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Abstract

The Gulf-Coast tick, Amblyomma maculatum, possesses an elaborate set of selenoprotein, which

prevent the deleterious effects from oxidative stress that occur during feeding. In the current work,

we examined the role of Selenoprotein K (SelK) and Selenoprotein M (SelM) in feeding A.

maculatum by bioinformatics, transcriptional gene expression, RNA interference and antioxidant

assays. The transcriptional expression of SelK does not vary significantly in salivary glands or

midguts throughout the blood meal. However, there is a 58-fold increase in transcript levels of

SelM in tick midguts. Ticks injected with selK-dsRNA or selM-dsRNA did not reveal any

observable differences in egg viability but oviposition was reduced. Surprisingly, salivary

antioxidant activity was higher in selenoprotein knockouts compared to controls, which is likely

due to compensatory transcriptional expression of genes involved in combating reactive oxygen

species. In fact, RT-qPCR data suggest the transcriptional expression of catalase increased in ticks

injected with selM-dsRNA. Additionally, the transcriptional expression of selN decreased ~90% in

both SelK/SelM knockdowns.
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Introduction

Ticks are obligate ectoparasites and imbibe a huge volume of blood, equivalent to

approximately 100 times their unfed weight which requires the tick to concentrate the blood

meal and subsequently regurgitate excess fluid (Bezuidenhout 1987; Brown 1988). In fact,

ticks transmit the greatest variety of pathogens, second only to mosquitoes in terms of

impact on human health. The Gulf-Coast Tick, Amblyomma maculatum, harbors Rickettsia

parkeri which can cause a mild, febrile illness similar to Rocky Mountain spotted fever

(Paddock et al. 2004). Pathogen transmission is enhanced by tick saliva, a remarkably
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complex mélange including anti-inflammatory proteins, anticoagulants, antihistamines,

lectins, and cement proteins which are critical for prolonged attachment to the host

(Munderloh et al. 2005). Ticks encode a number of antioxidants, to cope with the host

defense system, for the digestion of heme, or to counteract reactive oxygen species.

Reactive oxygen species (ROS) are produced by many cellular processes and enzymes such

as mitochondrial oxidative phosphorylation, NADH/NADPH oxidase, P-450

monooxygenase, lipoxygenase, cyclooxygenase, xanthine oxidase and are primarily

mitigated by selenoproteins (Reeves and Hoffmann 2009). Glutathione peroxidases (GPx)

detoxify lipid peroxides using reduced glutathione as an electron donor (Das et al. 2001)

while thioredoxin reductase (TrxR) is responsible for regenerating the reduced thioredoxin

using NADPH as an electron donor (Sandalova et al. 2001). Thioredoxin is used by several

enzymes in dithiol-disulfide exchange reactions. Selenoproteins are present in bacteria,

archaea, and eukaryotes, and exhibit a diverse pattern of localization and expression

(Kryukov et al. 2003). The number of selenoproteins varies widely, from 10–57 in algae,

30–37 in fish, and 23–25 in mammals, but are not universal, particularly so in arthropods

(Lobanov et al. 2009; Mariotti et al. 2012). Some insect species possess cysteine-containing

homologs or may lack selenoproteins altogether, such as thioredoxin reductase and

glutathione peroxidases, which are essential in mammalian systems (Shchedrina et al.

2011b). The reduction in selenoproteins can in part be attributed to the simplicity in the

conversion of a Sec to a Cys codon, which requires only a single point mutation (Mariotti et

al. 2012). Recent studies have shown that at least five insect species do not contain the

cellular machinery to incorporate selenocysteine into selenoproteins: Tribolium castaneum,

Bombyx mori, Drosophila willistoni, Apis mellifera and Nasonia vitripennis (Chapple and

Guigo 2008; Lobanov et al. 2008). Moreover, the role of selenoproteins in Drosophila does

not appear to be critical for lifespan or oxidative stress defense (Hirosawa-Takamori et al.

2004).

