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Abstract

A wide variety of priors have been proposed for nonparametric Bayesian estimation of conditional

distributions, and there is a clear need for theorems providing conditions on the prior for large

support, as well as posterior consistency. Estimation of an uncountable collection of conditional

distributions across different regions of the predictor space is a challenging problem, which differs

in some important ways from density and mean regression estimation problems. Defining various

topologies on the space of conditional distributions, we provide sufficient conditions for posterior

consistency focusing on a broad class of priors formulated as predictor-dependent mixtures of

Gaussian kernels. This theory is illustrated by showing that the conditions are satisfied for a class

of generalized stick-breaking process mixtures in which the stick-breaking lengths are monotone,

differentiable functions of a continuous stochastic process. We also provide a set of sufficient

conditions for the case where stick-breaking lengths are predictor independent, such as those

arising from a fixed Dirichlet process prior.
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1. Introduction

One of the most common problems in data analysis is the need to characterize the

dependence of a response on predictors in a flexible manner. We want to avoid parametric

assumptions on the response density and how features, such as the mean, variance,

skewness, shape and even modality, change with predictors. Nonparametric estimates of the

conditional distribution [1, 2] are appealing in this context, but in most applications one

requires not just a point estimate but also a characterization of uncertainty. For this reason,

and because of excellent practical performance in a rich variety of application areas,

Bayesian approaches for conditional distribution estimation have become popular in recent

years. The most common class of models are infinite mixture models due in part to the rich
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literature on algorithms for posterior computation using Markov chain Monte Carlo

(MCMC) [3–5] and fast approximations [6]. Such MCMC algorithms are straightforward to

implement, and the output can be used to estimate exact posterior densities for functionals of

interest.

The ever increasing literature on new nonparametric Bayes models and exciting new

applications in areas ranging from finance to biostatistics to machine learning has generated

considerable enthusiasm. However, there is a clear lack of frequentist asymptotic theory

supporting these models. The emphasis of this article is on substantially closing this gap

focusing on a new class of generalized stick-breaking process (gSB) priors, which

encompasses a number of the most widely applied priors as special cases.

In the absence of predictors, there is a rich theory and methods literature on nonparametric

Bayes methods for estimating a density f using mixture models of the form

(1.1)

where Π is a mixture prior of the form  for suitably chosen kernel k, atoms

and weights {(θh, πh), h = 1, …, ∞} with  almost surely. The most common

choice of Π is the Dirichlet process mixture of normals, first introduced by [7]. Original

works on Dirichlet process can be found in [8, 9]. Support of Π in (1.1) and asymptotic

properties of the posterior are now well-understood [10–15].

Recent literature has focused on generalizing model (1.1) to the density regression setting in

which the entire conditional distribution of y given x changes flexibly with predictors.

Bayesian density regression views the entire conditional density f(y | x) as a function valued

parameter and allows its center, spread, skewness, modality and other such features to vary

with x. For data {(yi, xi), i = 1, …, n} let

(1.2)

where  is the predictor space and  is a prior for the class of conditional densities {fx, x ∈

} indexed by the predictors. Refer, for example, to [16–21] and [22] among others.

The primary focus of this recent development has been infinite mixture models of the form

(1.3)

where ϕ is the standard normal density, {πh(x), h = 1, 2, …} are predictor-dependent

probability weights that sum to one almost surely for each x ∈ , and (μh, σh) ~ G0

independently, with G0 a base probability measure on ×ℜ+,  ⊂ , the space of all 

→ ℜ functions. A single finite mixture of Gaussians is inadequate to represent the shape of

the density f(y | x) for different levels of the predictor x unless the number of components is
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huge. By using an infinite mixture we inherently allow for uncertainty in the number of

components needed to characterize the data and bypass the difficult issue of selecting the

number of components.

(1.1) is similar in spirit to kernel mixtures used in non-parametric smoothing approaches.

However, a major advantage of using a Bayesian paradigm is that we do not need to deal

with optimizing tuning parameters, which becomes difficult in higher dimensions. The new

adaptation results [23, 24] reveal that even a single prior specification can adapt to the

unknown correct smoothness level of the true density and optimizes estimation in an

asymptotic minimax sense. For conditional densities, smoothing needs to be done over the

response space as well as the predictor space, making the choice of optimal smoothing even

more difficult, especially when the predictors have varying degrees of influence on the

response. A Bayesian approach offers an easier practical solution in this case.

To our knowledge, only [25] have considered formalizing the notions of support for

dependent stick-breaking processes. We focus on a novel class of gSB processes, which

express the probability weights πh(x) in stick-breaking form, with the stick lengths

constructed through mapping continuous stochastic processes to the unit interval using a

monotone differentiable link function. This class includes dependent Dirichlet processes

[26] as a special case.

Only a few papers have considered asymptotic properties of the posterior in conditional

density estimation. [22] considers posterior consistency in estimating conditional

distributions focusing exclusively on logistic Gaussian process priors [27]. Such priors lack

the computational simplicity of the countable mixture priors in (1.3). [28] considers

posterior consistency in conditional distribution estimation through a limited information

approach by approximating the likelihood by the quantiles of the true distribution. [29, 30]

provide sufficient conditions for showing posterior consistency in estimating an

autoregressive conditional density and a transition density rather than regression with

respect to another covariate.

In this article, focusing on model (1.3), we initially provide sufficient conditions on the prior

and true data-generating model under which the prior leads to weak and various types of

strong posterior consistency. In this context, we first define notions of weak and L1-

integrated neighborhoods. We then show that the sufficient conditions are satisfied for gSB

priors. The theory is illustrated through application to a model relying on probit

transformations of Gaussian processes, an approach related to the probit stick-breaking

process of [21] and [31]. We also considered Gaussian mixtures of fixed-π dependent

processes [26, 32].

[33] showed posterior consistency in conditional density estimation using kernel stick

breaking process mixtures of Gaussians in a very recent unpublished article. They

approximated a conditional density by a smooth mixture of linear regressions as in [34] to

demonstrate the KL property. In this paper, we have shown KL support using a more direct

approach of approximating the true density by a kernel mixture of a compactly supported

conditional measure.

