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Abstract

Whole cell cryo-electron tomography emerges as an important component for structural system

biology approaches. It allows the localization and structural characterization of macromolecular

complexes in near living conditions. However, the method is hampered by low resolution, missing

data and low signal-to-noise ratio (SNR). To overcome some of these difficulties one can align

and average a large set of subtomograms. Existing alignment methods are mostly based on an

exhaustive scanning and sampling of all but discrete relative rotations and translations of one

subtomogram with respect to the other. In this paper, we propose a gradient-guided alignment

method based on two subtomogram similarity measures. We also propose a stochastic parallel

optimization that increases significantly the efficiency for the simultaneous refinement of a set of

alignment candidates. Results on simulated data of model complexes and experimental structures

of protein complexes show that even for highly distorted subtomograms and with only a small

number of very sparsely distributed initial alignment seeds, our method can accurately recover

true transformations with a significantly higher precision than scanning based alignment methods.

I. Introduction

Whole cell cryo-electron tomography emerges as an important component for structural

system biology approaches [1], [2]. Cryo-electron tomograms of whole cells essentially

contain information on the systems level about the abundance, spatial distributions and

orientations of all large macromolecular complexes at a given time point in a cell [3], [4],

[5], [6]. However, detecting these complexes in whole-cell cryo-electron tomograms is a

challenging task due to low signal-to-noise ratio (SNR), distortions and low non-isotropic

resolution (> 5 nm) of the tomograms [6]. Therefore traditional image registration methods

derived for low distortion images usually cannot be applied to alignment of subtomograms.

One strategy is to segment the tomogram into a large number of single complex

subtomograms, which are then classified into like objects by a pair-wise comparison to each

other. After subtomogram classification averaging of the aligned subtomograms in each

class reveals the shapes of macromolecular complexes in each class at an increased SNR,

which can then be assigned to the corresponding positions in the whole cell tomogram.
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Subtomogram alignment methods are key to such processes and have been applied to several

complexes, including membrane-bound complexes [7], [8]. However, due to the potentially

large number of subtomograms in whole cell tomo-grams alignment protocols must not only

be precise but also computationally very efficient. Existing alignment methods are typically

based on the exhaustive sampling over discrete sets of rotations and translations of one

subtomogram with respect to a second. The optimal alignment is then detected using the

cross-correlation similarity measure between both subtomograms [9], [10]. However, due to

the heavy computational cost, the exhaustive rotational search can only sample a limited

number of angles. Moreover the typically applied Fast Fourier Transform (FFT) based

translational alignment can only approximate best translations at the resolution of the unit

voxels. To enhance computational efficiency an approximate alignment method has been

proposed to generate alignment candidates based on a fast translation-invariant rotational

search [11]. Then a local refinement was used starting from the alignment candidates close

to the optimal solution. However, the full potential of purely using local refinement on very

sparsely distributed starting candidates has not been investigated yet. In this paper, we

propose an efficient gradient-guided alignment method based on two subtomogram

dissimilarity scores. In addition, we design a stochastic parallel framework that significantly

speeds up the simultaneous refinement of multiple alignment candidates.

We demonstrate on realistically simulated data of models and real macromolecular

structures that for highly distorted subtomograms, even given a small number of evenly

sampled initial angles with a large interval of 60°, our method can accurately recover true

transformation with very high precision.

II. Methods

Here we provide a gradient-guided refinement framework for subtomogram alignment that

minimizes a dissimilarity score defined by the squared sum of the differences between a

parameter fixed function and a function whose parameters are optimized. We consider two

types of dissimilarity scores for subtomogram alignment, which both incorporate missing

wedge corrections. A real space constrained dissimilarity score (Section II-B) and a Fourier

space constrained dissimilarity score (Section II-D). In principle one would like to refine

each of the solutions independently, however this is computationally expensive and not

feasible for large scale subtomogram classifications necessary in whole cell tomography.

We therefore provide also a stochastic parallel refinement framework (Section II-C) to

efficiently reduce the total number of refinement steps.

