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Professor Georg Goldenberg is to be commended for providing a detailed and thoughtful

summary of much of the body of work relevant to apraxia. His contribution to the field has

been sustained and important, raising the profile of a fascinating and sometimes perplexing

disorder. In that context, there are a number of areas in which he seems unduly influenced

by older “box and arrow” models of cognition and action, perhaps failing to fully appreciate

the implications of recent research relevant to the distributed architecture of the action

semantic system. In this commentary, I will first summarize two of Goldenberg’s central

premises, and then briefly review recent evidence that permits us to reject them.

Goldenberg claims that there are “no fixed associations between tools and the manual

actions of their use” (Goldenberg, 2013, p. 126) because there is great variability in

performance across instances of use of a given tool, and thus “no firm fundament for the

storage of manipulation knowledge…” (p. 124). He notes, however, that there is evidence

for “general functional knowledge” that a) includes the typical actions associated with tools,

such as knowledge that a hammer’s use “consists of powerful strokes” (Goldenberg, 2013,

p. 125), b) takes into account the relative frequency and familiarity of actions associated

with tools, c) permits generalization across different variants of a given tool, and d) is used

in extended, complex tasks, along with stored scripts or schemas that “represent what is

shared by different instances of a multistep action but leave open ‘slots’ for filling in

specification of objects or actions that are specific to individual applications of that schema”

(p. 143). Goldenberg assumes that motor information plays no role in any of these attributes

of “general functional knowledge” but rather seems to imply that this knowledge has a

verbal/propositional format. He does acknowledge, however, that motor representations may

play a role in “special” cases requiring “specialized patterns of motor coordination like

skilled typewriting” (Goldenberg, 2013, p. 125). (This arbitrary distinction between ordinary

and special cases of action bears discussion in its own right given that even “simple” tool-

use is a learned motor skill, too—see e.g., Kahrs, Jung, and Lockman (2013) – but lack of

space precludes that discussion here).

The second questionable premise is that production and recognition of tool-use pantomime

relies upon information entirely independent from that required for actual tool-use, because

“the range of actions that we know and understand is much larger than the range of actions

our motor system can execute” (Goldenberg, 2013, p. 183). Specifically, pantomime

requires “selection and combination of distinctive features extracted from a mental image of

tool use” based on “some knowledge about the action or, respectively, some memory of

having witnessed this action before” (Goldenberg, 2013, p. 183). Again, the format of these

“mental images” is not specified, but one can infer that they are meant to be visual and/or
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verbal (in any event, not motor). With respect to recognition, Goldenberg views as

“awkward” the idea that a supplementary mechanism would be needed for understanding

actions that are not in our motor repertoire (Goldenberg, 2013, p. 183).

In response to these claims, I’ll briefly review some recent evidence about how the brain

organizes semantic information (including stored action knowledge). The data I review are

consistent with the basic premises that: 1) knowledge representations are distributed and

graded, exhibiting visual, motor, auditory, and/or tactile properties as a function of mode(s)

of acquisition, current network states, task demands, and location in the brain (e.g., Plaut,

2002), and 2) brain regions involved in the representation of knowledge are the same regions

that were involved in acquiring the information (e.g., Allport, 1985).

A large number of studies show that knowledge of manipulable objects depends in part on

spatial and motor processing regions in the frontal and parietal lobes (e.g., Beauchamp &

Martin, 2007). Moreover, apraxics with parietal lesions are less accurate than non-apraxics

on semantic judgments about tools, but are more accurate than non-apraxics on semantic

judgments about animals (Buxbaum & Saffran, 2002). Consistent with this finding,

transcranial magnetic stimulation (TMS) of the left inferior parietal lobe (a common site of

apraxia-inducing lesions) delays participants’ ability to name manipulable objects but not

non-manipulable objects (Pobric, Jefferies, & Lambon Ralph, 2010). Using eyetracking, we

have also shown that implicit competition between objects used with similar actions is

slower and more attenuated in apraxics than non-apraxics (Lee, Mirman, & Buxbaum,

Submitted for publication; Myung et al., 2010). This pattern holds even when the structural

(3-dimensional shape) similarity of similarly-used object pairs is deliberately low (e.g.,

target = spray can, distractor = camera) and matched with the structural similarity of object

pairs that are not used similarly (Lee, Middleton, Mirman, Kalenine, & Buxbaum, 2013;

Lee, et al., Submitted for publication; and see Campanella & Shallice, 2011; Helbig, Graf, &

Kiefer, 2006; Kiefer, Sim, Helbig, & Graf, 2011; Myung, Blumstein, & Sedivy, 2006 for

related data from healthy participants).

