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Abstract

Tissue displacements required for mechanical property reconstruction in magnetic resonance

elastography (MRE) are acquired in a magnetic resonance imaging (MRI) scanner, therefore,

anatomical information is available from other imaging sequences. Despite its availability, few

attempts to incorporate prior spatial information in the MRE reconstruction process have been

reported. This paper implements and evaluates soft prior regularization (SPR), through which

homogeneity in predefined spatial regions is enforced by a penalty term in a nonlinear inversion

strategy. Phantom experiments and simulations show that when predefined regions are spatially

accurate, recovered property values are stable for SPR weighting factors spanning several orders

of magnitude, whereas inaccurate segmentation results in bias in the reconstructed properties that

can be mitigated through proper choice of regularization weighting. The method was evaluated in

vivo by estimating viscoelastic mechanical properties of frontal lobe gray and white matter for five

repeated scans of a healthy volunteer. Segmentations of each tissue type were generated using

automated software, and statistically significant differences between frontal lobe gray and white
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matter were found for both the storage modulus and loss modulus (p < 10−6). Provided

homogeneous property assumptions are reasonable, SPR produces accurate quantitative property

estimates for tissue structures which are finer than the resolution currently achievable with fully

distributed MRE.
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I. Introduction

Magnetic resonance elastography (MRE) is an emerging quantitative imaging modality

which estimates the distribution of tissue mechanical properties in vivo [1]. Considerable

success has been reported for liver, where estimates of the average storage modulus have

successfully predicted the stage of hepatic fibrosis [2]–[5]. MRE has also been applied to

breast [6], [7], brain [8]–[12], muscle [13], [14], and the soft palate [15]. Although MRE is

capable of capturing spatially heterogeneous material properties, the in vivo spatial

resolution achieved to date has been limited. As a result, average values of properties over

large regions of tissue have been reported in nearly all in vivo studies published in the

current literature. Bulk averages of MRE brain tissue properties have shown promise in

detecting diffuse neurological conditions such as hydrocephalus [16], multiple sclerosis

[17], and Alzheimer's disease [18]. While MRE has been successful in detecting focal

lesions in some applications, quantitative accuracy of the stiffness measures is less certain

[9], [19]. Techniques which improve the accuracy of local property estimates will serve to

increase the sensitivity of diagnostic criteria based on mechanical properties, as

demonstrated by studies on breast cancer [6], [7] and meningiomas [20].

Noise in the displacement measurements, modelling inconsistencies and MR artifacts

contribute to errors in the estimated properties which reduce the utility of the property

images. Methods to mitigate these negative effects are available, for example, more

sophisticated mechanical models [21], [22] may reduce the modelling mismatch, and

filtering techniques can suppress the effect of noise [23]. Other approaches involve reducing

the degrees-of-freedom in the inverse problem [24], [25] or applying additional constraints

through regularization [26], [27]. One type of regularization not yet explored by the majority

of MRE inversions is incorporation of spatial priors in the material property estimation

process. Since MRE motion data is collected in a magnetic resonance imaging (MRI)

scanner, a wealth of additional imaging sequences and contrast mechanisms are available to

identify anatomical features that can be incorporated in the MRE inversion.

A form of spatial prior has been investigated in ultrasound elastography where a generalized

Tikhonov regularization scheme was implemented to favor mechanical property solutions

which were close to an assumed distribution generated from B-mode or strain images [28],

[29]. These methods required a priori estimates of the property values, which were

generated from known tissue properties and relative strain levels. The properties of gelatin

phantoms estimated with the generalized Tikhonov approach were more accurate compared
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to estimates when no spatial information was supplied [28]. A disadvantage of this approach

to supplying spatial information is that assumed property values can bias the results, and if

accurate properties are already available, the reason to use elastography is diminished.

Another approach to supplying spatial information is known as “hard priors,” where a

number of predefined regions are assigned a single uniform material property value [29]. A

priori quantitative property information is not required, and the stability and speed of the

parameter estimation improves because the number of unknowns in the inverse problem is

decreased. However, segmentation errors can be problematic because constant regional

properties are strictly enforced. Intra-vascular ultrasound elastography using hard priors

based on deformable curves has been proposed to mitigate segmentation errors [30], though

geometrical constraints such as nonintersecting boundaries can be difficult to enforce in

regions of irregular shape.