Tick selenoproteins have been barely investigated, but there is evidence that suggests they

may play critical roles in the pathogen cycle. Glutathione peroxidase (Salp25D) in Ixodes

scapularis saliva plays its well-characterized role in the peroxide detoxification but also was

found to be important in the acquisition of Borrelia burgdorferi spirochetes from murine

hosts (Narasimhan et al. 2007). One study has shown that the expression of SelM is

upregulated in Dermocenter variabilis infected with Anaplasma marginale, and infection

levels in tick guts were reduced after the depletion of selM transcript (Kocan et al. 2009). In

the salivary glands of the hard tick Hyalomma asiaticum asiaticum, Hyalomin–A and –B

were found to suppress host inflammatory responses by modulating cytokine secretion and

detoxifying reactive oxygen species (Wu et al. 2010).

Our laboratory is investigating the impact of antioxidants within the framework of tick

feeding, oviposition, and R. parkeri acquisition, maintenance, trafficking, and transmission

(Adamson et al., 2013). SelM and SelK represent two interesting candidates for further

study. As previously mentioned, SelM has been previously shown to respond to pathogen

infection in D. variabilis (Kocan et al. 2009). SelK is an ER membrane protein important for

Ca2+ influx during the activation of immune cells and has also recently been shown to be a

target for m-calpain, a calcium-activated cysteine protease which regulates inflammation
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and immune responses (Huang et al. 2011; Verma et al. 2011). Determining the cellular role

within pathogen-free ticks will contribute to their impact of antioxidants and lay the

groundwork for future studies in R. parkeri-infected ticks.

In this preliminary study, we examined the cellular function of SelK and SelM in A.

maculatum using RNA interference. It is apparent that selenoproteins K or M are not

essential to feeding, vitellogenesis or fecundity, but egg masses were smaller. The

transcriptional expression of catalase increased in the SelM knockdown, while the

transcriptional expression of SelN decreased in both SelK and SelM knockdowns.

Antioxidant assays using saliva collected from gene knockdown ticks demonstrate higher

levels of antioxidant activity than in controls. Taken together, these data suggest that a

robust compensatory mechanism exists in ticks to overcome selenoprotein deficiency.

Results and Discussion

Bioinformatic analysis

SelK belongs to the DUF2763 superfamily with no known function. SelK homologs of

AmSelK were initially identified by BLASTP analysis of the non-redundant protein

database yielding 28 initial hits with an E-value <1E−6 (Altschul et al. 1990). SelM belongs

to the Sep15/SelM superfamily which contains a thioredoxin-like domain and a surface

accessible active site redox motif. This suggests that SelM functions as a thiol-disulfide

isomerase involved in disulfide bond formation in the endoplasmic reticulum (Ferguson et

al. 2006). SelM homologs of AmSelM identified by BLASTP analysis of the non-redundant

protein database yielded 35 initial hits with an E-value <1E−6.

The homology of SelK and SelM, and other representative vertebrate and invertebrate

species deduced amino acid sequences was explored by multiple sequence alignment and

phylogeny. Like other representative sequences, tick SelK sequences are not predicted to be

secreted and are predicted to contain a membrane-spanning region by the DAS

transmembrane prediction server (Cserzo et al. 2004; Cserzo et al. 1997). This data is in

agreement with previous reports suggesting that SelK is a transmembrane protein localized

to the ER (Du et al. 2010). Similar to other sequences, tick SelK possesses a selenocysteine

residue encoded in the C-terminus (Fig. 1). Tick SelK sequences share 77% amino acid

identity with each other but share slightly higher amino acid identity to H. sapiens (38–40%)

than to D. melanogaster SelK sequences (30–32%) (Fig. 1). Arthropod and higher-order

vertebrate SelK sequences were well separated in the dendrogram, with the tick SelK

sequences more similar to higher-order vertebrate sequences than to other arthropods (Fig.

3).

Tick SelM sequences are predicted to have a signal peptide, targeting the protein for

secretion, which is similar to all other orthologs studied. Tick SelM sequences share only

47% amino acid identity to each other and 28–35% identity with SelM from H. sapiens (Fig.

