Abstract
We have developed a modified rhodamine (Rho) staining procedure to study uptake and efflux in murine hematopoietic stem cells. Distinct populations of Rho++ (bright), Rho+ (dull), and Rho- (negative) cells could be discriminated. Sorted Rho- cells were subjected to a second Rho staining procedure with the P-glycoprotein blocking agent verapamil (VP). Most cells became Rho positive [Rho-/Rho(VP)+ cells] and some remained Rho negative [Rho-/Rho(VP)- cells]. These cell fractions were characterized by their marrow-repopulating ability in a syngeneic, sex-mismatch transplantation model. Short-term repopulating ability was determined by recipient survival for at least 6 weeks after lethal irradiation and transplantation--i.e., radioprotection. Long-term repopulating ability at 6 months after transplantation was measured by fluorescence in situ hybridization with a Y-chromosome-specific probe, by graft function and recipient survival. Marrow-repopulating cells were mainly present in the small Rho- cell fraction. Transplantation of 30 Rho- cells resulted in 50% radioprotection and > 80% donor repopulation in marrow, spleen, and thymus 6 months after transplantation. Cotransplantation of cells from both fractions in individual mice directly showed that within this Rho- cell fraction, the Rho-/Rho(VP)+ cells exhibited mainly short-term and the Rho-/Rho(VP)- cells exhibited mainly long-term repopulating ability. Our results indicate that hematopoietic stem cells have relatively high P-glycoprotein expression and that the cells responsible for long-term repopulating ability can be separated from cells exhibiting short-term repopulating ability, probably by a reduced mitochondrial Rho-binding capacity.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bertoncello I., Hodgson G. S., Bradley T. R. Multiparameter analysis of transplantable hemopoietic stem cells: I. The separation and enrichment of stem cells homing to marrow and spleen on the basis of rhodamine-123 fluorescence. Exp Hematol. 1985 Nov;13(10):999–1006. [PubMed] [Google Scholar]
- Chaudhary P. M., Roninson I. B. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell. 1991 Jul 12;66(1):85–94. doi: 10.1016/0092-8674(91)90141-k. [DOI] [PubMed] [Google Scholar]
- Darzynkiewicz Z., Traganos F., Staiano-Coico L., Kapuscinski J., Melamed M. R. Interaction of rhodamine 123 with living cells studied by flow cytometry. Cancer Res. 1982 Mar;42(3):799–806. [PubMed] [Google Scholar]
- Drach D., Zhao S., Drach J., Mahadevia R., Gattringer C., Huber H., Andreeff M. Subpopulations of normal peripheral blood and bone marrow cells express a functional multidrug resistant phenotype. Blood. 1992 Dec 1;80(11):2729–2734. [PubMed] [Google Scholar]
- Emaus R. K., Grunwald R., Lemasters J. J. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta. 1986 Jul 23;850(3):436–448. doi: 10.1016/0005-2728(86)90112-x. [DOI] [PubMed] [Google Scholar]
- Fibbe W. E., Hamilton M. S., Laterveer L. L., Kibbelaar R. E., Falkenburg J. H., Visser J. W., Willemze R. Sustained engraftment of mice transplanted with IL-1-primed blood-derived stem cells. J Immunol. 1992 Jan 15;148(2):417–421. [PubMed] [Google Scholar]
- Jones R. J., Wagner J. E., Celano P., Zicha M. S., Sharkis S. J. Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells. Nature. 1990 Sep 13;347(6289):188–189. doi: 10.1038/347188a0. [DOI] [PubMed] [Google Scholar]
- Kessel D. Exploring multidrug resistance using rhodamine 123. Cancer Commun. 1989;1(3):145–149. [PubMed] [Google Scholar]