Pati et al. Page 3

J Multivar Anal. Author manuscript; available in PMC 2014 July 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The fundamental contribution of this article is formalizing the notion of support of the gSB

process mixture of Gaussians on the space of conditional densities and formulating

sufficient conditions to ensure that it leads to a consistent posterior. In doing so, a key

technical contribution is the development of a novel method of constructing a sieve for the

proposed class of priors. It has been noted by [35] that the usual method of constructing a

sieve by controlling prior probabilities is unable to lead to a consistency theorem in the

multivariate case. This is because of the explosion of the L1-metric entropy with increasing

dimension. They developed a technique specific to the Dirichlet process in the multivariate

case for showing weak and strong posterior consistency. The proposed sieve1 avoids the

pitfall mentioned by [35] in showing consistency using multivariate mixtures. Our sieve

construction has been recently used for studying convergence rates in multivariate density

estimation [36, 37].

2. Notations

Throughout the paper, Lebesgue measure on ℜ or ℜp is denoted by λ and the set of natural

numbers by ℕ. The supremum and the L1-norms are denoted by ||·||∞ and ||·||1 respectively.

The indicator function of a set B is denoted by 1B. Let Lp(ν, M) denote the space of real

valued measurable functions defined on M with ν-integrable pth absolute power. For two

density functions f, g, the Kullback-Leibler divergence is given by K(f, g) = ∫ log(f/g)fdλ. A

ball of radius r with centre x0 relative to the metric d is defined as B(x0, r; d). The diameter

of a bounded metric space M relative to a metric d is defined to be sup{d(x, y) : x, y ∈ M}.

The ε-covering number N(ε, M, d) of a semi-metric space M relative to the semi-metric d is

the minimal number of balls of radius ε needed to cover M. The logarithm of the covering

number is referred to as the entropy. “≾” stands for inequality up to a constant multiple or if

the constant multiple is irrelevant to the given situation. δ0 stands for a distribution

degenerate at 0 and supp(ν) for the support of a measure ν.

3. Conditional density estimation

In this section, we will define the space of conditional densities and construct a prior on this

space. It is first necessary to generalize the topologies to allow appropriate neighborhoods to

be constructed around an uncountable collection of conditional densities indexed by

predictors. With such neighborhoods in place, we then state our main theorems providing

sufficient conditions under which various modes of posterior consistency hold for a broad

class of predictor-dependent mixtures of Gaussian kernels.

Let  = ℜ be the response space and  be the covariate space which is a compact subset of

ℜp. Unless otherwise stated, we will assume  = [0, 1]p without loss of generality. Let 

denote the space of densities on ×  w.r.t. the Lebesgue measure and  denote a subset of

the space of conditional densities satisfying,

1A similar sieve appears in [33] with a citation to an earlier draft of our paper.
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Suppose yi is observed independently given the covariates xi, i = 1, 2, … which are drawn

independently from a probability distribution Q on . Assume that Q admits a density q

with respect to the Lebesgue measure.

If we define h(x, y) = q(x)f(y | x) and h0(x, y) = q(x)f0(y | x) then h, h0 ∈ . Throughout the

paper, h0 is assumed to be a fixed density in  which we alternatively refer to as the true

data generating density and {f0(· | x), x ∈ } is referred to as the true conditional density.

The density q(x) will be needed only for theoretical investigation. In practice, we do not

need to know it or learn it from the data.

We propose to induce a prior  on the space of conditional densities through a prior  for

a collection of mixing measures  = {Gx, x ∈ } using the following predictor-dependent

mixture of kernels

(3.1)

where ψ = (μ, σ), and

(3.2)

where πh(x) ≥ 0 are random functions of x such that  a.s. for each fixed x ∈

. are i.i.d. realizations of a real valued stochastic process, i.e., G0 is a

probability distribution over ×ℜ+, where  ⊂ ,  being the space of functions from 

to ℜ. Hence for each x ∈ , Gx is a random probability measure over the measurable Polish

space (ℜ × ℜ+, (ℜ × ℜ+)). We are interested the following two important special cases.

3.1. Predictor dependent countable mixtures of Gaussian linear regressions

We define the predictor dependent countable mixtures of Gaussian linear regressions

(MGLRx) as

and

(3.3)

where πh(x) ≥ 0 are random functions of x such that  a.s. for each fixed x ∈

 and G0 = G0,β × G0,σ is a probability distribution on ℜp × ℜ+ where G0,β and G0,σ are

probability distributions on ℜp and ℜ+ respectively. For a particular choice of πh(x)’s, we
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obtain the probit stick-breaking mixtures of Gaussians which have been previously applied

to real data applications by [21, 31, 38]. The latter two articles considered probit

transformations of Gaussian processes in constructing the stick-breaking weights.

3.2. Gaussian mixtures of fixed-π dependent processes

In (3.1), set Gx as in (3.2) with πh(x) ≡ πh for all x ∈  where πh ≥ 0 are random probability

weights  a.s. and  are as in (3.2). Examples include fixed-π

dependent Dirichlet process mixtures of Gaussians [26]. Versions of the fixed π-DDP have

been applied to ANOVA [32], survival analysis [39, 40], spatial modeling [41], and many

more.

A Gaussian process is a common choice for constructing stochastic processes πh(x)’s and

μh(x)’s. Recall that a Gaussian process {α(x) : x ∈ } is defined as a stochastic process for

which any finite dimensional representation {α(x1), …, α(xp)}, p ≥ 1 has a joint Gaussian

distribution. We denote by GP(μ, c) a Gaussian process with mean function μ :  → ℝ and

c :  ×  → ℝ.

4. Notions of posterior consistency for conditional densities

We recall the definition of posterior consistency through yn = (y1, …, yn) and xn = (x1, …,

xn).

Definition 4.1—The posterior (· | yn, xn) is consistent at {f0(· | x), x ∈ } with respect to

a given topology if (Uc | yn, xn) → 0 a.s. for an arbitrary neighborhood U of {f0(· | x), x ∈

} in that topology.

Here a.s. consistency at {f0(· | x), x ∈ } means that the posterior distribution concentrates

around a neighborhood of {f0(· | x), x ∈ } for almost every sequence  generated

by i.i.d. sampling from the joint density q(x)f0(y | x).