A. Parameter definitions

For simplicity, we denote two subtomograms as two integrable functions . For

, let τa be the translation operator (τag)(x) := g(x – a). For a rotation R in the three-

dimensional rotational group SO(3), let ΛR be the rotation operator, such that (ΛRg)(x) :=

g[R−1(x)]. R can be represented as a 3 by 3 rotation matrix R. In this case, (τaΛRg)(x) =

g(R−1(x – a)).
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The collection of linear transformation parameters combining both rotation and translation

can be expressed as β = (R, a) = (φ, θ, ψ, a1, a2, a3)T, where (φ, θ, ψ)T are Euler angles with

the ’ZYZ’ convention [12] to correspond rotation R, and translation parameters a = (a1, a2,

a3)T. In addition, for simplicity, we denote the combined linear transform operator κβ :=

τaΛR.

B. Local optimization of subtomogram alignment based on a real space constrained
dissimilarity score (RCS)

We now describe the refinement of the subtomogram alignment, given a coarse solution for

R and a. The goal is to identify the exact solution given the current values of R and a as

starting parameters. To perform the scoring one must define a dissimilarity measure for the

alignment of the two subtomograms. Besides the low resolution and SNR of subtomograms,

distortions due to missing data (ie, the missing wedge effect) make subtomogram alignment

challenging, and these effects must be explicitly considered in the alignment process.

To address this problem, Förster et al proposed a constrained correlation measure with

missing wedge corrections [9]. It is based on a transform that eliminates the coefficients in

the missing wedge region. Let  be a missing wedge mask function that

defines valid and missing Fourier coefficients. Then for a given subtomogram f one can

define a modified subtomogram function , where ℜ

denotes the real part a complex function, and  is the Fourier transform operator.

Correspondingly, a modified subtomgram function for the second subtomogram g is defined

as .

The normalized subtomogram transforms can be defined as  and

 where μ is the mean operator, defined as , and 

denotes the size of the subtomogram f. μf is therefore the average intensity value of

subtomogram f.

Then the constrained correlation is calculated as

(1)

Because of the subtomogram normalization, this constrained correlation is equivalent to a

constrained dissimilarity score:

(2)

For a given initial guess of the rotation R (for instance one of the local minima in a

rotational search) one can determine the corresponding best translation τa that minimizes the
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distance criteria d efficiently using Fast Fourier Transform (FFT)). Given any initial ΛR and

τa, we seek to obtain an increment ΛΔR and corresponding τΔa so that

(3)

Since  is fixed with respect to β, we use the Levenberg-Marquardt algorithm [13] to

obtain such increments. This algorithm converges very fast.

Let xj, j = 1 . . . n be the locations of all n voxels in the grid of the subtomogram, then we

have a discrete form of the constrained dissimilarity score

(4)

According to the Levenberg-Marquardt algorithm, Δβ = (ΔR, Δa) can be obtained by

computing

(5)

Here f and gβ are vector representations

(6)

and

(7)

J is the Jacobian matrix whose jth row is , which is approximated by numerical

differentiation; λ is a damping factor to control the rate of convergence.

The final result of this section provides the refined alignment parameters R2 = R1 + ΔR1 and

a2 = a1 + Δa1 given the initial parameter set R1 and a1. To perform a complete refinement

this process must be repeated iteratively until convergence is achieved (next section).

C. Stochastic parallel refinement process

To carry out a global optimization it is necessary to perform multiple refinement runs

starting each time from a different candidate rotation angle. However, to carry out these

individual optimizations independently is time consuming, which would prevent large-scale

applications of subtomogram alignments. Therefore, we propose a stochastic parallel

refinement framework to prioritize for those candidate transform parameters with smaller

dissimilarity scores. The basic idea of this iterative algorithm is to store the scores of all m

candidate transformation parameters β1, . . . , βm, where each β = (R, a) consists of both

rotation and translation parameters. The choice of which βj to refine next is stochastically

decided according to a probability obtained from dβj.
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In other words, at each iteration candidate angles βj with smaller dβj compared to other dβk, k

≠ j, have a higher probability of being selected for refinement using the incremental method

described in section II-B.

