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Abstract: Atlas construction generally includes first an image registration step to normalize all images
into a common space and then an atlas building step to fuse the information from all the aligned
images. Although numerous atlas construction studies have been performed to improve the accuracy of
the image registration step, unweighted or simply weighted average is often used in the atlas building
step. In this article, we propose a novel patch-based sparse representation method for atlas construction
after all images have been registered into the common space. By taking advantage of local sparse repre-
sentation, more anatomical details can be recovered in the built atlas. To make the anatomical structures
spatially smooth in the atlas, the anatomical feature constraints on group structure of representations and
also the overlapping of neighboring patches are imposed to ensure the anatomical consistency between
neighboring patches. The proposed method has been applied to 73 neonatal MR images with poor spatial
resolution and low tissue contrast, for constructing a neonatal brain atlas with sharp anatomical details.
Experimental results demonstrate that the proposed method can significantly enhance the quality of the
constructed atlas by discovering more anatomical details especially in the highly convoluted cortical
regions. The resulting atlas demonstrates superior performance of our atlas when applied to spatially
normalizing three different neonatal datasets, compared with other start-of-the-art neonatal brain atlases.
Hum Brain Mapp 35:4663–4677, 2014. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Brain atlases are widely used in the medical image proc-
essing and analysis [Evans et al., 2012]. They generally con-
tain various features of brain structures and functions, such
as signal intensity, tissue probability, and structural labels.
Atlases could be used as a reference to normalize a popula-
tion, probability maps for guiding brain tissue segmenta-
tion, and label map for defining brain regions of interest
[Shi et al., 2011b]. In pediatric studies, atlases are especially
important, given that the neonatal/infant brain MR images
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often have lower signal-to-noise ratio and insufficient tissue
contrast, compared with the adult brain images [Fonov
et al., 2011; Gilmore et al., 2012; Shi et al., 2010; Wang
et al., 2011; Yap et al., 2011; Fan et al., 2011; Shi et al.,
2010]. As also pointed out in [Kuklisova-Murgasova et al.,
2010], informative atlases are the key to achieve accurate
segmentation for neonatal brain images.

Most atlases in early studies were constructed from a
single subject, e.g., Brodmann atlas [Brodmann, 1909],
Talairach and Tournoux atlas [1988], and MNI single sub-
ject atlas [Tzourio-Mazoyer et al., 2002]. One major limita-
tion is that the single-subject atlas is generally insufficient
to represent the anatomical variability of the entire popula-
tion. Such method may bias the image processing result
towards the specific anatomy of the individual subject
used as the atlas. Thus, the probabilistic atlas is proposed
and created as an average model to represent the
individual-independent anatomy from multiple subjects in
the population. Specifically, for constructing a probabilistic
atlas, it needs (1) an image registration step to normalize
all images in the population into a common space, and (2)
an atlas building step to fuse all aligned images together.
The major challenge is to retain the fine anatomical details
during the atlas construction process, which is often
affected by inconsistent image registrations, especially for
the highly convoluted cortical regions.

Many methods have been proposed to improve the qual-
ity of the constructed atlas, but with the main efforts placed
on the image registration step [Yang et al., 2008; Zacharaki
et al., 2008; Shen et al., 1999; Xue et al., 2006; Jia et al., 2010;
Tang et al., 2009; Yap et al., 2009]. The idea is that, if images
in the population can be well aligned, there will be less
structural discrepancies among the aligned images and
thus their average (i.e., atlas) will contain sharp anatomical
information. To this end, nonlinear image registration is
often adopted by employing a large number of deformation
parameters, which generally produces better performance
than the rigid (6 parameters) or affine (12 parameters) regis-
tration methods [Klein et al., 2009]. Many software pack-
ages are available for nonlinear image registration, such as
DARTEL [Ashburner, 2007], Diffeomorphic Demons [Ver-
cauteren et al., 2009], LDDMM [Miller et al., 2005], and
HAMMER [Shen and Davatzikos, 2002]. In particular, the
image registration step is often performed by first choosing
one image as a template and then nonlinearly registering all
other images to the selected template. This approach could
introduce bias, since the resulting atlas is generally opti-
mized to be similar with the selected template, which might
not represent the population well. As a result, the appear-
ances of the constructed atlas could vary significantly, espe-
cially when different initial templates are selected. To solve
this issue, groupwise registration is recently proposed to
avoid the selection of template by simultaneously register-
ing all individual images to a hidden common space. For
example, the classic groupwise registration method [Joshi
et al., 2004] alternates the step of registering images to the
tentatively-estimated group-mean image and the step of

averaging the tentatively-aligned images as the new group-
mean image. At the end of groupwise registration, all sub-
ject images are supposed to be aligned with the group-
mean image in the common space.