We define the weak and ν-integrated L1 neighborhoods of a collection of conditional

densities {f0(· | x), x ∈ } in the following. A sub-base of a weak neighborhood is defined

as

(4.1)

for a bounded continuous function g :  ×  → ℜ. A weak neighborhood base is formed by

finite intersections of neighborhoods of the type (4.1). Define a ν-integrated L1

neighborhood

(4.2)
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for any measure ν with supp(ν) ⊂ . Observe that under the topology in (4.2),  can be

identified to a closed subset of L1(λ×ν, ×supp(ν)) making it a complete separable metric

space. Thus measurability issues won’t arise with these topologies.

In the following, we define the Kullback-Leibler (KL) property of  at a given f0 ∈ .

Note that we define a KL-type neighborhood around the collection of conditional densities f0
through defining a KL neighborhood around the joint density h0, while keeping Q fixed at

its true unknown value.

Definition 4.2—For any f0 ∈ , such that h0(x, y) = q(x)f0(y | x) is the true joint data-

generating density, we define an ε-sized KL neighborhood around f0 as

where KL(h0, h) = ∫ h0 log(h0/h). Then,  is said to have KL property at f0 ∈ , denoted f0
∈ KL( ), if {Kε(f0)} > 0 for any ε > 0.

Another definition we would require for showing the KL support is the notion of weak

neighborhood of a collection of mixing measures  = {Gx, x ∈ } where Gx is a

probability measure on S × ℜ+ for each x ∈ . Here S = ℜp or ℜ depending on the cases

considered above. We formulate the notion of a sub-base of the weak neighborhood of  =

{Gx, x ∈ } below.

Definition 4.3—For a bounded continuous function g : S × ℜ+ ×  → ℜ and ε > 0, a sub-

base of the weak neighborhood of a conditional probability measure {Fx, x ∈ } is defined

as

(4.3)

A conditional probability measure {Gx, x ∈ } lies in the weak support of  if  assigns

positive probability to every basic neighborhood generated by the sub-base of the type (4.3).

In the sequel, we will also consider a neighborhood of the form

(4.4)

for a bounded continuous function g : S × ℜ+ → ℜ.

5. Posterior consistency in MGLRx mixture of Gaussians

5.1. Kullback-Leibler property

We will work with a specific choice of  motivated by the probit stick breaking process

construction in [21]. Let
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(5.1)

where αh ~ GP(0, ch), for h = 1, 2, …, ∞. Assume the following holds.

S1 ch is chosen so that αh ~ GP(0, ch) has continuous path realizations

S2 for any continuous function under the GP(0, ch) prior for αh g :  ↦ ℜ,

h = 1, …, ∞ and for any ε > 0.

S3 G0 is absolutely continuous with respect to λ(ℜp × ℜ+).

Consider the subset  satisfying the following conditions.

A1 f is nowhere zero and bounded by M < ∞.

A2 |   f(y | x) log f(y | x)dyq(x)dx| < ∞.

A3
,

where ψx(y) = inft∈[y−1,y+1] f(t | x).

A4 ∃ η > 0 such that   |y|2(1+η) f(y | x)dyq(x)dx < ∞.

A5 (x, y) ↦ f(y | x) is jointly continuous.

Remark 5.1—A1 is usually satisfied by common densities arising in practice. A4 imposes

a minor tail restriction; e.g., a mean regression model with continuous mean function and a

heavy-tailed t residual density with 4 degrees of freedom satisfies A4. Conditions A2 and

A3 are more subtle, but are also mild. A flexible class of models which satisfies A1–A5 is as

follows. Let yi = μ(xi) + εi, with μ :  → ℜ continuous and εi ~ fxi, where

 for some H ≥ 1, , πh :  → [0, 1] continuous

and ψ is Gaussian or t with greater than 2 degrees of freedom.

Remark 5.2—S2 is satisfied if ch(x, x′) = e−Ah||x−x′||2 and the prior for Ah has full support

on ℝ+.

The following theorem characterizes the subset of  for which  has the KL property. The

proof of Theorem 5.3 is provided in Appendix C.

Theorem 5.3—f0 ∈ KL( ) for each f0 in  if  satisfies S1–S3.

Remark 5.4—The conditions are satisfied for a class of gSB process mixtures in which the

stick-breaking lengths are constructed through mapping continuous stochastic processes to

the unit interval using a monotone differentiable link function.
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To prove Theorem 5.3, we need several auxiliary results related to the support of the prior

 which might be of independent interest. The key idea for showing that the true f0 satisfies

{Kε(f0)} > 0 for any ε > 0 is to impose certain tail conditions on f0(y | x) and approximate

it by , where {G̃
x, x ∈ } is compactly supported. Observe

that,

(5.2)

We construct such an f̃ in Theorem 5.3 which makes the first term in the right hand side of

(5.2) sufficiently small. The following lemma (which is similar to Lemma 3.1 in [12] and

Theorem 3 in [11]) guarantees that the second term in the right hand side of (5.2) is also

sufficiently small if {Gx, x ∈ } lies inside a finite intersection of neighborhoods of {G̃
x, x

∈ } of the type (4.4).

Lemma 5.5—Assume that f0 ∈  satisfies   y2f0(y | x)dyq(x)dx < ∞. Suppose

, where ∃a > 0 and 0 < σ < σ̄ such that

(5.3)

so that G̃
x has compact support for each x ∈ . Then given any ε > 0, ∃ a finite intersection

W of neighborhoods of {G̃
x, x ∈ } of the type (4.4) such that for any conditional density

, x ∈ , with {Gx, x ∈ } ∈ W,

(5.4)

The proof is similar to Theorem 3 in [11] and is omitted here. In order to ensure that the

weak support of  is sufficiently large to contain all densities f̃ satisfying the assumptions

of Lemma 5.5, we define a collection of fixed conditional probability measures on (ℜp × ℜ+,

(ℜp × ℜ+)) denoted by  satisfying

1. x ↦ Fx(B) is a continuous function of x ∈ , ∀ B ∈ (ℜp × ℜ+).

2. For any sequence of sets An ⊂ ℜp × ℜ+ ↓ ∅,  Fx(An) ↓ 0.

Next we state the theorem characterizing the weak support of  which will be proved in

Appendix B.

