is always smaller than the nominal level of 1 − α.

Indeed, the power can be substantially reduced; a particularly interesting observation is that

the coverage probability approaches to zero when the sample size N gets larger.

3.2. Correction for Classification Error

From (10), unbiased estimators  of μgt can be derived by solving the equations:

We have

It follows from (8) and (9) that the variances of the unbiased estimators are

and

Recall that  where  are given in (4). Consistent estimate  of

 and  of  are given by

respectively.

Note that in large sample . Therefore, if λgt → constant

when N → ∞, then the error-adjusted confidence interval of μgt with limits

 has asymptotic coverage probability of 1 − α.

Liu et al. Page 8

Stat Med. Author manuscript; available in PMC 2014 August 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



4. Inference on Marker-Specific Treatment Differences

4.1. Effects of Misclassification

We confine our attention to the marker positive group G = 1. The marker negative group can

be dealt with similarly. Consider testing the null hypothesis H01 based on the statistics in

(3). Taking misclassification into consideration, we have

(12)

In large sample, δ̂
1 asymptotically follows a normal distribution. Note that, under the

simultaneous null hypothesis H0 : δ1 = δ0 = 0, E(δ̂
1) = 0. The actual type I error rate is then

given by

(13)

utilizing the fact that  defined in (4) is a consistent estimate of

.

Therefore, under simultaneous null hypothesis H0, the naive tests maintain the type I error at

the nominal level, regardless of the marker misclassification. However, unlike the cases

when there is no classification error, the type I error rate of the test for the individual

hypothesis H01 : δ1 = 0 depends on δ0, and thus is no longer controlled at the nominal level.

Indeed, the power of the test at δ1 > 0 is given by

(14)

as compared to

when there is no classification error.

The type I error rate follows by setting δ1 = 0 and is given by

Liu et al. Page 9

Stat Med. Author manuscript; available in PMC 2014 August 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



which can be substantially inflated, and indeed approaches to 1 when N → ∞ and δ0 > 0.

Reduction in power due to misclassification may also be sizable. The loss of power

attributes to the following observations. First, if we assume that marker-positive patients

benefit more from the treatment than marker-negative patients, that is, δ1 > δ0, then δ1 > τ1δ1

− (1 − τ1)δ0. Secondly, assuming that σ1t = σ0t = σt, that is, the variations of the outcomes in

the same treatment arm are not affected by the marker status. Then from (6) and (7) we have

if Δt ≠ 0.3) It is possible that τ1δ1 + (1 − τ1)δ0 ≈ 0, which may occur when only patients

with marker positive status are benefited from the treatment, that is δ1 > 0 > δ0.

The classification error can also substantially affects the coverage probability of the naive

confidence interval δ̂
1 ± s1Zα/2. Similar to the derivation of (14), we obtain

where

Again, in the presence of classification error, the coverage probability is always smaller, and

often substantially so, than the nominal level of 1 − α; it approaches to zero if N → ∞.

4.2. Correction for Classification Error

Similar to (12), we can show that

Therefore, unbiased estimates  of δg can be obtained by solving the following equations:
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It follows that

The variance  of the unbiased estimator δ1
* is approximately

which can be estimated consistently by

Note that in large sample . Therefore, the error-adjusted

confidence interval of δ1 with limits  has asymptotic coverage

probability of 1 − α. Furthermore, the error-adjusted test that rejects H01 : δ1 = 0 if

 has type I error approximately α, regardless of the value of δ0.

The power is given by .

5. Inference on Treatment-Specific Marker Effects

5.1. Effects of Misclassification

Consider the naive test procedure given in Section 2. Taking the classification errors into

account we have

(15)

Therefore Δ̂t is no longer unbiased for Δt. Indeed, it always underestimates Δt if Δt > 0 and

overestimates Δt if Δt < 0. In large sample, Δ̂t asymptotically follows a normal distribution.

Similar to the derivations of (13) and (14) we conclude that the naive test asymptotically

maintains the type I error at the nominal level, and the power of the test at some Δt > 0 is

given by
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which can be substantially smaller than

the power when there is no classification error.

Furthermore, the coverage probability of the naive confidence interval Δt̂ ± s̃tZα/2 of Δt is

given by

where

5.2. Correction for Classification Error

Correction for misclassification follows from the fact that

is an unbiased estimator of Δt. The variance and its consistent estimator are given

respectively by

In large sample . Assume that λgt → constant when N

→ ∞. Then, the error-adjusted confidence interval of Δt with limits
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 has asymptotic coverage probability of 1 − α. The error-adjusted

test that rejects H̃
0t : Δt = 0 if  is equivalent to the naive test.