Other model based imaging modalities have reported success using a soft prior

regularization (SPR) technique which favors constant material properties within predefined

spatial regions without requiring initial quantitative estimates of property values [31]–[34].

Thus, these methods are not influenced by the initial property estimates (provided values are

sufficiently close to truth to achieve convergence), avoiding the potential bias from assumed

property values. However, bias occurs when regions are incorrectly segmented and force

tissues with heterogeneous properties to be homogeneous, although the effect is probably

similar to the spatial averaging of properties over larger regions commonly performed in

MRE [35], and judicious selection of the SPR weighting can allow the algorithm to adjust

for segmentation errors. Further, not all material property estimates need to be associated

with a region, and values within structures where homogeneous properties are not expected

can remain fully distributed.

This work implements and evaluates the SPR technique described by Golnabi et al. [31] for

nonlinear inversion (NLI) MRE. Simulated data is used to show that SPR improves

quantitative accuracy of property estimates of finely detailed structures, and the effect of the

weighting factor and missegmentation is investigated in phantoms. Some initial in vivo

results are also presented for segmentations of gray and white matter of the frontal lobe.

A. Methods

1) Nonlinear Inversion MRE—Nonlinear inversion (NLI) techniques minimize an

objective function that quantifies the difference between the measured displacements and a

computational model of the tissue by updating an estimate of the mechanical property

distribution. Applying SPR adds a term to the objective function which penalizes

mechanical property variation within previously defined spatial regions that are presumed to

be homogeneous. The subzone method [36] is used to reduce the significant computational

load of the iterative solution of large 3-D problems, where the problem is divided into

smaller partitions (subzones) which are processed in parallel. The global property

distribution solution is then constructed from the union of all subzone estimates.

The objective function which is minimized on each subzone is given by
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(1)

Here, the first term quantifies the displacement error, in which Nm is the number of

measurements and um(k) denotes the complex-valued harmonic amplitude of the kth

displacement measurement. uc(k)(θ) is the displacement sampled at measurement point k

from a computational model with a given mechanical property distribution, θ [25], and | ... |

denotes the absolute value of a complex-valued number. A finite element implementation of

the heterogeneous viscoelastic form of the time-harmonic Navier's equation is used to

calculate uc(θ)

(2)

where μ is the complex-valued viscoelastic shear modulus (μ = μs + iμl), λ is the second

Lamé parameter (assumed to be real-valued), ρ is the density, ω is the excitation

frequency, T represents tensor transposition,  and is the complex-valued harmonic

displacement amplitude. A large value of λ is used together with a stabilized incompressible

finite element solution of (2) to model a nearly incompressible material [37], and ρ is held

constant at the density of water. The viscoelastic model used in this work reconstructs the

storage modulus, μs, and loss modulus, μl, so for ns unknown μs values and nl unknown

μlvalues, θ is a vector of length ns + nlgiven by

(3)

which represents multiple mechanical property parameters that can be expressed with

differing spatial resolutions [25]. The level of attenuation in a viscoelastic material can be

quantified through the damping ratio, ξ

(4)

A value ξ < 1 of results in an oscillatory decay response to a step input, whereas ξ > 1 leads

to a decay without oscillation [38].

The second term in (1) penalizes variation within prescribed regions. αsp is a scalar

weighting factor (referred to as the SPR weighting), and (L) is a soft prior matrix generated

using a predefined segmentation identifying specific features. For a given segmentation, a

material property point, i, is assigned to a region Ri. If Ri = 0, the material property point is

not associated with any region and remains fully distributed. The number of material

property points in region, Ri, is denoted by N(Ri). (L) is then defined as

(5)

where Ls and Ll are ns × ns and nl × nl submatrices, respectively. Each row and column

position is associated with a corresponding material property point, terms are defined by
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(6)

This approach allows different segmentations or different discretizations for each property

parameter [25]. In this work, μs and μl were treated the same, therefore, Ls = Ll. The third

condition in (6) differs slightly from Golnabi [31]: the denominator of the L term is N(Ri) –

1 so that the soft prior term in (1) is zero when all regions have constant properties.

Equation (1) is minimized on each subzone separately using the L-BFGS-B Quasi–Newton

implementation [39], [40]; therefore, constant material properties inside a region are only

enforced on the subzone level. Inter-subzone variation of a region is not penalized; hence,

property variation at the scale of the subzones (usually ~ 25 mm) is possible which provides

a degree of protection against missegmentation or low frequency spatial variation of

properties within a region. A truly mechanically homogenous region reconstructed using

NLI with SPR should exhibit little property variation over multiple subzones.