2), and in all examined cases, the selM gene encodes a selenocysteine residue in the N-

terminal region of the mature protein. SelM sequences were more closely related to higher-

order vertebrate SelM sequences than to other arthropods (Fig. 4).
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In both cases, the tick SelK and SelM sequences had considerable evolutionary divergence

from cysteine-containing homologs present in many of the insects (Figs. 3 and 4). These

data suggest strongly suggest that conservation of the selenocysteine residue is important in

at least these two tick species. This may be related to the higher chemical reactivity of

selenocysteine residues compared to their cysteine homologs. Selenocysteine and cysteine

are identical amino acids, except for a single atom (Se vs. S), but, selenium has a much

lower pKa (5.2 vs 8.3) and higher reactivity, which explains why selenoproteins possess

~100-fold higher catalytic efficiency than their cysteine-containing homologs (Reeves and

Hoffmann 2009).

Transcriptional expression throughout the blood meal

Quantitative RT-PCR was employed to investigate the transcriptional expression of SelK

and SelM in tick midguts and salivary glands throughout the blood meal and these values are

compared to levels observed in unfed ticks. In salivary glands, the transcriptional expression

of SelK slowly decreased throughout the blood meal, with highest levels observed in unfed

ticks, dropping to 55% of the levels observed in unfed ticks at 216hr post-infestation (Fig.

5). The transcriptional expression of SelK is considerably more dynamic in midguts, where

it increases three-fold compared to unfed ticks, peaking at 48hr after the onset of blood

feeding, but remaining high throughout the blood meal (Fig. 5). Previous studies have

shown that the human SelK gene contains a functional ER stress response element and its

expression was up-regulated by conditions that induce the accumulation of misfolded

proteins (Du et al. 2010). Moreover, SelK co-precipitated p97 ATPases, Derlins, and SelS,

which are part of the ER-associated degradation (Shchedrina et al. 2011a). This suggests that

if this ER stress response element is present in the tick SelK gene then it may operate to

prevent the accumulation of misfolded proteins resulting from ER-derived oxidative stress in

feeding tick salivary glands (Malhotra and Kaufman 2007).

The transcriptional expression of SelM in salivary glands increased to 2-fold higher than

unfed ticks by 36hr post-infestation, and then sharply dropped off to 35% of the levels

observed in unfed ticks by 216hr post-infestation (Fig. 5). Surprisingly, very little SelM

transcriptional activity was observed in unfed tick midguts, and once blood feeding

commenced, the transcriptional expression rose 59-fold and but fell to similar levels

observed in unfed tick midguts (Fig. 5). The function of SelM is not yet clear, but a related

selenoprotein protein, Sep15, shares 31% sequence identity. Both SelM and Sep15 have an

α-/β-fold with a central β-sheet surrounded by α-helices, which is typical of thioredoxin-like

proteins (Ferguson et al. 2006). They also both undergo conformational changes after thiol-

disulfide exchange and have sequence homology to protein disulfide isomerases, which

suggest that these two proteins function as thiol-disulfide oxidoreductases (Ferguson et al.

2006). Sep15 associates with UDP glucose:glycoprotein glucosyltransferase (UGTR) in the

ER, which is involved in the quality control of protein folding, and it is possible that SelM

functions in a similar manner, though data is still lacking to support this (Korotkov et al.

2001; Labunskyy et al. 2005). The rapid rise in the transcriptional expression of SelM within

48-hours post-infestation, suggests that events occurring while the tick is feeding places a

large burden on protein synthesis and protein folding machinery.
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RNA interference

Injecting selK or selM into the body of A. maculatum adult female ticks were reduced by

99% of the transcript in salivary glands sampled at seven days post-infestation, compared to

gfp-dsRNA control (Fig. 6). Oviposition was reduced and eggs were somewhat brown in

color (Fig. 7), which is consistent with previous studies demonstrating that oxidative stress

reduced egg-laying in Rhipicephalus microplus (Citelli et al. 2007). No differences in

hatching rate were noted between control and experimental groups. Similarly, the depletion

of catalase and a corresponding increase in reactive oxygen species was shown to reduce the

fecundity of phlebotomine sand flies, Lutzomyia longipalpis (Diaz-Albiter et al. 2011).

Taken together, these data suggest that tick antioxidants could be important prior to

embryogenesis, possibly by ameliorating the harmful effects of heme digestion, which

would otherwise reach cytotoxic levels in the feeding tick (Citelli et al. 2007; Graca-Souza

et al. 2006).