Theorem 5.6—If  satisfies S1–S3, then any  lies in the weak

support of .
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Corollary 5.7—Assume S1–S3 hold and assume  is compactly supported, i.e.,

there exists a, σ, σ̄ > 0 such that Fx([−a, a]p × [σ, σ̄]) = 1. Then for a bounded uniformly

continuous function g : ℜp × ℜ+ → [0, 1] satisfying g(β, σ) → 0 as ||β|| → ∞, σ → ∞,

(5.5)

Proof: The proof is similar to Theorem 5.6 with the L1 convergence in (B.1) replaced by

convergence uniformly in x. This is because under the assumptions of Corollary 5.7, the

uniformly continuous sequence of functions  on 

monotonically decreases to ∫C g(β, σ)dFx(β, σ) as n → ∞ where C is given by [−a, a]p × [σ,

σ̄].

The proof of the following corollary is along the lines of the proof of Theorem 5.6 and is

omitted here.

Corollary 5.8—Under the assumptions of Corollary 5.7 for any k0 ≥ 1,

(5.6)

where Uj’s are neighborhoods of the type (5.5).

5.2. Strong Consistency with the q-integrated L1 neighborhood

To obtain strong consistency in the q-integrated L1 topology, we need a very straight

forward extension of Theorem 2 of [11] below.

Theorem 5.9—Suppose f0 ∈ KL( ) and there exist subsets  ⊂  with

1. log N (ε, , ||·||1) = o(n),

2.  for some c2, β2 > 0,

then the posterior is strongly consistent with respect to the q-integrated L1 neighborhood.

Before stating the main theorem on strong consistency, we consider a hierarchical extension

of MGLRx where the bandwidths are taken to be random. We define a sequence of random

inverse-bandwidths Ah of the Gaussian process αh, h ≥ 1 each having ℜ+ as its support.

Since the first few atoms suffice to explain most of the dependence of y on x, we expect that

the variability due to the covariate in the stochastic process Φ{αh} decreases as h increases.

This is achieved through a carefully chosen prior for the covariance kernel ch of the

Gaussian process αh.

Let α0 denote the base Gaussian process on [0, 1]p with covariance kernel c0(x, x′) =

τ2e−||x−x′||2. Then  for each x∈  The variability of αh with respect to the
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covariate is shrunk or stretched to the rectangle  as Ah decreases or increases. Ah’s

are constructed to be stochastically decreasing to δ0 in the following manner. We assume

that there exist η, η0 > 0 and a sequence δn = O((log n)2/n5/2) such that P (Ah > δn) ≤

exp{−n−η0h(η0+2)/η log h} for each h ≥ 1. Also assume that there exists a sequence rn ↑ ∞

such that  and P (Ah > rn) ≤ e−n. We will discuss how to construct such

a sequence of random variables in the Remark 5.12 following Theorem 5.10.

The following theorem provides sufficient conditions for strong posterior consistency in the

q-integrated L1 topology. The proof is provided in Appendix D.

Theorem 5.10—Let πh’s satisfy (5.1) with αh ~ GP(0, ch) where ch(x, x′) = τ2e−Ah||x−x′||2,

h ≥1, τ2 > 0 fixed.

C1 There exist sequences an, hn ↑ ∞, ln ↓ 0 with , and

constants d1, d2 > 0 such that G0{B(0; an) × [ln, hn]}c < d1e−d2n for some d1, d2

> 0.

C2 Ah’s are constructed as in the second last paragraph before Theorem 5.10.

then f0 ∈ KL( ) implies that  achieves strong posterior consistency in q-integrated L1

topology at f0.

Remark 5.11—Verification of condition C1 of Theorem 5.10 is particularly simple. For

example, if G0 is a product of multivariate normals on β and an inverse Gamma prior on σ2,

the condition C1 is satisfied with , hn = en, . It follows from [42] that

f0 ∈ KL( ) is still satisfied when we have the additional assumptions C1–C2 together with

S1–S3 on the prior .

Remark 5.12—Since we need  can be chosen to be O(nη1) for

some 0 < η1 < 1. Let d be such that dη1/p ≥ 1 and set η0 = 3d. Let Ah = chBh, where

 and ch = (h(3d+2)/η log h)−1/d for any 0 < η < 1. Then P (Ah > nη1/p) ≤ P(Bh >

nη1/p) ≤ e−ndη1/p ≤ e−n and P(Ah > (log n)2n−5/2) ≤ exp{−n−3dh(3d+2)/η log h}.

Remark 5.13—The theory of strong posterior consistency can be generalized to an

arbitrary monotone differentiable link function L : ℜ ↦ [0, 1] which is Lipschitz, i.e., there

exists a constant K > 0 such that |L(x) − L(x′)| ≤ K |x − x′| for all x, x′ ∈ . Also, as long as

the πh(x)’s satisfy the hypothesis of Lemma Appendix A.1 and possess the required tail

probability in Lemma 5.15, general predictor dependent mixing weights can be used.

Below we will develop several auxiliary results required to prove Theorem 5.10. They are

stated below as some of them might be of independent interest. Let 

for y ∈  and x ∈ . From [12], we obtain for  and for each x ∈ ,
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Construct a sieve for (β, σ) as

(5.7)

In the following Lemma, we provide an upper bound to N (Θa,h,l, ε, dSS). The proof is

omitted as it follows trivially from Lemma 4.1 in [12].

Lemma 5.14—There exist constants d1, d2 > 0 such that

.

In the proof of Theorem 5.10, we will verify the sufficient conditions of Theorem 5.9. We

calibrate  by a carefully chosen sequence of subsets  ⊂ . The fundamental problem

with mixture models ∫ N (y; μ, σ2Ip)dP (μ) in estimating a multivariate density lies in

attempting to compactify the model space by {∫ N (y, μ, σ2Ip)dP (μ) : P ((−an, an]p) > 1 − δ}

for each σ leading to an entropy  growing exponentially with the dimension p. Here we

marginalize P in ∫ N(y; μ, σ2Ip)dP (μ) to yield the following construction

, h = 1, …, mn,  leading to an entropy

mn log an where mn is related to the tail-decay of . With this idea in

place, we extend the construction of  for conditional densities below.