Spatial filtering (SF) is required to stabilize the progress of the iterative reconstruction [36].

The SF approach adopted for SPR involves convolution with a Gaussian smoothing kernel

after every iteration, so that the spatially filtered material property, θsf(i), is calculated using

(7)

where σ is the width of the Gaussian filter, rj is the Euclidean distance of point j from point

i, Nn is the number of material property points meeting neighborhood criteria, and

. The neighborhood criteria include material property points meeting

the conditions

(8)

which ensures region boundaries are not blurred by the smoothing operation, but retains the

stabilization of points not assigned to a region. SPR with all material property points

assigned to simple regions has a very strong regularization effect which renders SF

unnecessary; however, SPR segmentations where fine details are present or when some

material property points are included in region 0, still benefit from SF.

2) Simulated Brain Data—The utility of SPR for accurate estimation of the mechanical

properties of fine tissue structures was demonstrated using a simulation of human brain

tissue. A segmentation of gray and white matter from an anatomical MRI scan was used to

create a high resolution (1.3 mm) 3-D finite element model (27 node quadratic hexahedral

elements) of one quadrant of a human brain, allowing the incorporation of sharp

discontinuities in mechanical properties resulting from the mesh definition of finely-detailed

gray/white matter boundaries. Exterior brain surfaces were modeled as stress free whereas

BCs on surfaces which cut through the brain were generated by interpolating the in vivo

MRE displacement measurements. The tissue was modeled as a nearly incompressible
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viscoelastic solid (2), mechanical properties were assigned as μ = 2.2 + 2.2i kPa for gray

matter and μ = 2.8 + 2.2i kPa for white matter with a large value for λ such that the Poisson's

ratio was 0.4999. Tissue density of 1000 kgm−3 and an actuation frequency of 50 Hz were

used to match in vivo conditions. MRE measurement of tissue displacements was simulated

by sampling the high resolution displacement field at a 2 mm isotropic resolution with the

addition of various levels of Gaussian noise. Nearest neighbor interpolation of the high

resolution property distribution provided the MR-based tissue segmentations for SPR. Fig. 1

shows an example slice of the high resolution mechanical property and displacement fields,

as well as the corresponding 2 mm sampling of these distributions. MRE reconstructions

were performed with and without SPR under simulated displacement noise levels between

0% and 10%, and the recovered mechanical property values for each tissue class were

compared to the true values assigned in the simulation.

3) Data Collection—A phantom was constructed from a 100 × 75 × 40 mm block of

Mori-nu soft silken tofu (Morinaga, Torrance, CA, USA), with two 19 mm cylindrical

porcine skin gelatin inclusions (type A, 300 bloom, Sigma-Aldrich; St. Louis, MO, USA).

The upper and lower inclusions used 5% and 10% gelatin concentrations by weight,

respectively. The phantom was harmonically actuated at 100 Hz, and MRE motion data was

collected using a Philips 3T Achieva scanner (Philips Medical Systems, Best, The

Netherlands) with a single-shot, spin-echo echo-planar imaging sequence with added motion

sensitizing gradients [41]. A 64 × 64 data matrix was acquired over a 128 mm field-of-view,

and eighteen 1.8 mm slices were sampled with a 0.2 mm gap. All three motion components

were measured with eight equally spaced phase offsets over a period of the time-harmonic

motion.

Six repeat MRE examinations of a healthy 24-year-old male volunteer were performed on a

Siemens 3T Allegra scanner (Siemens Medical Solutions; Erlangen, Germany). Three-

dimensional, full-vector field displacement data at 50 Hz was acquired using a multi-shot,

variable-density spiral imaging sequence. The resulting displacement data had an isotropic 2

× 2 × 2 mm3 spatial resolution, and the full acquisition details are found in Johnson et al.

[9]. Additionally, a T1-weighted anatomical MPRAGE scan was acquired for registration

and segmentation. Scan 5 was discarded because the octahedral shear strain SNR did not

meet a signal quality threshold of 3.0 [42].