Tick saliva was collected from selenoprotein knockdowns and assayed for total antioxidant

capacity to determine the potential role in SelK and SelM in maintaining low levels of

cellular reactive oxygen species. Saliva collected from SelM knockdown ticks had 324% of

the total antioxidant capacity when normalized to mock-injected ticks (Fig. 8). Saliva

collected from SelK-knockdown ticks had 195% of the total antioxidant capacity when

normalized to mock-injected ticks (Fig. 8), which is somewhat surprising since SelK has no

predicted secretory peptide and was not expected to substantially affect antioxidant levels in

tick saliva (Du et al. 2010; Shchedrina et al. 2011a). It has previously been reported that

there is some degree of functional redundancy for selenoproteins, and therefore, abolishing

the transcript of one selenoprotein may be overcome by expression of other antioxidants

(Makarova et al. 1999; Rederstorff et al. 2011; Verma et al. 2011; Wirth et al. 2010).

Selenoprotein transcriptional expression in knockdowns

Due to the possible compensatory transcriptional activation of other selenoproteins, we

determined the transcriptional expression of other selenoproteins/antioxidants in the

knockdowns. The transcriptional expression of selN decreased 82% and 89% in SelK-

dsRNA and SelM-dsRNA knockouts, respectively (Fig. 9; p≤0.05). The transcriptional

expression of SelO, SelS, SelT, SelX, GPx (Salp25d), GSHR and TrxR did not significantly

change in the SelM or SelK knockouts. The transcriptional expression of catalase increased

almost three-fold in the SelM knockdown, suggesting the catalase may exhibit some

functional redundancy with SelM. The transcriptional expression of catalase increased

almost two-fold in the SelK knockdown, but was slightly (5%) below the defined target of

statistical significance, which requires a two-fold change in expression. It is noteworthy that

the transcriptional expression of catalase would be affected in the SelM/SelK knockdowns,

since catalase is a peroxisomal enzyme, whereas SelK and SelM reside in the endoplasmic

reticulum (along with SelI, SelS, Sep15, SelN, GPx, TrxR) (Arbogast and Ferreiro 2010), in

which we do not observe any transcriptional up regulation.

The presence of off-target effects is a central concern in the application of RNAi. This

phenomenon originates from changes in genes expression from 1) genes that are affected by

cellular machinery to fight viral infection and 2) genes that are unintended targets as a result
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of the use of long double stranded RNA (Lew-Tabor et al. 2011). This is particularly true,

when the complete genomic information is lacking, such as for A. maculatum, which would

otherwise facilitate the design of dsRNA fragment which do not impact the expression of

other genes. In RNAi, the use of an irrelevant gene (such as GFP) can be used to control for

any changes in gene expression that might result from induction of tick antiviral genes.

Second, using shorter dsRNA (100–200bp in length) has been shown to limit the influence

of off-target effects (Lew-Tabor et al. 2011). In this assay, we used RT-qPCR amplicons

which are the ideal length for RNAi applications.

Taken collaboratively, these data indicate an elegant relationship between ER-residing

selenoproteins. The functional activity of both SelK and SelM has been proposed to prevent

the accumulation of misfolded proteins in the ER. The precise function of SelK has not been

determined but it associates with proteins involved in the elimination of misfolded proteins

from the ER (Du et al. 2010; Shchedrina et al. 2011a). Selenoprotein M very likely functions

as a thiol-disulfide oxidoreductase, due to the presence of a thioredoxin-fold and

conformational changes after thiol-disulfide exchange, as well as sequence homology to

protein disulfide isomerases (Ferguson et al. 2006; Reeves and Hoffmann 2009). Although

direct evidence in vivo is currently not available, SelM has been suggested to play a role in

protein-folding in the ER (Labunskyy et al. 2005). There are several reports showing the

transcriptional induction of selK or selM under conditions which cause ER stress (Du et al.

2010; Hwang et al. 2008; Labunskyy et al. 2005; Reeves and Hoffmann 2009; Shchedrina et

al. 2011a).

The downregulation of SelN in both SelK- and SelM-dsRNA injected ticks is surprising.