6. Inference on Marker-Treatment Interaction

6.1. Effects of Misclassification

Recall that the marker-treatment interaction effect is measured by γ = Δ1 − Δ0. It follows

from (15) that the naive estimate of the interaction γ̂ = Δ̂
1 − Δ̂

0 has mean and variance, given

respectively by E(γ̂) = (τ0 + τ1 − 1)γ and  where

Therefore the naive estimator of the marker-treatment interaction is biased and under-

(over-)estimates the interaction if γ > (<)0. The naive test for interaction rejects the null

hypothesis  if

The power of the test at some γ > 0 is given by

(16)

It follows from (16) that the naive test maintains the type I error rate at the nominal level of

α, regardless of the classification errors. However, the power of the test can be substantially

adversely affected as compared to the power of the test with no misclassification, that is,

Φ(γN1/2/θ0 − Zα/2), where θ0 is such that

The coverage probability of the naive confidence interval  of γ is given

by
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which can be substantially lower (approaching 0 if N → ∞) than the nominal level of 1 − α.

For α = 0.05, σgt = 1, λmt = 1, γ = 0.936, and selected values of π0, π1, ξG, and N, Table 1

presents coverage probability of the naive confidence interval and the power of the naive

test. In all cases the actual coverage probability is smaller that the nominal level of 0.95,

many are of more than 25% reduction. The actual power is also substantially lower than that

with no classification errors, some with more than 50% reduction in power. The coverage

probability and the power increase as the classification accuracy improves. An increased

sample size yields increased power but decreased coverage probability. For example, with

90% sensitivity and specificity respectively, and 40% marker prevalence, the naive coverage

probability is 0.90 and the power is 0.71 if the sample size is N = 200. These two measures

change to 0.84 and 0.95 respectively when the sample size doubles.

6.2. Correction for Classification Error

An unbiased estimator of the interaction effect γ can be given by

The variance and its consistent estimator are given respectively by

where

In large sample . Hence, the error-adjusted confidence

interval of γ with limits  has asymptotic coverage probability of 1 −
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α. The error-adjusted test that rejects  if  is equivalent to

the naive test.

6.3. Sample Size Adjustment

For the stratified biomarker design, the sample size N needs to be sufficiently large to ensure

adequate power of 1 − β to detect a meaningful marker-treatment interaction γ. From (16)

the sample size is given by

(17)

On the other hand, in the absence of misclassification the required sample size is

It follows from (18) and (5) that

Furthermore, as pointed out in Section 4.1, the variance ν is usually larger than its

counterpart σ. Therefore, a much larger sample size may be required to achieve the desirable

power when classification errors exist.

Under the same specifications of parameters’ values (except for N) used for Table 1, Table 2

presents the actual sample size needed and its ratio to the sample size when there is no

classification error. It shows that the sample size can be more than twice that required when

there is no misclassification of the marker status.

6.4. Example

We sought to design a phase III trial where patients with metastatic renal cell carcinoma will

be randomized to sunitinib (standard of care) or sunitinib plus an experimental drug

stratified by the IL-6 status. The primary endpoint is progression-free survival (PFS) rate at

6 months. IL-6 is a continuous variable with high IL-6 status defined as a value greater than

or equal to 13 pg/mL; this cut-point value is based on the observed median as was reported

in one study [13]. Based on observed data, the PFS rate at 6-months in low and high IL-6

patients treated with sunitinib is 48% and 18%, respectively. The hypothesized effect in low

and high IL-6 patients treated with the experimental drug is 66% and 59%, respectively. The

assay has 95% sensitivity and 90% specificity. Assuming equal allocation and 40%

prevalence of high IL-6. Assuming further that a power of 0.85 is desirable to detect a

marker-treatment interaction effect of γ = (0.59 − 0.18) − (0.66 − 0.48) = 0.23 in PFS rates.
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Using equation (17), the required sample size is about 1,020, or 255 patients are needed in

each stratum of IL-6 by treatment. If on the other hand, the prevalence of high IL-6 status is

30%, then the required sample size is much larger, about 1,244, or 311 patients in each

stratum. In contrast, the sample sizes are about 177 and 202 respectively per stratum when

there is no classification errors for the two scenarios. Note that similar to the comparison of

two independent proportions, in the calculation the stratum-specific variances  are set to

be μ̄(1 − μ̄) where μ̄ is the average of stratum-specific rates, that is,

yielding σgt = 0.25.

7. Discussion

In the present paper we demonstrated both analytically and numerically that the

misclassified biomarker status can have profound negative impact on various inference

problems in a stratified biomarker trial. The methods developed are based on asymptotic

theory and are suitable for most biomarker stratified trials that usually require relatively

large sample sizes; however, caution needs to be taken for small-size trials.

It is worth noting that, as a result of the randomization, the naive test for marker-treatment

interaction maintains the required type I error rates, but suffers considerably from loss of

power due to misclassification, which in turn, results in larger sample sizes required for the

trial.

Our investigation assumes that the marker’s prevalence ξG, sensitivity π1, and specificity π0

are all known. When the N patients are a representative sample of the targeted population,

 is an unbiased estimate of ξM. Then from (18), it follows that

is an unbiased estimate of the marker’s prevalence ξG. If sensitivity π1, and specificity π0

are unknown, then a preliminary study can be conducted to estimate π0 and π1.