4) Phantom Validation—The background and each inclusion of the phantom were

manually segmented from the MR magnitude images and supplied to the SPR mechanical

property reconstruction algorithm. Values of αsp ranging from 10−13 to 10−9 were used to

investigate the sensitivity of the reconstruction to the regularization weighting. All other

forms of regularization commonly employed in NLI (including spatial filtering [36] and

total variation minimization [26]) were disabled to isolate the effect of SPR in the phantom

experiments. A fully distributed reconstruction using αsp with a spatial filter width of σ =

1.5 mm and total variation minimization weighting of 5 × 10−16 was also performed for

comparison.

The phantom was then deliberately segmented incorrectly to investigate the impact of

segmentation errors. Half of the lower 10% gelatin inclusion was included in the region
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corresponding to the tofu background, and a false segmentation was added to the

background region. Mechanical property reconstructions with αsp ranging from 10−13 to

10−9 were performed to explore the bias introduced by segmentation errors.

Fig. 2 shows a representative slice of the phantom MR magnitude image along with correct

and incorrect segmentations used in each of the phantom experiments. The low MR signal

intensity in the inclusion is not representative of its true size; pouring of the warm liquid gel

into the tofu to form the inclusions resulted in higher MR signal around the boundary. The

segmentation used the true size of the inclusion, which is visible as a brighter ring on the

MR magnitude image in Fig. 2.

Segmentation errors can result in regions which are too large or too small. The segmentation

of the 10% gelatin inclusion was eroded and dilated using a variety of kernels to produce a

series of inclusion size segmentations ranging from 23% to 217% of the true inclusion

volume, and the resulting mechanical property estimates from SPR with αsp = 10−10 were

plotted.

5) Application to Brain—Commonly, results reported in brain MRE involve averaging of

properties over the entire brain [8] or over gray and white matter separately after

segmentation [43], effectively treating these regions as homogeneous. However, the brain

has a complicated mechanical structure including fluid-filled ventricles, finely detailed gray/

white matter boundaries, and anisotropic white matter tracts such as the corpus callosum and

corona radiata. Different regions and structures of the cerebrum have been shown to exhibit

distinct mechanical properties [44], [45]; using SPR on large classes of tissue such as gray

and white matter may not be appropriate because some property inhomogeneity within each

class is expected. To evaluate SPR, we have isolated the frontal lobe where gray and white

matter regions are expected to be more homogeneous [46].

Segmentation was performed using T1-weighted anatomical images with FSL (FMRIB

www.fmrib.ox.ac.uk/fsl, [47]). Images were skull-stripped with the BET tool [48], and then

gray matter, white matter, and cerebrospinal fluid were segmented using the FAST tool [49].

The ICBM-152 template was registered to the T1-weighted images using the FLIRT tool

[50] for segmentation of the frontal lobe through the MNI structural atlas [51]. T1-weighted

images were registered to the magnitude images of each MRE dataset using FLIRT, and

masks for each tissue type were created with a partial volume threshold of 0.5. Application

of this transform also registered the MNI atlas to the individual mechanical property maps,

where the frontal lobe for each dataset was segmented with a 0.5 probability threshold.

A reconstruction using SPR with all of the cortical gray and white matter assigned to regions

was performed to illustrate the negative effect of heterogeneous properties associated with

the same region. Each of the five repeated brain datasets was also reconstructed using SPR

with the frontal lobe gray and white matter assigned to regions, and the rest of the brain

included in region 0 (no SPR). Values αsp of between 10−12 and 10−9 produced similar

regional property estimates. A value of 10−10 was selected for the brain studies in this paper

based on the phantom experiments and visual inspection of the mechanical property images.

Regional descriptions with complex boundaries such as gray and white matter benefit from
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spatial filtering, all brain reconstructions used a spatial filter width of σ = 1.5 mm and no

total variation minimization. The repeatability of the recovered regional mechanical

properties for multiple scans of the same subject was determined for SPR and compared to

fully distributed reconstructions (no SPR).

B. Results

1) Simulation Results—Fig. 3 presents recovered property images from the simulation

experiment shown in Fig. 1, and demonstrates that SPR preserves sharp discontinuities in

mechanical properties, and achieves accurate recovery of mechanical properties of fine

tissue structures. The improved contrast recovery is illustrated by the plots in Fig. 4; blurring

of the tissue boundaries results in a loss of contrast when SPR is not utilized.