Before constructing a sieve, we briefly review alternative definitions [43] of a Gaussian

process as a Banach space valued element below. A Borel measurable random element W

with values in a separable Banach space ( , ||·||) is called Gaussian if the random variable

b*W is normally distributed for any element b* ∈ , the dual space of . Recall that in

general, the reproducing kernel Hilbert space (RKHS) ℍ attached to a zero-mean Gaussian

process W is defined as the collection of all EHW for H ranging over the closed linear span

of the variables b*W in L2(ν, M) with inner product

(5.8)

The RKHS can be viewed as a subset of  and the RKHS norm ||·||ℍ stronger than the

Banach space norm ||·||.

In particular, if W is a Borel measurable zero-mean Gaussian random element in a complete

separable subspace of ℓ∞ (T), the Banach space of uniformly bounded functions g : T → ℝ

equipped with the uniform norm ||g|| = sup{|g(t)| : t ∈ T }, then the RKHS is actually the

completion of the linear space of functions t ↦ EW (t)H relative to the inner product (5.8)

where H, H1 and H2 are finite linear combinations of the form Σi aiW (si) with ai ∈ ℝ and si

in the index set of W. See Theorem 2.1 of [43] for details.
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Next we turn to constructing the sieve. Assume ε > 0 is given. Let  denote a unit ball in

the RKHS of the covariance kernel τ2e−a||x−x′||2and  is a unit ball in ℂ [0, 1]p. For numbers

M, m, r, δ, construct a sequence of subsets {Bh, h = 1, …, m} of ℂ [0, 1]p as follows.

The idea is to construct

(5.9)

for appropriate sequences am, ln, hn, Mn, mn, rn, δn to be chosen in the proof of Theorem

5.10.

The following lemma is also crucial to the proof of Theorem 5.10 which allows us to

calculate the rate of decay of P(  πh(x) > ε) with mn.

Lemma 5.15—Let πh’s satisfy (5.1) with αh ~ GP(0, ch) where ch(x, x′) = τ2e−Ah||x−x′||2, h

≥ 1, τ2 > 0 fixed. Then for some constant C7 > 0,

(5.10)

Proof: Let  where , Zh ~ Ga(1, γ0). We will choose

an appropriate value for γ0 in the sequel. Let t0 = −log ε > 0. Observe that

Observe that  where Λh ~ Ga(mn, 1). Then

it is easy to show that  (Λh < t0) ≾ e−mn log mn. However, the calculation gets complicated

when αh’s are i.i.d realizations of a zero mean Gaussian process. The proof relies on the fact

that the supremum of Gaussian processes has sub-Gaussian tails.

Below we calculate the rate of decay of  with mn. We will show

that there exists γ0, depending on ε and τ but not depending on n, such that
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(5.11)

where there exists a constant C5 > 0 such that ξ(x) = C5xp/2 for x > 0. Observe that

.

Since  for some τ′ < 1, we

can re-parameterize t0 as τ′t0/τ and τ as τ′. Hence without loss of generality we assume τ <

1.

Define g : [0, t0] → ℜ, t ↦ −Φ−1(1 − e−t). It holds that g is a continuous function on (0, t0].

Assume α0 ~ GP(0, c0) where c0(x, x′) = τ2e−||x−x′||2. For ,

Below we estimate  for large enough λ following Theorem 5.2 of

[44]. However extra care is required to identify the role of δn. Since

,

for some constant C2 > 0. Hence

for constants C3, C4 > 0. The last inequality holds for all large λ because τ < 1. Hence there

exists t1 ∈ (0, t0) sufficiently small and independent of n such that for all t ∈ (0, t1),

. Observe that

for any γ0 > 1. Further choose γ0 large enough such that 2(1 − e−γ0t) > 1 ∀ t ∈ [t1, t0]. Hence

P(Wh ≤ t, Ah ≤ δn) ≤ ξ(δn)P(Zh < t) ∀ t ∈ (0, t0] where , with C5 = max{2, C4}.
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Applying Lemma Appendix E.1, we conclude (5.11) by induction. Lemma Appendix E.1 is

proved in Appendix E. As  for

some constant C6 > 0. Since  for some

constant C7 > 0, the result follows immediately.

5.3. Prior specification and posterior computation

To illustrate the applicability of the proposed methods, we mention the prior choices and key

steps for posterior computation for the MGLRx model. Recall that

(5.12)

(5.13)

where πh(x) = Φ{αh(x)}Πl<h{1−Φ{αl(x)}. We assume αh ~ GP(0, ch), where

, τα ~ Ga(να/2, να/2). See Remark 5.12 for constructing prior for

Ah’s. If the yi’s are standardized, we would expect that the total variance  should

be around 1. Hence choose aσ = 1, bσ = 10 so that the . We can resort to an

MCMC algorithm, which is a hybrid of data augmentation, the exact block Gibbs sampler of

[45] and Metropolis Hastings sampling to sample from the posterior of (5.12). [45] proposed

the exact block Gibbs sampler as an efficient approach to posterior computation in infinite-

dimensional Dirichlet process mixture models, modifying the block Gibbs sampler of [46] to

avoid truncation approximations. The exact block Gibbs sampler combines characteristics of

the retrospective sampler [47] and the slice sampler [4, 48]. Introduce γ1, …, γn such that

πh(xi) = P(γi = h), h = 1, 2, …, ∞. Then

where ui ~ U(0, 1).

We continue up to , where  is the minimum integer satisfying

, i = 1, …, n. The Markov chain adaptively estimates the

desired number of components h* at each iteration of the MCMC, thus making it more

efficient than a finite mixture model with a pre-specified large number of components. Here

we describe the key steps for the posterior computation.

1. Update ui’s and stick breaking random variables: Generate

Pati et al. Page 15

J Multivar Anal. Author manuscript; available in PMC 2014 July 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



where πh(xi) = Φ{αh(xi)}Πl<h[1 − Φ{αl(xi)}]. For i = 1, …, n, introduce latent

variables Zh(xi), h = 1, 2, … such that Zh(xi) ~ N(αh(xi), 1). Thus πh(xi) = P(Zh(xi)

> 0, Zl(xi) < 0 for l < h). Then

Let Zh = (Zh(x1), …, Zh(xn))′ and αh = (αh(x1), …, αh(xn))′. Letting (Σh)ij =

e−Ah||xi−xj||, Zh ~ N(αh, I) and ,

Continue up to , where  is the minimum integer satisfying

, i = 1, …, n. Now

while κα is updated using a Metropolis Hastings step.