There are no shared sequence regions between SelN and SelK/SelM, which suggests that the

downregulation of SelN is a genuine biological response perhaps even a feedback system,

and not simply an off-target effect of SelM/SelK knockdown. It has previously been

suggested that SelN may limit ER damage against ROS by regulating protein maturation,

folding, trafficking, or stability, as with SelK and SelM, but evidence for this function has

yet to be provided (Castets et al. 2012). In muscle tissue, SelN is physically associated with

ryanodine receptor, a calcium channel involved in muscle excitation/contraction (Jurynec et

al. 2008; Rederstorff et al. 2011). Most interestingly, the sensitivity of the ryanodine

receptor to oxidative stress was drastically reduced in SelN-deficient zebrafish mutants and

patient biopsies (Arbogast and Ferreiro 2010; Castets et al. 2012; Rederstorff et al. 2011).

Perhaps the decrease in SelM and SelK resulted in a redox imbalance in the ER, and

therefore transcriptional downregulation of selN (Fig. 9) may prevent Ca2+ overload, leading

to further oxidative stress through the activation of calcium-dependent oxidant sources (Klee

and Means 2002). This could, in part, explain the relatively high levels of salivary

antioxidant capacity in the SelK/SelM knockdowns (Fig. 8).

Taken together, these results suggest that antioxidant defense functions of SelK and SelM

known in other species may be extended to include ticks. The elevated levels of total

antioxidant activity in saliva of knockdown ticks suggest that a strong compensatory

mechanism for maintaining antioxidant activity exists within tick salivary glands. The

changes in egg masses of knockdown ticks compared to controls suggest that oviposition or

vitellogenesis were impacted by the deficiency in these two selenoproteins, despite the fact
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that saliva of knockdown ticks had higher antioxidant activity. Future research should focus

on elucidating a definitive role of these selenoproteins in many tick species. Further research

should evaluate mechanisms by which these genes contribute to feeding and pathogen

transmission.

Implications for future tick research

One of the underlying goals of tick research is the development of an anti-tick vaccine,

which requires the identification of suitable targets for vaccination. Several antigenic targets

have been evaluated including OspA, Bm86, Bm91, longistatin, sialostatin L2, Salp25d and

others (Anisuzzaman et al. 2012; Ben Said et al. 2012; Fikrig et al. 1992; Kotsyfakis et al.

2006; Lambertz et al. 2012; Maritz-Olivier et al. 2012; Narasimhan et al. 2007), and

although these vaccine candidates do provide partial protection, these targets are not ideal.

Several problems have arisen including differences in cross-species protection which may

vary significantly or have yet to be evaluated or they lack of sufficient protection for

subsequent commercialization. Antioxidant enzymes might be one potential avenue to be

further explored in tick vaccination studies.

Interestingly, antioxidant enzymes are the currently being evaluated for their usefulness in

developing antiparasitic drugs and as antiparasitic vaccines (Pal and Bandyopadhyay 2012;

Prince et al. 2013). A variety of inhibitors have been designed that target glutathione

reductase or thioredoxin reductase from Plasmodium falciparum have shown marked

antimalarial activity (Pal and Bandyopadhyay 2012), which underscores the central role of

the parasitic antioxidant system to its survival. Moreover, there are several examples were

antioxidant enzymes have proven to be useful vaccination targets. Protective immunity was

induced against Schistosoma mansoni, after a single dose of SmGST recombinant antigen

(Grezel et al. 1993). Similarly, mice had some protection against Brugia malayi when

immunized a DNA vaccine cocktail which included thioredoxin peroxidase (Anand et al.

2008; Vanam et al. 2009). Interestingly, there was a noted synergistic protective response

when mice immunized both Wuchereria bancrofti thioredoxin and thioredoxin peroxidase in

an experimental filarial model when challenged with B. malayi larvae (Prince et al. 2013). A

similar synergistic protective effect was noted in mice immunized against Helicobacter

pylori superoxide dismutase, catalase, and thioredoxin peroxidase (Stent et al. 2012).

The syngergistic effects in vaccination is probably due to the fact that defects in multiple

antioxidant enzymes result in additive sensitivity to oxidative stress (Olczak et al. 2002).

This work clearly shows that ticks contain a robust secretory antioxidant system, capable of

compensating for a single knockdown, given the lack of a significant phenotype. Moving

forward, any tick antioxidant antigens should target multiple antioxidant enzymes to more

completely affect the vector antioxidant system.