- Kibbelaar R. E., van Kamp H., Dreef E. J., Wessels J. W., Beverstock G. C., Raap A. K., Fibbe W. E., den Ottolander G. J., Kluin P. M. Detection of trisomy 8 in hematological disorders by in situ hybridization. Cytogenet Cell Genet. 1991;56(3-4):132–136. doi: 10.1159/000133069. [DOI] [PubMed] [Google Scholar]
- Klimecki W. T., Futscher B. W., Grogan T. M., Dalton W. S. P-glycoprotein expression and function in circulating blood cells from normal volunteers. Blood. 1994 May 1;83(9):2451–2458. [PubMed] [Google Scholar]
- Lampidis T. J., Munck J. N., Krishan A., Tapiero H. Reversal of resistance to rhodamine 123 in adriamycin-resistant Friend leukemia cells. Cancer Res. 1985 Jun;45(6):2626–2631. [PubMed] [Google Scholar]
- Li C. L., Johnson G. R. Rhodamine123 reveals heterogeneity within murine Lin-, Sca-1+ hemopoietic stem cells. J Exp Med. 1992 Jun 1;175(6):1443–1447. doi: 10.1084/jem.175.6.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mauch P., Hellman S. Loss of hematopoietic stem cell self-renewal after bone marrow transplantation. Blood. 1989 Aug 1;74(2):872–875. [PubMed] [Google Scholar]
- Morrison S. J., Weissman I. L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity. 1994 Nov;1(8):661–673. doi: 10.1016/1074-7613(94)90037-x. [DOI] [PubMed] [Google Scholar]
- Mulder A. H., Visser J. W. Separation and functional analysis of bone marrow cells separated by rhodamine-123 fluorescence. Exp Hematol. 1987 Jan;15(1):99–104. [PubMed] [Google Scholar]
- Ploemacher R. E., Brons R. H. Separation of CFU-S from primitive cells responsible for reconstitution of the bone marrow hemopoietic stem cell compartment following irradiation: evidence for a pre-CFU-S cell. Exp Hematol. 1989 Mar;17(3):263–266. [PubMed] [Google Scholar]
- Ploemacher R. E., van der Loo J. C., van Beurden C. A., Baert M. R. Wheat germ agglutinin affinity of murine hemopoietic stem cell subpopulations is an inverse function of their long-term repopulating ability in vitro and in vivo. Leukemia. 1993 Jan;7(1):120–130. [PubMed] [Google Scholar]
- Singh L., Winking H., Jones K. W., Gropp A. Restriction fragment polymorphism in the sex-determining region of the Y chromosomal DNA of European wild mice. Mol Gen Genet. 1988 Jun;212(3):440–449. doi: 10.1007/BF00330848. [DOI] [PubMed] [Google Scholar]
- Spangrude G. J., Brooks D. M., Tumas D. B. Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood. 1995 Feb 15;85(4):1006–1016. [PubMed] [Google Scholar]
- Spangrude G. J., Heimfeld S., Weissman I. L. Purification and characterization of mouse hematopoietic stem cells. Science. 1988 Jul 1;241(4861):58–62. doi: 10.1126/science.2898810. [DOI] [PubMed] [Google Scholar]
- Spangrude G. J., Johnson G. R. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7433–7437. doi: 10.1073/pnas.87.19.7433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Visser J. W., Bauman J. G., Mulder A. H., Eliason J. F., de Leeuw A. M. Isolation of murine pluripotent hemopoietic stem cells. J Exp Med. 1984 Jun 1;159(6):1576–1590. doi: 10.1084/jem.159.6.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Visser J. W., De Vries P. Identification and purification of murine hematopoietic stem cells by flow cytometry. Methods Cell Biol. 1990;33:451–468. [PubMed] [Google Scholar]
- Visser J. W., de Vries P., Hogeweg-Platenburg M. G., Bayer J., Schoeters G., van den Heuvel R., Mulder D. H. Culture of hematopoietic stem cells purified from murine bone marrow. Semin Hematol. 1991 Apr;28(2):117–125. [PubMed] [Google Scholar]
- Visser J. W., de Vries P. Isolation of spleen-colony forming cells (CFU-s) using wheat germ agglutinin and rhodamine 123 labeling. Blood Cells. 1988;14(2-3):369–384. [PubMed] [Google Scholar]