We define a sampling probability that considers both rank and magnitude of d. Suppose the

candidate parameters are ordered such that

(8)

Then for j = 1 . . . m the sampling probability of βj is proportional to pj with

(9)

where p1 = 1 and t is a scaling threshold such that the distinction between pj and pj–1 is at

least 10t/(m–1), and pm/p1 ≥ 10t. The iterative process is terminated when changes in d

compared to its initial value are below a given threshold.

To further enhance the computational efficiency, similar candidate transforms β are removed

from the list to omit redundant optimization runs. The similarity of two transforms βj and βk

is defined as the the Frobenius norm ∥Dβjβk∥F, where

(10)

. If ∥Dβjβk∥F ≤ γ is lower than a predefined threshold γ, then the transform

leading to the larger of the two dissimilarity scores d is removed from the target list.

To terminate the optimization process, at each iteration the ratio between the smallest and

the initial minimum score is calculated. The iterative process is terminated when

convergence is achieved, which is identified by a linear regression ratio over the minimal

scores in last iterations. In case convergence cannot be achieved the optimization is

terminated after a large number of iterations nmax_iter.

In this section we have introduced a parallel iterative refinement method that relies on a

similarity measure and local optimization process as described in Section II-B. In the

following section, we introduce another refinement method based on a different similarity

measure between subtomograms.

D. Local optimization of subtomogram alignment based on a Fourier space constrained
subtomogram dissimilarity score (FCS)

After having introduced an iterative refinement process, and introduced a dissimilarity

measure in Section II-B, we now test the refinement process further with a second

dissimilarity score. This new score is based on a constrained dissimilarity score computed

directly in Fourier space [11]:

(11)
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By properties of the Fourier transform

(12)

, given a fixed initial R, the initial a can be efficiently calculated using FFT. Because  is

not expressed as the summed square of differences, here the Levenberg-Marquardt

algorithm cannot be directly applied. However, because  has a regular structure

containing only binary 0 and 1 values, one can approximate  as

(13)

where  is treated as a constant in the whole refinement step.

Let ξj, j = 1 ... n be the locations of all n voxels in the grid of the Fourier transform of the

tomogram such that . Then a discrete form of the dissimilarity score can

be formulated

(14)

Because the above score is based on a complex function, the Levenberg-Marquardt

algorithm cannot be directly applied. Therefore in the following section we derive a new

version of the Levenberg-Marquardt algorithm for complex functions. In this version, Δβ

can be obtained by computing

(15)

where

(16)

and where ℜ and ℑ denote real and imaginary parts and

(17)

Here f and gβ are vector representations of Fourier transform of the two subtomograms

(18)

and

(19)
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J is the Jacobian matrix whose jth row is , where the derivative with respect to

the translational parameters can be determined analytically (according to Equation (12)) and

the derivative with respect to the rotational parameters is approximated by numerical

differentiation. λ is a damping factor to control convergence speed.

E. Generating simulated cryo-electron tomograms

For a reliable assessment of the method tomograms must be simulated as realistic as

possible. We follow a previously applied methodology for realistically simulating the

tomographic image formation [4], [6], [9], [14]. Initial density maps at 4 nm resolution are

generated and used as samples for simulating electron micrograph images at different tilt

angles. The tilt angles are set within a certain maximal range with steps of 1°. As a result our

data contains a wedge-shaped region in Fourier space for which no data has been measured

(missing wedge effects), similar to experimental measurements. The missing wedge effect

leads to distortions of the density maps in real space along the tilt-axis. To generate realistic

micrographs, noise is added to the images and the resulting image map is convoluted with a

Contrast Transfer Function (CTF), which describes the imaging in the transmission electron

microscope in a linear approximation. Any negative contrast values beyond the first zero of

the CTF are eliminated. We also consider the modulation Transfer Function (MTF) of a

typical detector used in whole cell tomography, and convolute the density map with the

corresponding MTF. The CTF and MTF describe distortions from interactions between

electrons and the specimen and distortions due to the image detector [15], [14]. Typical

acquisition parameters used during actual experimental measurements of whole cell

tomograms [4] were used: voxel grid length = 1 nm, the spherical aberration = 2 × 10–3m,

the defocus value = –4 × 10–6m, the voltage = 200kV, the MTF corresponded to a realistic

electron detector [16], defined as sinc(πω/2) where ω is the fraction of the Nyquist

frequency.