Pediatric atlases have been developed in many studies.
For example, Kuklisova-Murgasova et al. constructed atlases
for preterm born neonates, where all subjects were affine reg-
istered to a single reference subject [Kuklisova-Murgasova
et al., 2010]. To alleviate the critical registration issue, Serag
et al. improved the atlas construction method by using non-
rigid registration with a group-wise strategy [Serag et al.,
2012]. Oshi et al. also presented a neonatal brain atlas by
unweighted (i.e., equal) averaging of the subjects, which
have been normalized into the common space using group-
wise strategy, i.e., by performing affine registration, followed
by LDDMM based registration [Oishi et al., 2011]. However,
although the quality of all above atlases is improved with
the efforts on image registration step, the atlas building step
is less explored in the literature, where all the aligned images
are often equally treated, voxel by voxel, to build the atlas. It
is worth noting that some outlier images might have large
anatomical variability from the population, and thus the pro-
cedure of including all the images for atlas building may
lead to an atlas with reduced representativeness for the
majority of the population.

Recently, sparse representation method emerges as a
powerful tool for robustly representing high-dimensional
signals using a small set of elements in a dictionary [Zhang
et al., 2012]. This method was developed based on a simple
concept that the underlying representations of many real-
world images are often sparse. For example, Vinje and Gal-
lant found that the complex natural scenes can be efficiently
represented by a sparse code in biological vision processing
system [Vinje and Gallant, 2000]. In general, sparse repre-
sentation has several advantages over those conventional
unweighted or simply weighted averaging methods. First,
the input image can be represented as a linear combination
of a small number of elements in the dictionary, which may
avoid the outliers and improve the robustness of the repre-
sentation results. Second, the dictionary can be made over-
complete to augment the representation power. Super-
resolution image construction, as an important application
of sparse representation, is an active area of research in
computer vision, for recovering a high-resolution image
from one or more low-resolution images [Yang et al., 2010].
These successes motivate us to introduce the sparse repre-
sentation into neonatal/infant atlas construction for preserv-
ing finer anatomical details.

In this article, we propose a novel patch-based sparse
representation method with a specific focus on the atlas
building step for atlas construction. In our implementa-
tion, an atlas is constructed locally in a patch-by-patch
fashion to ensure the local representativeness, and the
neighboring patches are constrained to have similar repre-
sentations by using the group sparsity strategy. A prelimi-
nary version of the method has been presented in a
conference [Shi et al., 2012]. Here we extend it to include
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more descriptions of the method, novel anatomical fea-
tures to further improve the performance, as well as exten-
sive experiments to evaluate the proposed method. Please
refer to the following sections for more details of the
method and experiments.

METHOD

Overview

In this article, we consider the atlas construction as an
image representation problem, with the goal of generating
representative brain structures from a population of subject
images. To do this, as shown in Figure 1, we first align all
subject images onto a common space by employing a
recently-developed unbiased groupwise registration
method [Wu et al., 2012], and put our main efforts to intro-
duce the proposed atlas building step. Then, we construct
the atlas in a patch-by-patch fashion. Briefly, for a voxel in
the to-be-built atlas, a patch dictionary is adaptively con-
structed by including the patches of the underlying voxel
and its neighbors from all aligned subject images. Mean-
while, we select a number of patches from the dictionary,
namely the center patches, which have higher similarity
with the mean of patches in the dictionary. These center
patches are used to serve as the target to be sparsely repre-
sented by the dictionary simultaneously. Anatomical con-
straints and group sparsity are both introduced in the atlas
construction process to further ensure the representative-
ness and spatial smoothness of constructed structures.
Finally, brain atlas can be built by combining all the recon-
structed patches. In the following, details for unbiased
groupwise registration, patch-based representation, ana-
tomical features, and group regularization will be discussed
one by one.

Unbiased Groupwise Registration

All image were preprocessed with the standard proce-
dure which includes resampling, bias correction, skull
stripping [Shi et al., 2012], and tissue segmentation [Wang
et al., 2011]. The goal of image registration is to spatially
normalize all preprocessed subject images into a common
space, which is a necessary initial step for subsequent atlas
building. Unlike the pairwise registration methods in

which a template is always needed, groupwise registration
is free of template selection and is able to simultaneously
register all subject images onto the hidden common space.
Many groupwise registration methods have been devel-
oped in the past years [Joshi et al., 2004; Learned-Miller,
2006; Wu et al., 2012]. In this article, we employ a state-of-
the-art groupwise registration method [Wu et al., 2012] for
aligning the input images, by using its freely-available
software package at http://www.nitrc.org/projects/glirt.
Specifically, this groupwise registration method jointly
minimizes the overall image differences between each pair
of subject images in the population by using (1) attribute
vector as morphological signature of each voxel for guid-
ing accurate correspondence detection among all subject
images, and (2) a hierarchical process for selecting a small
number of key voxels (with distinctive attribute vectors) to
drive the deformation of other less distinctive points. In
this way, the groupwise registration performance is better
than the conventional group-mean based registration
method [Joshi et al., 2004], especially for the challenging
infant brain registration in our project.