2. Update allocation to atoms: Update (γ1, …, γn)|– as multinomial random

variables with probabilities

3. Update component-specific locations and precisions: Let nh = #{i : γi = h}, l = 1,

2, …, h*. Let Yh = (yi : γi = h) be a nh dimensional vector and Xh is the

corresponding nh × p dimensional covariate matrix.

Update Ah’s in a Metropolis Hastings step.

At each iteration of the MCMC, we obtain samples from the full conditional distributions of

the parameters, which after discarding a burn-in can be used to get summary statistics of

posterior distribution of the parameters or functionals of interest.
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6. Posterior consistency in Gaussian mixture of fixed-π dependent

processes

6.1. Kullback-Leibler property

The following theorem verifies that  has KL property at . The proof of Theorem

6.1 is somewhat similar to that of Theorem 5.3 and can be found in Appendix F.

Theorem 6.1—f0 ∈ KL( ) for each f0 in  if  satisfies

T1 G0 is specified by μh ~ GP(μ, c), σh ~ G0,σ where c is chosen so that GP(0, c)

has continuous path realizations and Πσ is absolutely continuous w.r.t. Lebesgue

measure on ℜ+.

T2 For every k ≥2, (π1, …, πk) is absolutely continuous w.r.t. to the Lebesgue

measure on Sk−1.

T3 For any continuous function g : ↦ ℜ,

h = 1, …, ∞ and for any ε > 0.

6.2. Strong consistency with the q-integrated L1 neighborhood

Next we summarize the consistency theorem with respect to the q-integrated L1 topology.

The proof of Theorem 6.2 is also similar to that of Theorem 5.10 and is provided in

Appendix G.

Theorem 6.2—Let μh(x) = x′βh + ηh(x), βh ~ Gβ and ηh ~ GP(0, c), h = 1, …, ∞ where

c(x, x′) = τ2e−A||x−x′||2, Ap(1+η2)/η2 ~ Ga(a, b) for some η2 > 0.

F1 There exist sequences an, hn ↑ ∞, ln ↓ 0 with , and

constants d1, d2, d3 and d4 > 0 such that Gβ{B(0; an)}c < d1e−d2n and G0,σ{[ln,

hn]}c ≤ d3e−d4n.

F2
.

then f0 ∈ KL( ) implies that  achieves strong posterior consistency at f0
with respect to the q-integrated L1 topology.

Remark 6.3—F2 is satisfied if πh’s are made to decay more rapidly than the usual Beta(1,

α) stick-breaking random variables, e.g, if πh = νhΠl<h(1−νh) and if νh ~ Beta(1, αh) where

αh = h1+η2(log h)p+1α0 for some α0 > 0, then F2 is satisfied. Large value of αh for the higher

indexed weights favors smaller number of components.

Remark 6.4—A Gaussian kernel is used here for technical simplification. One can obtain

similar results using a variety of kernels e.g. t, Laplace, etc. However, the KL support
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conditions A1–A5 will be different for different kernels. Refer to [49] for a catalogue of

conditions for various kernels in a density estimation framework.

7. Discussion

We have provided sufficient conditions to show posterior consistency in estimating the

conditional density via predictor dependent mixtures of Gaussians which include probit

stick-breaking mixtures of Gaussians and the fixed-π dependent processes as special cases.

The problem is of interest, providing a more flexible and informative alternative to the usual

mean regression. For both the models, we need the same set of tail conditions (mentioned in

) on f0 for KL support. Although the first prior is flexible in the weights and the second

one in the atoms through their corresponding GP terms, S1, S2, T1 and T3 show that

verification of KL property only requires that both the GP terms have continuous path

realizations and desired approximation property. Moreover, for the second prior, any set of

weights summing to one a.s. T2 suffices for showing KL property. Careful investigations of

the prior for the GP kernel for the first model and the probability weights for the second one

are required for strong consistency. For the first one we need the covariate dependence of

the higher indexed GP terms in the weights to fade off. On the other hand, for the second

model, the atoms can be i.i.d. realizations of a GP with Gaussian covariance kernel with

inverse- Gamma bandwidth while limiting the model complexity through a sequence of

probability weights which are allowed to decay rapidly. This suggests that full flexibility in

the weights should be down-weighted by an appropriately chosen prior while full flexibility

in the atoms should be accompanied by a restriction imposing fewer number of components.

It would be interesting to see how the conditions on the bandwidth can be modified when we

actually use a sieve Bayes prior, i.e. a prior with number of components kn diverging to ∞.

Another interesting direction is to consider rates of convergence of the posterior and

Bernstein von-Mises (BvM) type results. For infinite dimensional parameters [50], there has

been quite a few positive BvM results very recently for linear functionals of a probability

density function [51] and for general classes of linear and non-linear functionals in a

Gaussian white noise model [52]. We conjecture that such BvM-type results hold for linear

functionals of conditional density (e.g. conditional mean, conditional cdf) too under

appropriate conditions on the prior and the true data generating conditional density.
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Appendix A. A useful lemma

To prove Theorem 5.6, we need an auxiliary lemma which we state below.
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Lemma Appendix A.1

If {πh(x), h = 1, …, ∞} constructed as in (5.1) satisfies S1 and S2 then

(A.1)

for a measurable partition {Ai, i = 1, …, k} of ℜp × ℜ+, εi > 0 and a conditional cdf {Fx, x ∈

}.