2) Phantom Results—A representative slice of the recovered mechanical properties of

the phantom using the correct SPR segmentation is shown in Fig. 5 for a range of αsp values,

and Fig. 6 plots the mean estimated properties for each phantom material as a function of

αsp, illustrating that the soft prior storage modulus is not sensitive to the SPR weighting. The

loss moduli of the inclusions varies with αsp; low μl values in gelatin are typically difficult

to accurately recover because of limited sensitivity. Fig. 7 presents a similar series of

mechanical property images using the incorrect segmentation shown in Fig. 2—the upper

half of the inclusion is defined as its own region while the lower half is included in the

background. Fig. 8(a) compares the estimated property values of the 10% gelatin inclusion

generated using SPR with and without segmentation errors. Mean values of the upper and

lower halves of the inclusion are plotted. Fig. 7 and the left plot in Fig. 8 illustrate that

careful choice of αsp values allows the algorithm to correct for segmentation errors

(although some bias still remains). A more quantitative illustration of bias produced by

segmentation errors is shown in the right plot of Fig. 8, where the recovered mechanical

properties of the 10% gelatin inclusion are given as a function of the ratio of the segmented

and true inclusion sizes. Tables I and II present the mechanical property values of the

phantom regions indicated in Fig. 2 for a range of αsp values between 0 and 10−9.

3) Brain Results—Fig. 9 presents a representative slice of a brain reconstruction using

SPR with the cortical gray and white matter assigned to two homogeneous property regions,

demonstrating that assigning these large tissue classes to a single region does not produce

homogeneous property estimates in regions spanning multiple subzones. Fig. 10 shows the

same slice with the frontal lobe gray and white matter assigned to regions while the rest of

the brain is assigned to region 0 (no SPR), which produces a better result where contrast

between gray and white matter is detected, and the regions exhibit homogeneous properties

despite spanning several subzones. Fig. 11 shows that the mean recovered properties of each

frontal lobe tissue type have low variation over five repeated scans of the same subject. The

mean and standard deviation of the frontal lobe tissue properties across the five scans are

given in Table III.

C. Discussion

SPR allows recovery of accurate property values when anatomical information is available.

The simulation experiment detailed in Fig. 1 models the fine structure of the gray-white
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matter interface of the brain using a high resolution property distribution to generate

simulated data, which is then sampled at MR resolution to simulate finite resolution MRE

measurement of a continuous displacement field. Figs. 3 and 4 show that without SPR

reconstructed storage and loss moduli are blurred across tissue interfaces, which causes loss

of mechanical property contrast when compared to the true values, whereas supplying

spatial information through SPR recovers sharp property boundaries and accurate contrast.

Simulated motion noise causes a downward trend in modulus values with and without SPR,

however, at noise levels of approximately 5% expected in MRE quantitative accuracy is not

significantly affected.

The SPR performs well when the segmentation supplied to create the L matrix in (6) is

accurate. Fig. 6 indicates that the values of the recovered mechanical properties for a

phantom are stable over a wide range of regularization weights. The loss modulus of the

softer gelatin inclusion did exhibit variation with Correspond to the Mean Values for the

Regions Indicated in Fig. 2. Values Listed in the First Row (αsp = 0) Use Spatial Filtering

and Total Variation Minimization for Stability. All Other Rows Use Only SPR With the

Specified αsp Value, likely due to the small magnitude of energy loss in soft gelatin which

challenges the sensitivity of the inversion. The values of loss moduli have proportionally

higher variation compared to storage moduli due to their smaller magnitude. Tables I and II

show that in absolute terms the variation of both moduli in the background material is on the

order of 0.2 kPa for 10−12 ≤ αsp ≤ 10−9.

Fig. 5 demonstrates that the property maps become smoother as the regularization weighting

increases, as expected. Gelatin has substantially lower motion attenuation than tofu, which is

clearly indicated in the damping ratio images. Reconstructions using standard NLI MRE

regularization (spatial filtering and total variation minimization) and no SPR (see parts of

Fig. 5 and Tables I and II) show reduced contrast in the inclusions because spatial filtering

blurs edges and total variation minimization penalizes gradients in the property distribution.

SPR does not penalize contrast, therefore, recovered property values are more likely to be

indicative of the true properties. Interestingly, these simulation and phantom experiments

show that SPR preserves regional homogeneity even though property uniformity is preferred

only on the subzone scale which is larger than the geometrical contouring evident in the

structural segmentations.