Patch-Based Representation

We employ a patch-based representation technique for
atlas construction, due to two reasons. First, local anatomi-
cal structure could be better described in a small patch than
in a large brain region. Second, patch size can be optimized
to balance the local structure representativeness and global
structure consistency. We sample local cubic patches to
cover the whole brain image. Specifically, at a given voxel,
we can obtain patches piji51; . . . ;Nf g from all N aligned
images at the same location. Note that each patch is repre-
sented by a vector consisting of M5s3s3s features (i.e.,
intensities), where s is the size of patch at each dimension.

We consider that all local patches are highly correlated
and thus define their distance metric as 1 minus the Pearson
correlation coefficient [McShane et al., 2002]. The group cen-
ter of patches is approximated as the group mean of all
patches, i.e., 1

N

XN

i
pi. In this space of patches, some patches

may distribute near the group center, while others may dis-
tribute far away. Generally, patches near the group center
have more agreement in representing the population mean,
while patches far-away from the group center may be out-
liers and introduce anatomical discrepancies to degrade

Figure 1.

Flowchart of the proposed method. Inputs are the preprocessed individual images, and output is

a constructed atlas.
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the representativeness of the atlas. To this end, we select the
K ð� NÞ patches nearest to the group center, referred to as
reference patches and denoted as ykjk51; . . . ;Kf g. To formu-
late the atlas building (or the estimation of intrinsic group-
mean image) as a representation problem, for each to-be-
estimated patch in the atlas, we require it to represent the
common anatomical structure of all K reference patches
simultaneously. Note that, the patch will be similar to the
median patch when K51.

To achieve the above goal, we need to first build a dic-
tionary for each atlas patch under construction. An initial
dictionary can include all patches with same location in all
N aligned images as mentioned above, i.e., D5½p1; p2; . . . ;
pN�. To further overcome the possible registration error,
the initial dictionary is extended to include more patches
from the neighboring locations, thus providing a sufficient
number of elements for powerful representation. In this
application, we include 26 immediate neighboring loca-
tions. Thus, for each aligned image, we will take totally 27
patches; and from all N aligned images, we will include
totally N’5273N patches in the dictionary D.

Then, we can require the reconstructed atlas patch,
which is sparsely represented by the coefficient vector x
and the dictionary D, to be similar to all K reference
patches (denoted by ykjk51; . . . ;Kf g) that are the closest to

the group mean as mentioned above. This problem can be
formulated as the following minimization problem:

x̂5arg min
x>0

XK

k51

kDx2ykk2
21kkxk1

" #
(1)

where D 2 RM3N
0
, x 2 RN

0
31, yk 2 RM31, k � 0. The first

term measures the discrepancy between observation yk

and the reconstructed atlas patch Dx, and the second term
is L1 regularization on the coefficient vector x (also called
LASSO) [Tibshirani, 1996]. Sparsity is encouraged in x
under LASSO. k is a non-negative parameter controlling
the influence of the regularization term.

Anatomical Features for Structural

Representativeness

In the above atlas construction process, each patch contains
only intensity features. Using only the intensity measure for
patch similarity may be insufficient to deal with the highly
convoluted and variable cortex across individuals. It may also
lead to anatomical ambiguity in the built atlas. This issue is
well known as intensity uncertainty in image registration
[Stewart et al., 2004]. Thus, we propose to integrate anatomi-
cal features with intensity features to resolve this anatomical
ambiguity issue in the atlas building process.

Figure 2.

Illustration of the key sparse representation structures in Eq. (2). (A) A patch with dimension of