However, despite our previous demonstrations that functional knowledge is spared (and

manipulation/use knowledge impaired) in patients with apraxia (Buxbaum & Saffran, 2002;

and see Boronat et al., 2005; Canessa et al., 2008 for related findings), it might be argued

that many of these effects derive from what Goldenberg would term “general functional”

rather than motoric information. Yee, Chrysikou, Hoffman, and Thompson-Schill (2013)

recently reported data that cannot be reconciled with that assertion. Yee et al. showed that

semantic judgment and naming tasks with object words and pictures of objects were reliably

disrupted by the performance of a concurrent, unrelated motor task (playing a hand-clapping

game), and furthermore, that this disruption was modulated by how much experience

participants had manipulating those objects. Disruption of the same semantic judgments by a

concurrent visual task was not modulated by manipulation experience (see Witt, Kemmerer,

Linkenauger, & Culham, 2010, for a similar result). These data add further credence to prior

studies that have shown that motor-region activity during access to tool concepts varies with

motor experience (e.g., Creem-Regehr, Dilda, Vicchrilli, Federer, & Lee, 2007; Kan, Kable,

Van Scoyoc, Chatterjee, & Thompson-Schill, 2006; Kiefer, Sim, Liebich, Hauk, & Tanaka,

2007; Weisberg, van Turennout, & Martin, 2007). The data are also consistent with data
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from Bub, Masson, and Cree (2008), showing that responding to a manipulable object by

making a gesture inconsistent with that object’s typical use action causes interference. Thus,

accumulating evidence indicates that the actions associated with manipulable objects are

stored in a motor format.

Importantly, this does not imply that motor information is the only aspect of action

representations. If I have never used a hammer, but have seen others use them, then my

representations of the actions associated with hammers may be primarily visual. If, on the

other hand, I have used a hammer (as well as having seen hammering actions), then my

hammer-action representations will be distributed across regions subserving manual actions,

somatosensory processing, and vision (see Bellebaum et al., 2013; Connolly, Gleitman, &

Thompson-Schill, 2007; Hoenig et al., 2011). Moreover, across the many instances of the

hammering actions that I see (and/or do), a prototypical hammering representation emerges

even if I have never seen or produced a prototypical hammering action. This description of

typical exemplars that are shaped by repeated instances of actions is consistent with

typicality effects (e.g., Rosch & Mervis, 1975) that emerge in PDP computational models

that learn semantic structure on the basis of featural overlap of exemplars (e.g., Rogers &

McClelland, 2004). Of course, the multimodality of action representations does not preclude

the option of bringing mechanical problem-solving to bear on action tasks, as well. In action

tasks, as in other domains, the brain makes flexible use of multiple sources of relevant

information (Vingerhoets, Vandekerckhove, Honore, Vandemaele, & Achten, 2011).

Consistent with the claim that tool-related action information (i.e., the gesture engram) is

distributed, we recently presented data (Buxbaum, Shapiro, & Coslett, 2013; Buxbaum,

Shapiro, & Coslett, Under revision showing that correct performance of the postural (arm

and hand positioning) aspects of tool-use pantomimes depends upon the integrity of

posterior temporal-occipital regions, an area with known preference for coding tool-use

motion (e.g., Kable, Kan, Wilson, Thompson-Schill, & Chatterjee, 2005; Kable, Lease-

Spellmeyer, & Chatterjee, 2002) and for recognizing actions presented visually (Kalenine,

Buxbaum, & Coslett, 2010). On the other hand, correct performance of the kinematic

aspects of the same tool-use actions (movement amplitude and timing) is dependent upon

frontoparietal cortex, a region with broad relevance for spatiomotor production, as well as

for recognition and prediction of kinematic parameters of body movement (Gallivan,

McLean, Valyear, & Culham, 2013; Kalenine, et al., 2010). Far from being “awkward”,

representational distribution increases the resilience of representations in the face of brain

damage (see Yee, et al., 2013 for a similar argument). Additionally, graded action

representations that traverse multiple brain regions and multiple modalities may explain why

multimodal information (tactile, kinesthetic, and visual) provided in the case of actual tool-

use with recipient objects benefits (but does not completely normalize) apraxic performance,

as Goldenberg’s own work attests (e.g., Hermsdorfer, Li, Randerath, Goldenberg, &

Johannsen, 2012; Randerath, Goldenberg, Spijkers, Li, & Hermsdorfer, 2011). Rather than a

“cognitive” or “motor” disorder, apraxia perfectly reflects the brain’s propensity to encode

multimodal, graded representations of action knowledge.
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