When SPR is applied with accurate spatial information, the recovered mechanical property

estimates for tofu and gelatin phantoms are consistent over a wide range of regularization

weighting factors and across multiple subzones, indicating that the regional property values

are a robust estimate of the true properties. Figs. 7 and 8 illustrate the effects of

segmentation errors. If part of a structure is missing from the segmentation, decreasing αsp

allows the missing piece to appear while retaining smoothness in the truly homogeneous

regions. Fig. 7 has the lower half of the inclusion visible when αsp ≤ 10−11, and the left plot

of Fig. 8 shows the property values of the lower and upper halves of the inclusion moving

toward the correct value as αsp → 0, until instability arises from insufficient regularization

which degrades the solution when αsp < 10−13. Errors in the size of a segmented inclusion

create bias. The right plot of Fig. 8 indicates that segmentations with an incorrect inclusion

size lead to errors in the reconstructed storage modulus because the stiffness of the inclusion
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changes to compensate for the spatial phase shift of the shear waves caused by the incorrect

segmentation. The loss modulus is not as sensitive because of its lower contrast between the

inclusion and the background in this phantom. The false segmentation in a homogeneous

region (region H in Fig. 2) does not appear significantly different from the rest of the

background in the reconstructions shown in Fig. 7 and values reported in Tables I and II.

These results suggest that a cautious approach, in which as many anatomical structures as

possible are differentiated in the SPR segmentation, is likely to produce more accurate

property estimates compared to simply grouping large classes of tissue in a single region.

Segmentation of tissue types is complicated in vivo, and anatomical structures segmented

from conventional MR images may not have homogeneous mechanical properties.

Variations in the cytostructure can lead to changes in cell stiffness without affecting cellular

function. For example, changes in cell stiffness have been observed in response to

mechanical loading, and the loading experienced by a given tissue type is dependent on

location; therefore, some variation in properties across a tissue can be expected [52]. The

subzone approach to NLI inversion with SPR can mitigate errors resulting from slow

variation in tissue properties over large regions because the soft prior constraint is applied

over the portion of a tissue region defined by the subzone; hence, property variation at the

subzone scale (≈25 mm) is not penalized. Fig. 9 illustrates this concept. Choosing all white

or gray matter in the brain as a single region is not appropriate because structures such as the

corpus callosum, cerebral falx, and corona radiata are very likely to have different

mechanical properties relative to the surrounding tissue. The subzone soft prior algorithm

allows the mechanical properties to vary at larger spatial scales so that these structures are

differentiated. Even with mitigation from sub-zoning, SPR must be deployed judiciously.

Tissues with substantial spatial variation in properties should not be assigned to a single

region. A more detailed segmentation which delineates each substructure with different

mechanical properties would be required to avoid bias resulting from inaccurate spatial

information, or tissues where a homogeneous assumption is not valid can be assigned to

region 0 and remain fully distributed in terms of their MRE property parameter estimates.

Johnson et al. have recently demonstrated that the shear modulus of the corpus callosum and

corona radiata exhibit significant spatial variation which correlates with variations in the

tissue microstructure detailed in the literature and measured using DTI [53]. Applying SPR

to these structures does not improve the reconstructed properties, as would be expected from

an inappropriate application of SPR.

White and gray matter in the frontal lobe of the brain is a more appropriate application of

SPR because of its more homogeneous properties relative to tissue classes containing other

complex structures where the tissue property estimates can remain distributed. SPR

performed well in this initial in vivo experiment on healthy brain. Fig. 10 shows that the

frontal lobe gray and white matter images were homogeneous despite spanning multiple

subzones suggesting that the tissue classes are approximately homogeneous mechanically.

Fig. 11 and Table III show statistically significant differences between frontal lobe gray and

white matter mechanical properties using SPR with five repeated scans of the same healthy

volunteer. The storage and loss moduli of white matter (μs = 2.80 kPa, μl = 2.20 kPa) was

found to be significantly greater than gray matter (μs = 2.23 kPa, μl = 1.30 kPa) with p <
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10−6, which agrees with the findings of the majority of MRE brain publications to date [9],

[12], [54], [55], although, two papers using a curl based direct inversion MRE algorithm

have reported the opposite contrast [11], [43]. Greater contrast is detected between the two

tissue classes using SPR compared to fully distributed reconstruction because blurring of the

tissue interface is eliminated. Differentiation of gray and white matter is relatively poor in

the fully distributed property images in Fig. 10; the spatial resolution of MRE that can be

achieved currently is not sufficient to capture the fine structure. Spatial information provided

by SPR is beneficial in this case.