Proof

Without loss of generality, let 0 < Fx(Ai) < 1, i = 1, …, k ∀ x ∈ . We want to show that for

any εi > 0, i = 1, …, k, (A.1) holds. Construct continuous functions gi :  ↦ ℜ, 0 < gi(x) < 1

∀x ∈ , i = 1, …, k−1 such that

(A.2)

As 0 < Fx(Ai) < 1, i = 1, …, k ∀ x ∈ , it is trivial to find gi, i = 1, …, k satisfying (A.2)

since one can solve back for the gi’s from (A.2).  enforces gk ≡1. Since Φ is

a continuous function, for any εi > 0, i = 1, …, k − 1,

(A.3)

and for i = k,

(A.4)

Choose M > Φ−1(1 − εk) + εk. We have 0 < M < 1 and

Hence by assumption, { αk(x) > Φ−1(1 − εk)} > 0. Let Sk−1 denote the k-dimensional

simplex. For notational simplicity let pi(x) = Φ{αi(x)}, gi(x) = Fx(Ai), i = 1, …, k−1 and

gk(x) = 1. Let z = (z1, …, zp)′, fi : Sk−1 → ℜ, z ↦ ziΠl<i(1 − zl), i = 2, …, k and f1(z) = z1. Let

p(x) = (p1(x), …, pk(x)) and g(x) = (g1(x), …, gk(x)). Then we need to show that
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Note that for 2 ≤i ≤k,

Thus one can get , i = 1, …, k, such that

But since , the result follows

immediately.

Appendix B. Proof of Theorem 5.6

Fix . Without loss of generality it is enough to show that for a uniformly

continuous function g : ℜp×ℜ+×  → [0, 1] and ε > 0,

Furthermore, it suffices to assume g(β, σ, x) → 0 uniformly in x ∈  as ||β|| → ∞, σ → ∞.

Fix ε > 0, there exist a, σ, σ̄ > 0 not depending on x such that Fx([−a, a]p×[σ, σ̄]) > 1 − ε for

all x ∈ . Let C = [−a, a]p × [σ, σ̄].

where πh’s are specified by 5.1 with ch satisfying S1 and S2 and (βh, σh) ~ G0. Now for each

x ∈ , construct a Riemann sum approximation of ∫C g(β, σ, x)dFx(β, σ).

Let {Ak,n, k = 1, …, n} be a sequence of partitions of C with increasing refinement as n

increases. Assume max1≤k≤n diam(Ak,n) → 0 as n ↑ ∞. Fix (β̃
k,n, σk̃,n) ∈ Ak,n, k = 1, …, n.

Then by DCT as n → ∞,
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(B.

1)

Hence there exists n1 such that for n ≥ n1

Consider the set

By Lemma Appendix A.1 which is proved in Appendix A,  (Ω1) > 0. Since

 a.s. there ∃ Ω with  (Ω) = 1, such that for each ω= {πh, h = 1, …, ∞} ∈ Ω,

 as n → ∞ for each x in . Note that this convergence is uniform

since, gn(·), n ≥ 1 are continuous functions defined on a compact set monotonically

increasing to a continuous function identically equal to 1. Hence for each ω = {πh, h = 1, …,

∞} ∈ Ω, gn(x) → 1 uniformly in x. By Egoroff’s theorem, there exists a measurable subset

Ω2 of Ω1 with  (Ω2) > 0 such that within this subset gn(x) → 1 uniformly in x and

uniformly in ω in Ω2. Thus there exists a positive integer nε ≥ n1 not depending on x and ω,

such that  on Ω2. Moreover, one can find a K > 0 independent of x such

that g(β, σ, x) < ε if ||β|| > K and σ > K. Let A1 = {(β, σ) : ||β|| > K, σ > K}. Let Ω3 = Ω2 ∩

{(βn1+1, σn1+1) ∈ A1, …, (βnε−1, σnε−1) ∈ A1}. For ω ∈ Ω3,

and
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There exists sets Bk, k = 1, …, n1 depending on n1 but independent of x such that if (βk, σk)

∈ Bk,|g(βk, σk, x) − g(β̃
k,n1, σ̃

k,n1, x)|< ε. So for ω ∈ Ω4 = Omega;3 ∩ {(β1, σ1) ∈ B1, …, (βn1,

σn1) ∈ Bn1},

Now since  (Ω2) > 0 and the sets {(βn1+1, σn1+1) ∈ A1, …, (βnε−1, σnε−1) ∈ A1} and {(β1,

σ1) ∈ B1, …, (βn1, σn1) ∈ Bn1} are independent from Ω2 and have positive probability, it

follows that  (Ω4) > 0.

Appendix C. Proof of Theorem 5.3

Without loss of generality, assume that the covariate space  is [ζ, 1]p for some 0 < ζ < 1.

The proof is essentially along the lines of Theorem 3.2 of [12]. The f̃ in (5.2) will be

constructed so as to satisfy the assumptions of Lemma 5.5 and such that

 for any ε > 0. Define a sequence of conditional

densities , n ≥ 1 where for σn = n−η,

(C.1)

Define

(C.2)

Proceeding as in Theorem 3.2 of [12], an application of DCT using the conditions A1–A5

yields

Therefore one can simply choose f̃ = fn0 for sufficiently large n0. fn0 satisfies the

assumptions of Lemma 5.5 since {Gn0,x, x ∈ } is compactly supported. Also

 as x → Gn0,x(A) is continuous. Hence there exists a finite

intersection W of neighborhoods of {Gn0,x, x ∈ } the type (5.5) such that for any {Gx, x ∈

} ∈ W, the second term of (5.2) is arbitrarily small. The conclusion of the theorem follows

immediately from Corollary 5.8.
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Appendix D. Proof of Theorem 5.10

Consider the sequence of sieves defined by (5.9) for given ε > 0 and for sequences an, hn, ln,

Mn, mn, rn to be chosen later with  for some constant K1. We will first

show that given ξ > 0, there exist c1, c2 > 0 and sequences mn and Mn, such that

 and log N (δ, , ||·||) < nξ.

For f1, f2 ∈ , we have for each x ∈ ,

Let Θπ,n = {πmn = (π1, π2, …, πmn) : αh ∈ Bh,n, h = 1, …, mn}. Fix . Note

that since |Φ(x1) − Φ(x2)| < K2 |x1 − x2| for a global constant K2 > 0, we have

The above fact together with the proof of Lemma Appendix A.1 show that if we can make

, h = 1, …, mn, we would have . From the proof

of Theorem 3.1 in [42] it follows that for  and for sufficiently large Mn, rn,

(D.1)

for global constants K3, K4 > 0. For , rn > 1 we have for

,

(D.2)

Hence for sufficiently large Mn, we have for ,

(D.3)

For ,
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where  denotes the concentration function of the Gaussian process with covariance

kernel c(x, x′) = τ2e−κ||x−x′||2. Now

for some constant K6 > 0. Hence if  for some K7 > 0, then it follows

from the proof of Theorem 3.1 in [42] that

(D.4)

From (D.1) and (D.3),

(D.