The technical developments employed in the present paper can be readily extended to other

biomarker-driven designs, for example, the biomarker enrichment strategy design in which

only marker positive patients are randomized to receive treatments. However, as shown in

the developments, data from all marker by treatment strata are needed to adjust for

classification errors. For a review of useful biomarker based clinical designs, see, e.g. [3, 6,

18,19]. Although the choice of these various designs depends on the trial aims, the impact of

biomarker misclassification can be substantial in each design, and needs further evaluations.

For example, some designs involve testing multiple hypotheses concerning the various
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aspects of the marker-treatment effects. It is then important to investigate how the

classification errors adversely affect the allocation of type I error rates and the power of the

study. Such investigation is also warranted for adaptive and Bayesian biomarker designs.

Throughout, testing marker-treatment effects is formulated based on stratum-specific means,

e.g. means of normal distributions or proportions of a dichotomous endpoint. The methods

developed in the present paper could be generalized, with some tedious algebraic

manipulations, to ordinal/categorical and longitudinal/repeated endpoints with stratum

means as the primary interest. We are currently working on extending the method for time-

to-event endpoints and longitudinally measured endpoints with hazards ratio and rates of

change as the primary comparison, respectively. As can be expected, these types of endpoint

require different and more complicated technical handling of the assumptions.

Increased advances in understanding the roles of molecular and genetic pathways in

carcinogenesis are leading to the development of novel therapies that target the disease

pathways. As a result of these advances, the landscape for performing clinical trials with

biomarkers in cancer is evolving and becoming complex. Despite the large sample size

required for the stratified biomarker design, we believe that this approach is realistic and

worth it as it accounts for misclassification errors.
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Appendix: Some Technical Details

Proof of Eq. (1)

Proof of Eq. (11)
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Note that in the third expression the expectation is taken with respect to the random number

N1t.
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Table 1

Coverage probability of the naive confidence interval and power of the naive test for marker-treatment

interaction:

(N = 200, ξG = 0.4)†

π1=0·80 0·85 0·90 0·95

π0= 0·80 0·74/0·46 0·78/0·52 0·82/0·58 0·85/0·64

0·85 0·80/0·53 0·83/0·59 0·86/0·65 0·89/0·70

0·90 0·85/0·61 0·88/0·66 0·90/0·71 0·91/0·76

0·95 0·90/0·69 0·91/0·73 0·93/0·78 0·94/0·82

(N = 200, ξG = 0.6)†

π1=0 ·80 0·85 0·90 0·95

π0= 0·80 0·74/0·46 0·80/0·53 0·85/0·61 0·90/0·69

0·85 0·78/0·52 0·83/0·59 0·88/0·66 0·91/0·73

0·90 0·82/0·58 0·86/0·65 0·90/0·71 0·93/0·78

0·95 0·85/0·64 0·89/0·70 0·91/0·76 0·94/0·82

(N = 400, ξG = 0.4)††

π1=0·80 0·85 0·90 0·95

π0= 0·80 0·54/0·75 0·61/0·81 0·68/0·86 0·75/0·91

0·85 0·65/0·82 0·71/0·87 0·76/0·91 0·82/0·94

0·90 0·75/0·88 0·80/0·92 0·84/0·95 0·88/0·97

0·95 0·85/0·93 0·88/0·96 0·90/0·97 0·92/0·98

(N = 400, ξG = 0.6)††

π1=0·85 0·90 0·95 0·99

π0= 0·80 0·54/0·75 0·65/0·82 0·75/0·88 0·85/0·93

0·85 0·61/0·81 0·71/0·87 0·80/0·92 0·88/0·96

0·90 0·68/0·86 0·76/0·91 0·84/0·95 0·90/0·97

0·95 0·75/0·91 0·82/0·94 0·88/0·97 0·92/0·98

†
power=0.90 if no misclassification;

††
power=0.99 if no misclassification.

Stat Med. Author manuscript; available in PMC 2014 August 15.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Liu et al. Page 21

Table 2

Required sample size and its ratio to the sample size (= 200) when there is no misclassification

ξG = 0.4

π1=0·80 0·85 0·90 0·95

π0= 0·80 612/3·06 522/2·61 449/2·24 388/1·94

0·85 508/2·54 442/2·21 386/1·93 339/1·69

0·90 423/2·11 373/1·87 331/1·65 295/1·47

0·95 350/1·75 314/1·57 283/1·41 255/1·27

ξG = 0.6

π1=0·80 0·85 0·90 0·95

π0= 0·80 612/3·06 508/2·54 423/2·11 350/1·75

0·85 522/2·61 442/2·21 373/1·87 314/1·87

0·90 449/2·24 386/1·93 331/1·65 283/1·41

0·95 388/1·94 339/1·69 295/1·47 255/1·27
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