The variability over multiple scans of the same subject is codified by the coefficient of

variation (CoV) in Table III. SPR reconstruction produces a lower CoV than fully

distributed reconstructions for the storage modulus of both white matter (1.67% versus

2.98%) and gray matter (2.25% versus 2.59%). The CoV of SPR loss modulus

reconstructions is also better for white matter (3.09% versus 5.22%), but not for gray matter

(8.50% versus 6.08%), where greater variability may be due to the lower level of attenuation

compared to white matter. Accurately estimating localized homogeneous tissue properties

(such as frontal lobe gray and white matter) using SPR appears to be a promising avenue for

investigating the progression of brain disorders such as hydrocephalus, multiple sclerosis

and Alzheimer's disease.

II. Conclusion

This study demonstrates MRE reconstruction using SPR, which involves a priori

segmentation of one or more classes of tissue into regions where homogeneous properties

are expected. The nonlinear inversion algorithm is modified to favor homogeneous

properties within a region through the addition of a penalty term in the objective function

minimized during property parameter estimation. SPR performs well in simulations,

phantoms and in vivo when the segmentation is accurate. Property estimates are stable over a

wide range of regularization weightings, and the reconstruction process requires no prior

information on the quantitative property values of predefined regions. Segmentation errors

cause bias in the property estimates; however, proper choice of regularization weighting can

mitigate the effects. SPR was used to demonstrate significant differences between the

mechanical properties of the gray and white matter of the frontal lobe of the brain. Although

SPR must be applied judiciously to avoid bias from segmentation errors, it appears to be a

promising tool to accurately measure the mechanical properties of fine tissue structures

where homogeneous properties can reasonably be expected to exist.
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Fig. 1.
Example slice of the 3-D simulated brain experiment. The 1.3 mm resolution gray (GM) and

white matter (WM) distribution in A was used to generate a high resolution displacement

field, one component of which is shown in C. High-resolution field was then sampled at 2

mm to simulate MRE data acquisition, the resulting gray and white matter segmentation is

shown in B, and the MRE displacement field in D. Finite element meshing process does not

allow elements to extend outside the mask and results in some erosion of the boundaries.
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Fig. 2.
MR magnitude image of the phantom (left) with the correct (center) and incorrect (right)

segmentation. Background is silken soft tofu, the upper inclusion is 5% gelatin, and the

lower inclusion is 10% gelatin. Each region utilized by the SPR is indicated by a different

color, and regions where average property values are reported are designated with letters.

Region G is the portion of the lower inclusion that is incorrectly included as part of the

background. Region H is a false segmentation of the background.
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Fig. 3.
Representative slice of MRE reconstructions with simulated data (see Fig. 1). Left column

of images shows the high resolution property distribution used to generate the simulated

displacement data. Other columns show reconstructions without SPR (center) and with SPR

(right). Images computed from displacement data with 0% and 5% added noise are shown

for the storage modulus (upper images) and loss modulus (lower images).
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Fig. 4.
Recovered storage and loss modulus values as a function of simulated MR measurement

noise (mean values over each region). True property values used to generate the simulated

displacements are indicated by dotted lines.
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Fig. 5.
Representative slice of the recovered properties from a tofu phantom with an accurate SPR

segmentation. Each column shows results generated with the indicated value of αsp. At low

αsp values the property solutions become noisy due to insufficient regularization because

spatial filtering and total variation minimization are disabled in these cases. When αsp = 0,

standard spatial filtering and total variation minimization weights were used.
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Fig. 6.
Property values of each phantom material using SPR with the correct segmentation as a

function of αsp.
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Fig. 7.
Representative slice of the recovered properties from a tofu phantom with errors in the SPR

segmentation (see Fig. 2). Each column shows results generated with the value of αsp

indicated.
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Fig. 8.
Plots illustrating the effect of segmentation errors on recovered properties. Left: Mean

properties of the 10% gelatin inclusion as a function of αsp. The “full segmentation,” “half

segmentation: correct,” and “half segmentation: missed” labels correspond to regions A, F,

and G, respectively, in Fig. 2. Right: Effect of segmentation size errors on the estimated

properties of the 10% gel inclusion with SPR. The recovered inclusion storage and loss

moduli are given on the left and right axes, respectively, and the relative inclusion size is the

ratio of the segmented inclusion volume to the true volume.
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Fig. 9.
Representative slice of brain properties with an inappropriate application of SPR, where all

of the white matter and cortical gray matter is assigned to regions. A shows the T1 weighted

image with the reconstruction mask marked, B shows the gray and white matter

segmentation, C is the storage modulus, and D is the loss modulus.
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Fig. 10.
Representative slice of brain properties estimated using fully distributed reconstruction and