M031; (B) Dictionary with dimension of M03N0; (C) Group sparsity for 1 current patch and 6

neighboring patches; (D) The 2;1 constraint on the coefficient matrix with the size of N037.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Since gray matter (GM) and white matter (WM) are the
two main components of the brain, we employ the seg-
mented GM and WM maps as additional features [Wang
et al., 2011]. Specifically, each patch is now represented by a
vector consisting of M’533M features, which include inten-
sities, GM label map, and WM label map, as shown in Fig-
ure 2A. Similarity between patches is redefined as the
correlation between their respective intensity features, plus
also the correlations between their GM as well as WM fea-
tures. By doing so, the dictionary patches are now compar-
ing with the center patches for both intensity and tissue
information to generate a final atlas patch (Fig. 2B). Here,
the GM and WM segmentation maps could be the binary
maps or probabilistic maps, scaled to 0–255 as did in the
intensity images. Note that GM and WM maps are sepa-
rated, since a single segmentation map containing different
label values for GM and WM may lead to the interpolation
problem, e.g., averaging the label values of WM and back-
ground could lead to a value near the GM. In some situa-
tions, the anatomical features may be not available at certain
patches. For example, the patches at the cerebellum may not
have GM/WM segmentation results in some image process-
ing pipelines where tissue segmentation is only performed
on cerebrum [Wang et al., 2011]. In such cases, the intensity
feature will be primarily used for these patches.

Group Regularization on the Neighboring

Patches for Spatial Smoothness

Generally, neighboring patches should share similar rep-
resentations in order to achieve local structure consistency
for the constructed atlas. We refer the current patch and its
six immediate neighboring patches as a group. Specifically,
besides solving the representation task for the current patch,
we also consider simultaneously solving the representation
tasks for all six immediate neighboring patches, thus con-
straining the representation coefficients for the entire group
(Fig. 2C). To this end, group sparsity regularization, namely
group LASSO [Liu et al., 2009], is introduced.

Denote G57 as the total number of patches in the entire
group, and let Dj, yk;j, and xj denote the respective diction-

ary, observation variable, and coefficient vector of the jth
patch, respectively, with j51; 2; . . . ;G. For simplicity, we
use X5 x1; x2; . . . ; xG½ � as a matrix containing all column vec-
tors of sparse representation coefficients. Note that the
matrix can also be written in the form of row vectors

X5 u1; u2; . . . ; uN0
� �

, where ui is the ith row in the matrix X.

Then, we can reformulate the Eq. (1) into a group LASSO
problem as below:

x̂5arg min
x>0

XG

j51

XK

k51

kDjxj2yk;jk2
21kkXk2;1

2
4

3
5 (2)

where kXk2;15
XN

0

i51
kuik2. The first term is a multi-task

least square minimizer for all G neighboring atlas patches
under construction. The second term is for regularization.
kXk2;1 is a combination of both L2 and L1 norms, in which

the L2 norm is imposed to each row of the matrix X (i.e.,
ui) to make the neighboring atlas patches have similar spar-
sity patterns, while the L1 norm is imposed to the all rows
of the matrix to ensure the sparsity of representation by the
respective dictionary (reflected as the sum of kuik2) (Fig.
2D). In this way, the nearby patches will share the same
sparsity pattern in finding their respective representations.
The group LASSO in Eq. (2) can be solved efficiently by
using algorithm in [Liu et al., 2009]. The pseudo-code of the
proposed method is given in Algorithm 1.

It is worth indicating that the use of nonoverlapping
patches could result in steep gradient changes along patch
boundaries and also inconsistent structures across nearby
patches. To alleviate this issue, patches are overlapped in
atlas construction, and multiple estimations on each loca-
tion are averaged for obtaining the final atlas information.
Specifically, we sample patches in the whole brain by
moving the current patch for a half patch size at each
time. By doing so, each voxel is now included by multiple
patches. Then, by combining all the built overlapped atlas
patches together, the final atlas can be obtained.

Algorithm 1. Atlas Construction Using Patch-based
Sparse Representation

Input: N individual Images.
Output: Brain Atlas.
Initialization: All images are preprocessed, tissue-

segmented, and spatially normalized into a common
space using groupwise registration. Local cubic patches
are sampled to cover the whole brain image.

For each local patch:
1. Construct a vector for each patch in each individual

image, including intensity features and the tissue proba-
bility maps of GM and WM.

2. Compute a group mean for all N patches at this loca-
tion, and select K reference patches that are nearest to
the group mean.

3. Construct a dictionary D to include the current patch
and its 26 immediate neighboring patches.

4. Find a sparse coefficient vector x to represent the K ref-
erence patches simultaneously using the dictionary in
Eq. (2) for the current and neighboring patches using
group regularization.

5. Obtain the resulting atlas patch by multiplying the dic-
tionary (Dj) with the coefficient vector (x̂j) for the cur-
rent patch, e.g., Djx̂j.

End
Obtain the final atlas by averaging the multiple estima-
tions on each local patch.