Finally, we use a backprojection algorithm to generate a tomogram from the individual 2D

micrographs that were generated at the various tilt angles [4]. To test the influence of

increasing noise, we add different amount of noise to the images, so that the SNRs range

between ∞ and 0.1, respectively. Figure 1(b) shows the reconstructed subtomograms of a

phantom model at different noise levels and different tilt angle ranges.

All our methods are implemented in MATLAB.

III. Results

We test our method on phantom models and actual structures of protein complexes.

To assess the general performance, 100 pairs of subtomograms with randomly placed

phantom models were generated for different SNR levels and tilt angle ranges (Figure 1(b)).

Our stochastic parallel refinement method is tested using both the RCS and FCS distance

scores1.

1Stopping criterion for optimization: (nmin_dist = 10, tregress = 0.001 and nmax_iter = 1000)
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We test our approach with respect to two factors. First, the maximal alignment error

obtained from the refinement and second, the number of iterative steps that are needed to

determine the optimal solution.

We show that even at a low SNR level of 0.5 and a typical range of tilt angles between −70°

and +70° our method can still achieve a very low alignment error (Table I). For example

even when the rotational sampling is performed at only 60° intervals the stochastic iterative

refinement process together with the RCS scoring produces on average errors of 3.1° , while

the FCS scoring achieves 2.9° error (Table I). This angle error is significantly lower than

would be expected from exhaustive scanning where sampling of rotational angles is usually

performed at 10° or 5° sampling intervals without additional refinement. At 5° intervals a

total of 168,634 candidate orientations must be processed while at 60° rotational intervals

only 108 candidate orientations are processed. Also our method can in general achieve a

small error for the translation of subtomograms that cannot be reached by an FFT based

exhaustive sampling, which on average cannot be less than 0.5 (Table II).

The parallel stochastic refinement process reduces considerably the number of refinement

iterations that are needed to reach the global solution. At a rotational sampling of 60° , there

are 108 candidate orientations that can potentially serve as starting points for a refinement

process. Without the parallel stochastic optimization method, a refinement of a candidate

orientation takes on average about 60 iterations per run, totaling about 6480 iterative

refinement steps to find the global optimum among all candidate orientations if all candidate

orientations are refined independently. However, our parallel stochastic refinement process

reaches convergence already within 200-300 iterative refinement steps (Figure 2). We

estimate that the parallel stochastic refinement is on average about 20 to 40 fold faster in

comparison to the independent refinement of all candidate orientations (Table III).

Next, we further test our alignment methods for refining density maps of complexes by

averaging all aligned subtomograms. We generated 1000 subtomograms (at SNR 0.5, tilt

angle range ±60°) containing randomly oriented models. We then aligned the tomograms

against the initial template using our methods and rotational sampling with 60° angle

intervals. From the resulting averaged density maps it can be seen that our methods can

successfully recover the initial model structure (Figure 3).

A. Pairwise alignment of subtomograms from real macromolecular complexes

A whole cell cryo-electron tomogram consists of instances of macromolecular complexes of

different types. These instances are segmented into subtomograms and can be classified after

pairwise alignment, which is fundamental for successful structural systems biology analysis

of these instances. In this section, we test our methods on subtomograms of four

macromolecular complexes obtained from the Protein Data Bank (PDB id 1KP8, 2GHO,

1W6T, 1YG6). The density map of each complex is calculated from its atomic structure by

applying a low pass filter at 4 nm resolution using the PDB2VOL program of the Situs 2.0

package [18] and voxel spacing of 1 nm. The resulting density maps are used to simulate 20

subtomograms for each randomly placed macromolecular complex, at SNR 0.5 and tilt angle

range ±60° (Section II-E).
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We perform all pairwise alignments between all 80 subtomograms with sampling of 60°

rotational angle intervals. After alignment the resulting dissimilarity score matrix for

subtomogram classification is significantly improved in comparison to the dissimilarity

score matrix generated from the initial starting structures (Figure 4 (a)).