SPR when the white and gray matter of the frontal lobe were assigned to two regions, and

the rest of the tissue was included in region 0 (no SPR). A shows the T1 weighted image

with the frontal lobe boundary marked, B shows the gray and white matter segmentation of

the frontal lobe. C and D are the reconstructed storage and loss moduli, respectively, for

fully distributed reconstruction. E and F are the reconstructed storage and loss moduli when

SPR is applied to the frontal lobe. The boundary of the frontal lobe is marked in red on the

mechanical property images.
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Fig. 11.
Property values of the gray and white matter of the frontal lobe using SPR for repeated scans

of the same subject. Means across the five scans are indicated with dotted lines. Statistically

significant differences between frontal lobe gray and white matter were found for both

storage modulus (p = 8×10−8) and loss modulus (p = 3 × 10−7).
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TABLE I

Reconstructed Storage Modulus of a Tofu/Gelatin Phantom. Columns Correspond to the Mean Values for the

Regions Indicated in Fig. 2. Values Listed in the First Row (αsp = 0) Use Spatial Filtering and Total Variation

Minimization for Stability. All Other Rows Use Only SPR With the Specified αsp VALUE

Storage Modulus Values (kPa)

α sp A B C D E F G H

0* 4.10 3.64 7.34 4.17 3.64 7.63 6.88 3.94

1e-13 4.37 3.70 12.22 4.49 3.71 13.63 7.71 4.07

1e-12 4.16 3.60 11.44 4.22 3.60 13.54 5.69 3.95

1e-11 4.13 3.40 11.15 4.16 3.46 13.60 4.87 3.85

1e-10 4.11 3.45 11.49 4.14 3.44 14.57 4.48 3.86

1e-09 4.10 3.41 10.55 4.13 3.40 13.71 4.34 3.86
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TABLE II

Reconstructed Loss Modulus of a Tofu/Gelatin Phantom.Columns Correspond to the Mean Values for the

Regions Indicated in Fig. 2. Values Listed in the First Row (αsp = 0) Use Spatial Filtering and Total Variation

Minimization for Stability.All Other Rows Use Only SPR With the Specified αsp VALUE

Loss Modulus Values (kPa)

α sp A B C D E F G H

0* 0.88 0.39 0.67 0.88 0.39 0.65 0.72 0.80

1e-13 1.04 0.47 0.97 0.11 0.47 0.55 1.05 0.95

1e-12 0.90 0.31 0.72 0.90 0.31 0.18 0.76 0.81

1e-11 0.89 0.15 0.74 0.88 0.15 0.33 0.78 0.77

1e-10 0.92 0.07 0.71 0.91 0.07 0.69 0.82 0.76

1e-09 0.87 0.04 0.69 0.88 0.06 0.69 0.84 0.77
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TABLE III

Frontal Lobe Gray Matter (GM) and White Matter (WM) Properties Estimated Using SPR and Fully

Distributed (FD) Reconstruction. Values Are Reported as the Mean (x̄) AND STANDARD DEVIATION (σ) of Each Region

Across 5 Repeated Scans of the Same Subject (Storage Modulus, μs, AND LOSS MODULUS, μs, Both Given in Units of

kPa). The Coefficient of Variation (CoV) Is Calculated as a Percentage Using CoV = (σ)/(x̄) × 100

Tissue Type xs̄pr x̄fd σ spr σ fd CoVspr CoVfd

GM - μs 2.234 2.3251 0.050 0.0603 2.25 2.59

WM - μs 2.799 2.6438 0.047 0.0787 1.67 2.98

GM - μl 1.300 1.2847 0.111 0.0781 8.50 6.08

WM - μl 2.198 1.6344 0.068 0.0853 3.09 5.22
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