EXPERIMENTAL RESULTS

Data for Atlas Construction

Neonatal data with low spatial resolution and tissue con-
trast was used in this study to demonstrate the
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performance of our detail-preserving atlas construction
method. Specifically, 73 healthy neonatal subjects (42 males
and 31 females) were recruited for atlas construction, which
were from a large prospective study of early brain develop-
ment in UNC [Gilmore et al., 2012]. Their MR images were
scanned at postnatal 24 6 10 (9–55) days on a Siemens
head-only 3T scanner. T2-weighted images were obtained
with 70 axial slices using turbo spin-echo (TSE) sequences
at a resolution of 1.25 3 1.25 3 1.95 mm3.

For preprocessing, all images were first resampled into 1
3 1 3 1 mm3. Bias correction was then performed on all
images with N3 method [Sled et al., 1998] to reduce the
impact of intensity inhomogeneity and thus improve the
performance of the subsequent image processing. Non-
brain tissues such as skull and dura were stripped with a
learning-based meta algorithm [Shi et al., 2012]. Finally,
brain tissues were segmented into gray matter (GM), white
matter (WM), and ventricular cerebrospinal fluid (CSF)
using a coupled level-set algorithm [Wang et al., 2011].

Parameter Setting

Since there is no ground-truth for the atlas construction,
we propose to tune the parameters of our algorithm by
measuring the capability of the resulting atlas in spatially
normalizing a neonatal population. If the constructed atlas
could well represent the anatomy of the population, after
alignment, the aligned population will have high struc-
tural agreement with each other.

We randomly selected 40 of the 73 images, and used them
to construct atlases with different parameter settings. The
rest 33 images were aligned to each resulting atlas by using
a two-step procedure, which includes an affine registration
using FLIRT in FSL [Jenkinson et al., 2002] and a nonlinear
deformable registration using Diffeomorphic Demons [Ver-
cauteren et al., 2009]. Registration parameters in Diffeomor-
phic Demons were conservatively set as 15 3 10 3 5 for
iterations in each of three resolutions, and 2.0 for the
strength of smoothing kernel for the deformation field.

Figure 3.

Parameter optimization in constructing infant brain atlas. Forty images were used to construct atlases

with different parameters, and 33 images were aligned to each of the constructed atlases. The structural

agreement of these aligned images was measured by the average Dice Ratio of GM, WM, and ventricu-

lar CSF. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Brain tissues, i.e., GM, WM, and CSF in segmented images,
were also aligned from individual images to the atlas space
by applying the same estimated deformation fields. We then
calculate the structural agreement between these aligned
images to evaluate the representativeness of the generated
atlas. To do that, we first generated a mean segmentation
image from the aligned population to represent the
population-level common structures, by voxel-wise majority
voting on the aligned segmentation images. Then, this mean
segmentation image was compared with each warped indi-
vidual segmentation image for measuring their structural
agreement, by means of Dice Ratio, also referred to as simi-
larity index: DR52jA\Bj=ðjAj1jBjÞ, where A and B are the
two segmentations, and DR ranges from 0 (for totally dis-
joint segmentations) to 1 (for identical segmentations). Note
that the structural agreement is not calculated between the
atlas and aligned images.

Parameter optimization was performed in an iterative
manner [Bach et al., 2012]. Specifically, one parameter was
optimized at each time, and when optimizing this parame-
ter, values for other parameters were fixed. Parameters
were considered as optimized when no change was found
on the iterative results. Figure 3 shows the average Dice

Ratio of GM, WM and ventricular CSF as a function of patch
size, number of center patches, and regularization parame-
ter k. If the patch size is too small, e.g., 2 3 2 3 2, the atlas
appears noisy. While if the patch size is too large, e.g., 20 3

20 3 20, its ability of local representation will be affected
and the resulting atlas will be blur. Similarly, if the number
of reference patches is too small, e.g., K52, the resulting
atlas can be easily affected by noise. Results are relatively
robust to the variations of regularization parameters.
According to these experimental results, we finally set the
parameters as below: patch size as 6 3 6 3 6, K510 for ref-
erence patches, and regularization parameter as k50:01.

Intermediate Results and Constructed Atlas

Comparison of four different atlas construction
methods

Figure 4 compares results obtained with four different
atlas construction methods. Top row shows the axial views
of the atlases constructed by methods of (a) direct averag-
ing of all images, (b) averaging of 10 center patches, (c)
sparse representation, and (d) sparse representation with

Figure 4.

Comparison of atlases built by four different construction methods. The atlases in (b–d) are

constructed in a patch-by-patch fashion. Steep gradient changes can be observed especially in (b)

at the boundaries of nonoverlapping cubic patches, as marked by red arrows. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]

r Neonatal Atlas Construction r

r 4669 r

http://wileyonlinelibrary.com


group constraint. Bottom row shows the close-up views of
the top-left part of each constructed brain atlas. As we can
see, the result obtained from the averaging of 10 center
patches (Fig. 4b) shows higher level of details than the
result from the direct averaging of all images (Fig. 4a),
while it still suffers from steep gradient changes along
patch boundaries (or boundary effect) and the inconsistent
intensities between neighboring patches. Better structural
consistency is observed in the result by sparse representa-
tion (Fig. 4c), and further enhanced in the result by using
group sparsity (Fig. 4d).