After classification and alignment, the resulting averaged tomograms are very similar to the

original density maps. The distortions evident in the individual subtomograms are greatly

reduced after averaging (Figure 4 (b)).

IV. Conclusion

In this paper, we have proposed a new gradient based method for high precision

subtomogram alignments. Combined with the RCS and FCS scores, this method can achieve

significantly lower alignment error in comparison to an exhaustive sampling method. We

show that this accuracy can already be reached with only a relatively small number of

sampled candidate orientations, for example at rotational intervals of 60°. Moreover, we

have proposed a very efficient stochastic parallel refinement method, which is able to find

the global optimum with only a small fraction of iterations in comparison to the independent

sampling and refinement with the same sampling angle intervals. Together, these

improvements increase significantly the efficiency and accuracy for subtomogram

alignments, which is a key factor for the systematic classification of macromolecular

complexes in cryo-electron tomograms of whole cells.
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Fig. 1.
(a) Density map of an unsymmetric phantom model consisting of four different 3D Gaussian

functions. This density map is used to simulate subtomograms of 323 voxels. (b) A slice of

the reconstructed tomograms at different levels of noise (∞, 1, 0.5, 0.1), and different tilt

angle ranges leading to different levels of missing wedge distortions. The Isodensity contour

plot are generated using the Chimera software package [17]. The slices are plotted using

MATLAB.
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Fig. 2.
Top panels: The minimum dissimilarity scores obtained at different iterations subtracted

from the true distance. Bottom panels: The difference ∥Dβpredβtrue∥F between predicted and

true transforms at those iterations where minimum dissimilarity scores are obtained. Top, (a)

Subtomogram alignments based on the real space constrained dissimilarity score (RCS), and

(b) based on the Fourier space constrained dissimilarity score (FCS). Shown is the

performance for subtomograms with SNR 0.5, missing wedge angle 30°. The method was

tested with rotational angles sampled at angle interval 60°

Xu and Alber Page 12

IEEE Int Conf Systems Biol. Author manuscript; available in PMC 2014 July 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3.
Averaged subtomograms. Left, aligned using RCS. Right, aligned using FCS.
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Fig. 4.
(a) Dissimilarity score matrices for subtomogram classification. The matrix elements

representing the same complexes are in consecutive order. (Top row) Dissimilarity score

matrix based on the initial subtomogram orientations before alignment for (left column)

RCS score and (right column) FCS score. (Bottom row) RCS and FCS score matrices after

subtomogram alignments. The alignment is performed at a sampling with 60° rotation angle

intervals. (b) Density maps of complexes generated after averaging of the aligned

subtomograms in the same class. (Left column) Isodensity contour plot of the density

distribution in single subtomogram for each complex. (Middle and right columns) Isodensity

contour plot of the resulting density maps generated by averaging the 20 subtomograms

aligned with the RCS and FCS scores, respectively.
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TABLE I

Subtomgram alignment error in terms of the difference in the determined and true rotational angle of the

subtomograms. Shown are the medians and median absolute deviations of all 100 subtomogram alignments.