Experimental Procedures

Ticks and animals

Amblyomma maculatum ticks were reared at the University of Southern Mississippi

according to established methods (Patrick and Hair 1975). Unfed ticks were maintained at
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room temperature and 90% relative humidity under 14/10-hour light/dark photoperiod

before being placed on sheep (Karim et al. 2002). Briefly, six cells are placed on the back of

a shaved sheep, and 40 female and 40 male A. maculatum ticks per cell are placed on the

animal’s back (Villarreal et al. 2013). For RNAi studies, 45 ticks are injected with dsRNA,

allowed to heal overnight, and forty of the surviving ticks were placed on the animal.

Experimental groups and controls were placed on the same animal to eliminate inter-animal

variation in feeding success. For transcriptional studies, ticks were allowed to feed, and

approximately 5 ticks were removed from the host at regular intervals throughout the blood

meal, and the tick tissues were stored in RNAlater (Invitrogen) after dissection. A.

maculatum salivary glands were dissected from the ticks within 4 hours of being removed

from the host. Adult ticks were fed specifically for this study and all animal studies were

performed in accordance with protocols #10042001 and #08110401 approved by the

Institutional Animal Care and Use Committee (IACUC) at the University of Southern

Mississippi.

Bioinformatics analyses

The full length genes from A. maculatum SelK (GenBank ID: JO843326) and SelM

(GenBank ID: JO842653) sequences were obtained from pyrosequencing an A. maculatum

salivary gland cDNA library (Karim 2011). Nucleotide sequences were conceptually

translated (SelK GenBank ID: AEO34943; SelM GenBank ID: AEO34270), initially aligned

using ClustalX2 (Thompson et al. 2002), refined by eye, and graphically presented using

Jalview 2.7 (Waterhouse et al. 2009). Phylogenetic relationships were inferred using MEGA

5 (Tamura et al. 2011). Protein secretion signals were identified using SignalP 4.1 (Bendtsen

et al. 2004; Petersen et al. 2011). Membrane spanning regions were identified using the DAS

transmembrane prediction server (Cserzo et al. 2004; Cserzo et al. 1997).

Tick dissection and saliva collection

Tick tissues were dissected in ice-cold 100 mM MOPS buffer, pH 6.8 containing 20 mM

EGTA. After removal, salivary glands and midguts were washed gently in the same ice-cold

buffer. The dissected tissues were used immediately after dissection or stored at −80°C in

0.5M PIPES, pH 6.8, containing 20 mM EGTA, protease inhibitor cocktail and 40%

glycerol. All other manipulations were carried out at 4°C. Tick saliva was collected as

described previously at seven days-post infestation (Ribeiro et al. 1992). Dopamine and

theophylline (1 mM each) in 20 mM MOPS buffered saline with 3% DMSO, pH 7.0 were

injected as a stimulant for salivation (Needham and Sauer 1979). The saliva was used

immediately after collection or stored at −80°C.

RNA preparation and cDNA synthesis

Total RNA was isolated from salivary glands and midguts dissected from unfed and

partially-fed adult female ticks using the illustra RNAspin Mini RNA isolation kit (GE

Healthcare). The concentration of total RNA was determined spectrophotometrically and

samples were aliquoted and stored at −80°C. RNA can spontaneously hydrolyze which can

affect the accuracy and reproducibility of results, therefore, cDNA synthesis was then

performed (within ~48 hours of RNA isolation). Sample RNA collected was collected seven
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days post-infestation to compare between SelM and SelK knockdowns with controls (as in

Figures 6 and 9) were stored at −80°C until cDNA synthesis could be completed (within 48

hrs). This procedure minimized the impact of differences in cDNA synthesis efficiency from

being introduced while minimizing the impact of RNA hydrolysis. Total RNA was reverse-

transcribed using Moloney Murine Leukemia Virus reverse transcriptase (Invitrogen)

according to the manufacturers’ protocol.