Importance of anatomical constraint

Anatomical information from GM and WM was
employed in our proposed atlas construction framework,
when defining the nearest patches and searching for the
sparse coefficients. This helps our algorithm to differenti-
ate brain structures so that similar brain structures would
be selected together into a more representative atlas. Fig-
ure 5 shows the atlases constructed using our proposed
method without/with the anatomical constraint. The inten-
sity images of the atlases demonstrate similar appearance,

while WM probability map of the proposed method is
much clear than that obtained without using anatomical
constraint. This indicates that WM is better delineated in
our construction of each atlas patch.

Influence of the number of training subjects

A question is that how the atlas quality changes as a func-
tion of the number of training subjects in this sparse repre-
sentation process. To explore this, we repeated the atlas
construction process by randomly selecting 10 to 73 sub-
jects. Figure 6 shows the close-up views of intensity images
and WM maps of the two representative brain regions. As
we can see, results are more affected by registration errors
and noise when a small number of subjects were used and
thus appear blurry. With the increase of the number of sub-
jects, a clearer pattern of brain anatomy is obtained. In this
work, we used all the 73 subjects in atlas construction.

Atlas constructed using all subjects

The atlas constructed using all 73 subjects is shown in
Figure 7. From top to bottom are the intensity template,

Figure 5.

Comparison of atlas construction results by the averaging method and our proposed method

without/with anatomical constraint. Top row is the intensity images from the constructed atlases,

and the bottom row is WM probability maps.

r Shi et al. r

r 4670 r



and tissue probability maps of GM, WM, and CSF. From
left to right are the six representative axial slices. Note that
the complex brain structures, especially in the cortical
regions, can be clearly identified from the intensity tem-
plate, as well as the tissue probability maps.

Comparison with State-of-the-Art Atlases

Visual inspection

We evaluate the proposed atlas against other state-of-
the-art neonatal atlases constructed by different nonlinear
registration techniques. Kuklisova-Murgasova et al. created
longitudinal atlases for each week between 28.6 and 47.7
gestational weeks using 142 neonatal subjects [Kuklisova-
Murgasova et al., 2010], and we select their atlas of 41
weeks, referring here as Atlas-A. Oishi et al. constructed
an atlas using 25 brain images from neonates of 0–4 days
[Oishi et al., 2011], and we refer it as Atlas-B. Serag et al
[2012] also built longitudinal atlases using 204 premature
neonates between 26.7 to 44.3 gestational weeks, in which
we select the atlas of 41 weeks and refer here as Atlas-C.
An averaging atlas was also used for comparison, which
was constructed by simply averaging our aligned 73 neo-

nate images. Since median is considered as a more robust
average over the arithmetic mean [Reuter et al., 2012; Wu
et al., 2011], we also generate a median atlas for compari-
son by selecting the median patches during the atlas con-
struction process. Of note, the Averaging and Median
methods were also computed on overlapping patches for
fair comparisons with the proposed method. Typical views
of these atlases are shown in Figure 8, and their demo-
graphic and image acquisition information are listed in
Table I. The proposed atlas, constructed from 73 neonates
using sparse representation with group constraints, estab-
lishes the highest level of details than any other neonatal
atlases. Note that, since the atlases (Atlas-A, Atlas-B, and
Atlas-C) were constructed from other datasets, their
shapes may seem different with ours (Averaging, Median,
and Proposed).

Quantitative evaluation

We evaluate the performance of our constructed atlas by
comparing with the above-described neonatal atlases, through
the task of spatially normalizing a neonatal population.

In particular, we employed three test datasets that cover
the high-to-low image resolution (Table II). Specifically,

Figure 6.

Comparison of atlas construction results with the use of different number of subjects (10 to 73).

Two representative brain regions were illustrated in (A) and (B), respectively.
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Figure 7.

Illustration of the neonatal atlas constructed from 73 subjects using the proposed method. From

top to bottom are the intensity atlas, and three tissue probability maps of GM, WM, and CSF.

Note that the cerebellum and brain stem are included in the intensity atlas (first row) but

excluded in the tissue probability maps [Wang et al., 2011].

Figure 8.

Comparison of neonatal atlases built by Kuklisova-Murgasova et al. [2010] (Atlas-A), Oishi et al.

