Skip to main content
. Author manuscript; available in PMC: 2014 Jul 23.
Published in final edited form as: Biometrics. 2014 Jan 21;70(2):409–418. doi: 10.1111/biom.12139

Table 2.

Power estimates obtained by contrasting pairs simulated under H1 : ρXs, Ys = ρ, to the null distribution returned by our algorithm and Clifford’s method, in addition to the true null obtained by simulating correlated pairs under model (2). Results are presented for different levels of autocorrelation, effect size and resolution: ϕ ∈ (0.05, 0.1, 0.3), ρ ∈ (0.2, 0.5, 0.8) and g ∈ (0.05, 0.01).

Power Estimates

ϕ = 0.05 ϕ = 0.1 ϕ = 0.3
grid size = 0.05 ρ = 0.2 0.921 (0.026) 0.418 (0.059) 0.103 (0.034) true
0.926 (0.031) 0.444 (0.087) 0.089 (0.042) ours
0.926 (0.030) 0.446 (0.077) 0.153 (0.045) Clifford
ρ = 0.5 1 (0) 0.997 (0.005) 0.426 (0.055) true
1 (0) 0.997 (0.005) 0.420 (0.089) ours
1 (0) 0.997 (0.005) 0.558 (0.100) Clifford
ρ = 0.8 1 (0) 1 (0) 0.951 (0.021) true
1 (0) 1 (0) 0.879 (0.127) ours
1 (0) 1 (0) 0.950 (0.045) Clifford

grid size = 0.01 ρ = 0.2 0.915 (0.033) 0.405 (0.052) 0.104 (0.030) true
0.935 (0.031) 0.404 (0.073) 0.124 (0.069) ours
0.927 (0.030) 0.415 (0.064) 0.169 (0.046) Clifford
ρ = 0.5 1 (0) 0.996 (0.007) 0.424 (0.059) true
1 (0) 0.996 (0.007) 0.391 (0.154) ours
1 (0) 0.996 (0.007) 0.510 (0.111) Clifford
ρ = 0.8 1 (0) 1 (0) 0.937 (0.022) true
1 (0) 1 (0) 0.949 (0.030) ours
1 (0) 1 (0) 0.972 (0.018) Clifford