Reverse transcriptase quantitative PCR

Real-time PCR (RT-qPCR) was performed on a Bio-Rad C1000 Thermocycler fitted with

the CFX96 Realtime System for fluorescence detection. SYBR Green PCR Mix was

obtained from Fermentas and the manufacturer’s instructions were followed. Primer

sequences used for QRT-PCR are listed in Table 1 using A. maculatum cDNA. Prior to

experimental procedures, the PCR amplicon of each primer set listed in Table 1 was serially

diluted ten-fold (2×108–2×101 copies/μL) and used for standard curve preparation. The PCR

efficiency of each primer set was 90–110%, the Pearson correlation coefficient exceeded

0.995, and the PCR was linear over at least 5 orders of magnitude. Each 25 μL qPCR

reaction consisted of SYBR Green qPCR Master Mix (Fermentas), 50 ng of cDNA, and 150

nM gene specific primers. RT-qPCR were run under the following PCR protocol: 50°C for 3

minutes, 95°C for 10 minutes, followed by 35 cycles of 95°C for 15 seconds, 60°C for 30

seconds, 72°C for 30 seconds. The fluorescence was read after the final extension step.

Samples were run in triplicate with no-RT and no-template controls. Expression of each

selenoprotein candidate gene and the reference gene, actin, was used to calculate expression

values using the Bio-Rad data analysis software using the ΔΔCT. The actin gene is the most

suitable reference gene candidate for gene expression in A. maculatum and has previously

been validated (Browning et al. 2012). These values were then compared to levels observed

in unfed ticks for ease in comparison. A two-fold change in expression and a p-value of 0.05

were the threshold criteria for statistical significance in qRT-PCR assays and were

determined using the Bio-Rad CFX manager (version 6).

Synthesis of selenoprotein-dsRNA and microinjection

Selenoprotein RT-qPCR amplicons were joined to the T7 promoter linker using the Block-

iT T7 TOPO kit (Invitrogen). The TOPO linking reaction was used as a template for a PCR

reaction containing the T7 PCR primer and a gene-specific primer to produce sense and

antisense linear DNA template. After transcription, the sense and antisense ssRNA was

purified, annealed, and verified in size by agarose gel electrophoresis. To investigate the role

of selenoproteins in tick feeding success in vivo, 50 unfed female ticks were injected with

1000 ng of selM- or selK-dsRNA into the hemocoel using a Hamilton syringe fitted with a

33-gauge needle. After injection of dsRNA, ticks were kept at 37°C overnight under high

humidity to confirm tick survival, and then infested on a sheep (Karim and Adamson 2012).

Control ticks were injected with 1000 ng GFP-dsRNA, buffer (100 mM Tris-HCl, pH 8.0,

10 mM EDTA, pH 8.0, 1M NaCl) or were mock injected. Ticks were injected with an

irrelevant dsRNA (GFP) to control for off-target effects caused by RNAi (Lew-Tabor et al.

2011). Since the GFP gene is not present A. maculatum genome, this should establish if any

phenotype observed within the knockdown mutants results from unintended effects resulting

from the induction of antiviral machinery.
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RNA interference phenotype

Ticks injected with dsRNA were allowed to feed for seven days and were then removed to

collect saliva (pooled from 10 ticks) and tissues (5 ticks) for antioxidant assays and prepare

RNA to determine efficiency of gene knockdown or the impact on transcriptional gene

expression of antioxidant genes (15–20 ticks). Some of the ticks injected with dsRNA were

allowed to feed to repletion (10–12 days) and the size of the egg mass and hatching was

monitored (5 ticks). Gene knockdown was determined from pooled tick tissues.

Total Antioxidant Capacity

The total antioxidant capacity of pooled tick saliva and tick tissues was determined

according to the manufacturer’s protocol using QuantiChrome Antioxidant Assay Kit