[2011] (Atlas-B), Serag et al. [2012] (Atlas-C), simple averaging (Averaging), patch-wise median

(Median), and our proposed method (Proposed) on the 73 aligned images. Similar slices were

selected from each of these six atlases for easy comparison.
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the test dataset 1 includes eight neonatal images, scanned
at postnatal 14 to 58 days on a 3T Siemens scanner with
dedicated phased array neonatal head coil [Shi et al.,
2011a]. T2 images were obtained with 87 axial slices at a
resolution of 1.00 3 1.00 3 1.30 mm3. The test dataset 2
includes 15 neonatal images, with similar scanning param-
eters to the data used for atlas construction. The test data-
set 3 was derived from the healthy neonatal subjects of the
online public National Database for Autism Research
(NDAR, http://ndar.nih.gov/) [Hall et al., 2012]. Totally
12 subjects were selected with images scanned at postnatal
age of 8 to 21 days. T2 images were obtained with 39 axial
slices at a resolution of 0.98 3 0.98 3 3.00 mm3. Figure 9
shows the axial slices of six randomly selected subjects
from each test dataset.

To quantitatively evaluate our atlas, we also design an
experiment to spatially normalize a population of new
neonatal images by separately using each of the six atlases
shown in Figure 8 as template. In this experiment, we use
the three test datasets as detailed above, which are inde-
pendent of the data used for atlas construction. All images
were aligned to each of the six atlases by using first an
affine registration with FLIRT in FSL [Jenkinson et al.,
2002] and then a nonlinear deformable registration with
Diffeomorphic Demons [Vercauteren et al., 2009]. As
detailed in the parameter setting subsection, we employ
registration parameters of 15 3 10 3 5 for multiscale itera-
tions and 2.0 for the strength of smoothing kernel. Simi-
larly, a mean segmentation image is voted from all
individual segmentation images of the aligned testing
data, and then compared with each of those individual
segmentation images for measuring the mean structural
agreement by Dice Ratio.

Statistical analysis results are shown in Figure 10. As
can be observed, the atlas constructed by the proposed
method outperforms all other atlases in aligning GM and
WM tissues (P< 0.01 by two-sample t-tests) in all three
test datasets. For ventricular CSF, the atlas constructed by
the proposed method also has better performance than all
other methods in the test datasets 2 and 3, except in the
test dataset 1 where no significant difference was found.

Computational Time

The program runs under the MATLAB environment on
a standard PC using a single thread of an InterVR XeonVR

CPU (E5630 1.6 GHz). It takes about 5 h using the selected
parameters to process 73 images with the voxel resolution
of 1 3 1 3 1 mm3. Note that the atlas construction is per-
formed independently on each patch, thus could be paral-
lelized for saving the computational time on a computer
cluster.

DISCUSSION

We have presented a novel patch-based sparse represen-
tation method for atlas construction, with application to
the neonatal images. Our contributions are threefold: (1)
the atlas is constructed in a patch-by-patch fashion, captur-
ing the regionally varying anatomical structures; (2) each
patch is sparsely and adaptively represented from an
adaptive over-complete dictionary, promoting the local
representativeness; (3) anatomical constraint and group
sparsity are adopted for better structural matching and
spatial consistency. To the best of our knowledge, the

TABLE I. Demographic and T2 image resolution of the neonatal subjects used for atlas construction in the compari-

son methods

Atlas No. subjects Age at MRI scanninga MR strength Image resolution (mm3)

Atlas-A 142 (70 m/72 f) 28.6–47.7 weeks (GA) 3T 0.86 3 0.86 3 1.00
Atlas-B 25 (15 m/10 f) 0–4 days (PA) 3T 1.88 3 1.88 3 1.88
Atlas-C 204b 26.7–44.3 weeks (GA) 3T 1.15 3 1.18 3 2.00
Averaging/median/proposed 73 (42 m/31 f) 9–55 days (PA) 3T 1.25 3 1.25 3 1.95

aGA means gestational age, and PA means postnatal age.
bGender information was not provided.

TABLE II. Demographic and T2 image resolution of the neonatal subjects used in each dataset

Number MR strength
Postnatal age at

MRI scanning (days) Image resolution (mm3)

Data for atlas construction 73 (42 m/31 f) 3 T 24 6 10 (9–55) 1.25 3 1.25 3 1.95
Test dataset 1—high resolution 8 (5 m/3 f) 3 T 24 6 14 (14–58) 1.00x1.00x1.30
Test dataset 2—normal resolution 15 (8 m/7 f) 3 T 26 6 6 (14–35) 1.25 3 1.25 3 1.95
Test dataset 3—low resolution 12 (5 m/7 f) 1.5 T 16 6 3 (8–21) 0.98 3 0.98 3 3.00
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present work is the first of exploring the usage of sparse
representation for atlas construction. Experimental results
demonstrated that the proposed approach can retain more
anatomical details in the constructed neonatal atlas, and
the resulting atlas has better abilities for guiding spatial
normalization than other three state-of-the-art neonatal
atlases, as well as the atlases built with simple averaging
or median on our own aligned neonatal data.