RCS

SNR
∞ 1 0.5 0.1

Tilt

±90° 0.71 ± 0.49 3.3 ± 2.8 2.6 ± 1.4 14 ± 9.3

±80° 0.85 ± 0.54 2.5 ± 1.8 3.5 ± 2.4 21 ± 14

±70° 1.2 ± 0.53 1.9 ± 1.3 3.1 ± 1.7 19 ± 12

±60° 0.97 ± 0.49 2 ± 0.97 3.7 ± 2.4 49 ± 45

±50° 1.8 ± 0.9 2.9 ± 1.6 7 ± 5.2 87 ± 63

±40° 1.6 ± 1 9 ± 8.3 55 ± 53 123 ± 31

FCS

∞ 1 0.5 0.1

±90° 0.89 ± 0.54 2.6 ± 2.1 2.4 ± 1.1 8.5 ± 4.5

±80° 1.1 ± 0.61 2.2 ± 1.6 3.2 ± 2.2 12 ± 7.7

±70° 2 ± 0.86 2.1 ± 1 2.9 ± 1.3 16 ± 11

±60° 1.5 ± 0.82 2.4 ± 1.2 3.8 ± 2.1 34 ± 30

±50° 2.6 ± 1.1 3.4 ± 1.8 6.3 ± 4.2 43 ± 37

±40° 15 ± 14 92 ± 40 106 ± 37 113 ± 26
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TABLE II

Subtomogram alignment error in terms of the difference in the Euclidean distance between determined and

true subtomogram translations. Shown are the medians and median absolute deviations of all 100

subtomogram alignments.

RCS

SNR
∞ 1 0.5 0.1

Tilt

±90° 0.035 ± 0.023 0.16 ± 0.12 0.19 ± 0.12 0.96 ± 0.66

±80° 0.045 ± 0.029 0.24 ± 0.2 0.21 ± 0.15 1.3 ± 0.89

±70° 0.078 ± 0.037 0.25 ± 0.17 0.3 ± 0.18 1.3 ± 0.74

±60° 0.068 ± 0.036 0.19 ± 0.12 0.43 ± 0.3 2.2 ± 1.3

±50° 0.14 ± 0.078 0.26 ± 0.17 0.65 ± 0.51 2.3 ± 1.3

±40° 0.15 ± 0.092 0.74 ± 0.64 1.7 ± 1.3 3.2 ± 1.6

FCS

∞ 1 0.5 0.1

±90° 0.047 ± 0.023 0.12 ± 0.081 0.11 ± 0.053 0.49 ± 0.31

±80° 0.053 ± 0.03 0.15 ± 0.1 0.18 ± 0.1 0.85 ± 0.66

±70° 0.11 ± 0.057 0.13 ± 0.074 0.21 ± 0.1 0.95 ± 0.58

±60° 0.11 ± 0.061 0.2 ± 0.094 0.3 ± 0.15 1.6 ± 1.2

±50° 0.19 ± 0.1 0.28 ± 0.16 0.44 ± 0.26 1.8 ± 1.2

±40° 0.61 ± 0.54 3.3 ± 2.7 4.3 ± 2.6 6.2 ± 3

IEEE Int Conf Systems Biol. Author manuscript; available in PMC 2014 July 23.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Xu and Alber Page 17

TABLE III

Fold change for the decrease in the iteration number needed by stochastic parallel optimization compared to

exhaustive independent refinement. Shown are the medians and median absolute deviations of all 100

subtomogram alignments.

RCS

SNR
∞ 1 0.5 0.1

Tilt

±90° 28 ± 5.4 23 ± 3.4 21 ± 1.8 21 ± 2.3

±80° 28 ± 4.6 23 ± 2.7 21 ± 2.2 21 ± 2.8

±70° 27 ± 4.2 21 ± 2.4 22 ± 2.7 20 ± 2.4

±60° 28 ± 4.1 21 ± 2.5 21 ± 1.8 21 ± 3

±50° 23 ± 3.1 22 ± 2.4 20 ± 2.4 21 ± 2.9

±40° 23 ± 3.2 20 ± 2.5 20 ± 2.3 20 ± 2.2

fcs

∞ 1 0.5 0.1

±90° 40 ± 12 28 ± 6.3 26 ± 4.2 21 ± 2

±80° 37 ± 11 26 ± 4.7 24 ± 3.3 21 ± 1.8

±70° 36 ± 5.3 26 ± 4.6 24 ± 3.6 20 ± 2.1

±60° 36 ± 8.4 26 ± 4.6 24 ± 3.2 21 ± 1.8

±50° 29 ± 6.4 24 ± 3.9 23 ± 2.8 21 ± 2.1

±40° 24 ± 4.6 22 ± 3.2 20 ± 2.5 20 ± 3.3
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