(BioAssay Systems). Trolox was used as the antioxidant standard. Tissues and saliva were

collected from ticks seven days post-infestation. Soluble protein extracts from tick salivary

glands and midguts were prepared as previously described (Adamson et al. 2013). Saliva

collected from GFP-dsRNA injected ticks was the control.
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Figure 1.
The multiple sequence alignment of Selenoprotein K. The selenocysteine residue (U) is

highlighted in black.
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Figure 2.
The multiple sequence alignment of Selenoprotein M. The selenocysteine residue (U) is

highlighted in black. Selenoprotein M is predicted to have a signal peptide (highlighted dark

grey), targeting the protein for secretion.
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Figure 3.
The evolutionary history of Selenoprotein K was inferred using the Maximum Parsimony

method. The percentage of replicate trees in which the associated taxa clustered together in

the bootstrap test (1000 replicates) is shown next to the branches. Tick sequences are

indicated in bold and sequences denoted with asterisks are derived from species which lack

the capacity to synthesize selenoproteins and represent cysteine-containing homologs. Scale

bar represents amino acid substitutions per position.
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Figure 4.
The evolutionary history of Selenoprotein M was inferred using the Maximum Parsimony

method. The percentage of replicate trees in which the associated taxa clustered together in

the bootstrap test (1000 replicates) is shown next to the branches. Tick sequences are

indicated in bold and sequences denoted with asterisks are derived from species which lack

the capacity to synthesize selenoproteins and represent cysteine-containing homologs. Scale

bar represents amino acid substitutions per position.
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Figure 5.
The transcriptional gene expression of selK and selM in the salivary glands (top) and

midguts (bottom) of female A. maculatum ticks throughout the blood meal. The gene

expression of SelK and SelM was normalized to the unfed developmental stage using β-

Actin as a reference gene.
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Figure 6.
Quantitative PCR showing transcriptional expression of SelK and SelM in A. maculatum

salivary glands of control and SelM- or SelK-dsRNA and GFP-dsRNA (control) injected

ticks. Samples were obtained seven days post-infestation. Expression was normalized

against the β-Actin. Asterisks indicate a significant difference compared to control

(**p≤0.001).
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Figure 7.
Photographs of the oviposition of ticks injected with selenoprotein-dsRNA or control ticks.
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Figure 8.
The relative total antioxidant capacity was determined in extracts of tick tissues (top) and in

pooled saliva collected from ticks injected with selenoprotein-dsRNA compared to control

(GFP-dsRNA) (bottom) collected from tissue seven days post-infestation. Asterisks indicate

a significant difference compared to control (**p≤0.001). The total antioxidant capacity

within saliva of unfed ticks was not determined due to difficulties in collecting sufficient

saliva to perform experimentation.
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Figure 9.
The compensatory effect on selenoprotein transcriptional expression in A. maculatum

salivary glands injected with SelK- or SelM-dsRNA. Asterisks indicate a statistically

significant difference compared to control (GFP-dsRNA injected) (*p<0.05).
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Table 1

Primer sequences used in this study for QRT-PCR analysis.

Gene GenBank ID Forward primer (5′-3′) Reverse primer (5′-3′) Size (bp)

selK JO843326 AGTTCCAGCAGGTCATCAGTGTCA TCCAGGAATAGGGCAGTCCATTGT 132

selM JO842653 ATGATACCTGAATGGCCATCCGCA TGATCGCGGGTCATCTTCTCCAAA 171

selN KC989560 TTAGTTTGGACACTGTGGACGGGT AGGCTTCTCTAACAACGGCACTCA 150

selO KC989561 AAGCTCGGCCTTGTGAAGAGAGAA TACAGCACGACAAGAGCTTGGACA 190

selS JO842687 AGAACAAGTGCACCACAACAGCAG ATTTCTTGCATCCTTCGACGTGCC 107

selT KC989562 TCTTTGTGTGTGGAGCCATCGAGA ACCACACCCGCACGTCATTAAAGT 81

selX JO845128 ACCACTCTCCTTGGCCATCATTCA TGCACTTCCCACAGTACACCTTGA 108

act JO842238 TGGCTCCTTCCACCATGAAGATCA TAGAAGCACTTGCGGTGCACAATG 169

gpx JO843645 TGCCGCGCTGTCTTTATTATTGGC AGTTGCACGGAGAACCTCATCGAA 102

cat JO843741 AAAGGACGTCGACATGTTCTGGGA ACTTGCAGTAGACTGCCTCGTTGT 173

gshr JO844062 ACCTGACCAAGAGCAACGTTGAGA ATCGCTTGTGATGCCAAACTCTGC 170

trxR JO843723 TGTGACTACACCAACGTGCCTACA AGTAGCCTGCATCCGTTCCTCTTT 175
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