It is worth noting that our method is flexible enough to
be incorporated with any registration algorithms for fur-
ther improving the quality of the constructed atlas. Also,
our method can be potentially used in any dataset where
the atlas quality is affected by large local inter-subject
structural variability, low image resolution, or insufficient
tissue contrast, such as in lung images [Li et al., 2012],
prostate images [Klein et al., 2008], and mouse brain
images [Chuang et al., 2011].

In the application of normalizing a population into a
common space, we expect that the atlas would have high
representativeness if the aligned population has high
structural agreements [Avants et al., 2010; Klein et al.,
2010; Shi et al., 2011b]. Note that the requirement of atlas

representativeness largely depends on the accuracy of
registration methods [Yeo et al., 2008]. In early studies,
affine or low degree-of-freedom nonlinear registrations are
widely used, where the atlas is generally blurry for han-
dling the large amount of inter-subject structural variabili-
ty after rough alignment [Ashburner and Friston, 2009;
Mazziotta et al., 1995]. As the development of advanced
high degree-of-freedom nonlinear registration methods
[Klein et al., 2009; Wu et al., 2012], atlas is required to
have richer local structural details to be better aligned
with individual images. For example, as reviewed in
[Evans et al., 2012], although the Colin27 T1 atlas is con-
structed on a single brain with moderated smoothness
(averaged from 27 scans), it is widely used by the commu-
nity for its detailed definition of brain structures. Mean-
while, averaging from 152 subjects, the MNI152 atlas is
reproduced recently by using an advanced nonlinear regis-
tration method. The resulting atlas is believed having com-
parable details with the Colin27 atlas with the persevered
group representativeness [Evans et al., 2012]. In this arti-
cle, we proposed a data-driven method to preserve the
local anatomical details from small patches in the process

Figure 9.

Axial views for the six randomly selected subjects in each of four neonatal datasets. Note that

the images in top row were already aligned together and used as the input to our atlas construc-

tion method, while images in other three rows are displayed in their native spaces, used for

quantitative evaluation.
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of atlas construction, and experimental results also demon-
strated that our atlas achieved better representativeness
than other comparison atlases in normalizing the three test
datasets with different voxel resolutions.

Our library includes the current patch and its 26 imme-
diate neighbors from all the training subjects. This search
neighborhood (3 x 3 x 3) could be enlarged to allow the
library for including more neighboring patches, thus lead-
ing to potentially a higher representation power. As a
trade-off, this will unfortunately increase the computa-
tional load dramatically. A pre-screening of patches may
be effective to reduce the library size and improve the

computational efficiency, as employed in non-local patch
studies [Coup�e et al., 2011]. We will explore this in the
future work. Meanwhile, recent studies proposed that
multiple atlases might be a better solution to represent the
diversity of data distribution [Blezek and Miller, 2007]. For
example, in some applications, subjects were directly used
as individual atlases to propagate their label information
to a new subject [Gousias et al., 2008; Weisenfeld and War-
field, 2009]. Sabuncu et al. [2009] further extended this
idea by generating multiple atlases from the population
with a data-driven method, which equips these atlases
with better subgroup representativeness. Thus, the

Figure 10.

Box plot of the Dice Ratio for the proposed atlas, as well as

each of other five comparison atlases. Red lines in the boxes

denote the medians, whereas boxes extend to the lower- and

upper-quartile values (i.e., 25% and 75%). Whiskers extend to

the minimum and maximum values in one-and-a-half interquartile

range. Points beyond this range are the potential outliers and

thus marked by red “1” symbols. Note that the ventricular CSF

was obtained by applying a topological mask [Shi et al., 2011a].

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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proposed method could also be used in the application of
multi-atlases construction, after defining subgroups from
the entire population. This will be definitely our future
work.

In our previous work, we constructed a neonatal brain
atlas from 95 subjects by using a nonlinear group-wise
registration method [Shi et al., 2011b]. The method used
for constructing atlas is the simple averaging as described
above (Fig. 8), thus obtaining similar atlas as provided in
Figure 8 (for simple averaging). Our proposed method in
this article provides a finer atlas than that obtained
with simple averaging, as demonstrated by both visual
inspection and quantitative measurements in the above.
We will release our constructed neonatal atlases as we
did before (http://www.med.unc.edu/bric/ideagroup/
free-softwares).
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