5)

Also from (D.2) and (D.4),

We will show that with  for some ξ0 assumption C1, we have

(D.6)

With mn = O(n/log n),

.

With  for large enough n and it follows from Lemma 5.15 that

(D.7)

Thus with Mn = O(n1/2),

(D.8)
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(D.6), (D.7) and (D.8) together imply that .

Also  for the choice of the sequence rn. With mn = n/(C log

n) for some large C > 0, one can make

(D.9)

for any ξ > 0. Also from Lemma 5.14,

(D.10)

for any ξ > 0. Combining (D.9) and (D.10), log N ( , 4ε, ||·||1) < nξ for any ξ > 0.

Appendix E. Another useful lemma

We state without proof the following Lemma needed to prove Theorem 6.1.

Lemma Appendix E.1

For non-negative r.v.s Ai, Bi, if P(Ai ≤ u) ≤ Ci P(Bi ≤ u) for u ∈ (0, t0), t0 > 0, i = 1, 2, P(A1 +

A2 ≤ t0) ≤ C1C2P(B1 + B2 ≤ t0).

Appendix F. Proof of Theorem 6.1

Proof

Once again we approximate f0(y|x) by , so that the first term of

5.2 is arbitrarily small. We construct such an f̃ analogous to that in Theorem 5.3. Lemma

Appendix F.1 is a variant of Lemma 5.5 which ensures that the second term in (5.2) is also

sufficiently small. Before that we need a different notion of neighborhood of {Fx, x ∈ }

which we formulate below.

(F.1)

Lemma Appendix F.1

Assume that f0 ∈  satisfies   y2f0(y | x)dyq(x)dx < ∞. Suppose

, where ∃ a > 0 and 0 < σ < σ̄ such that

(F.2)
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so that G̃
x has compact support for each x ∈ . Then given any ε > 0, ∃ a neighborhood W

of {G̃
x, x ∈ } which is a finite intersection of neighborhoods of the type (F.1) such that for

any conditional density , x ∈ , with {Gx, x ∈ } ∈ W,

(F.3)

The proof of Lemma Appendix F.1 is similar to that of Lemma 5.5 and is omitted here. To

characterize the support of , we define a collection of fixed conditional probability

measures {Fx, x ∈ } on (ℜ × ℜ+, (ℜ × ℜ+)) denoted by  satisfying x ↦ ∫ℜ×ℜ+ g(μ,

σ)dFx(μ) is a continuous function of x for all bounded uniformly continuous functions g : ℜ

× ℜ+ → [0, 1].

Theorem Appendix F.2

Assume the following holds.

T1 G0 is specified by μh ~ GP(μ, c), σh ~ G0,σ where c is chosen so that GP(0, c)

has continuous path realizations and Πσ is absolutely continuous w.r.t. Lebesgue

measure on ℜ+.

T2 For every k ≥ 2, (π1, …, πk) is absolutely continuous w.r.t. to the Lebesgue

measure on Sk−1.

T3 For any continuous function g :  ↦ ℜ,

h = 1, …, ∞ and for any ε > 0.

Then for a bounded uniformly continuous function g : ℜ × ℜ+ : [0, 1] satisfying g(μ, σ) → 0

as |μ| → ∞, σ → ∞,

(F.

4)

Proof

It suffices to assume that g is coordinatewise monotonically increasing on ℜ × ℜ+. Let ε > 0

be given and ψ(x) = ∫ℜ×ℜ+ g(μ, σ)dFx(μ, σ). Let nε be such that  (Ω1) > 0 where

. Then in Ω1,
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Define Ω2 = { |g(μk(x), σk) − ψ(x)|< ε, k = 1, …, nε}. For a fixed σk, there exists a δ

such that |g(μk(x), σk) − ψ(x)|< ε/2 if  where  denotes

the inverse of g(·, σk) for fixed σk. Hence there exists a neighborhood Bk of σk such that for

σk ∈ Bk and , we have  |g(μk(x), σk) − ψ(x)| < ε. Since for

each k = 1, …, nε, 

 (Ω2) > 0. The conclusion of the theorem follows from the independence of Ω1 and Ω2.

f̃ in (5.2) will be constructed so as to satisfy the assumptions of Lemma Appendix F.1 and

such that  for any ε > 0. Define a sequence of

conditional densities , n ≥ 1 where for σn = n−η,

(F.5)

As before define the approximator

(F.6)

f̃ will be chosen to be fn0 for some large n0. fn0 satisfies the assumptions of Lemma

Appendix F.1 since {Gn0,x, x ∈ } is compactly supported. Moreover

 as x → ∫ℜ×ℜ+ g(μ, σ)dGn0,x(μ, σ) is continuous function of x for all

bounded uniformly continuous function g. Hence there exists a finite intersection W of

neighborhoods of {Gn0x, x ∈ } the type (F.1) such that for any {Gx, x ∈ } ∈ W, the

second term of (5.2) is arbitrarily small. The conclusion of the theorem follows immediately

from a variant of Corollary 5.8 applied to neighborhoods of the type (F.1).

Appendix G. Proof of Theorem 6.2

Proof

As before we establish q-integrated L1 consistency of Gaussian mixtures of fixed-π

dependent processes by verifying the conditions of Theorem 5.9. Let 

for y ∈  and x ∈ . Construct Bn as
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with  for some constant K1 > 0. Let

(G.1)

It is easy to see that

(G.2)

Note that  and

. It follows from the proof of

Theorem 3.1 of [42] that

if . Since Ap(1+η2)/η2 ~ Ga(a, b), Lemma 4.9 of [42] indicates

that . Hence with Mn = O(n1/2), mn = O{n/(log n)p+1}1/(1+η2)

and  and

(G.3)

Also, the first term in the right hand side of (G.2) can be made smaller than nξ since

. Also by F1, the last two terms of the right hand side of (G.2) can be

made to grow at o(n).
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