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Abstract

Computational models of brain current flow during Transcranial Electrical Stimulation (tES),

including transcranial Direct Current Stimulation (tDCS) and transcranial Alternating Current

Stimulation (tACS), are increasingly used to understand and optimize clinical trials. We propose

that broad dissemination requires a simple graphic user interface (GUI) software that allows users

to explore and design montages in real-time, based on their own clinical/experimental experience

and objectives. We introduce two complimentary open-source platforms for this purpose:

BONSAI and SPHERES. BONSAI is a web (cloud) based application (available at

Neuralengr.com/bonsai) that can be accessed through any flash-supported browser interface.

SPHERES (available at Neuralengr.com/spheres) is a stand-alone GUI application that allow

consideration of arbitrary montages on a concentric sphere model by leveraging an analytical

solution. These open-source tES modeling platforms are designed go be upgraded and enhanced.

Trade-offs between open-access approaches that balance ease of access, speed, and flexibility are

discussed.

Broad need but limited access to tES (tDCS) computational models

Computational “forward” models predict brain current flow during tDCS (1,2) as well as

during other non-invasive transcranial electrical stimulation (tES) techniques (3) such as

CES(4), tACS (5). Because the relationship between stimulation dose (defined as those

electrode and waveform parameters controlled by the operator;(6)) and resulting brain low is

complex and non-intuitive(7), computational forward models underpin how protocols are

designed and understood. Though model validation efforts are ongoing (8,9), these models

represent a standard to understand brain current flow and optimize tES dose and so inform

clinical practice and behavior research on an ongoing basis (10– 12).
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Yet despite increased interest in tES modeling, as supported by the number of tES

publications about or including a modeling component (from 82 per year in 2009 when we

proposed the first gyri-precise model to >359 per year expected for 2013), access to

modeling tools by clinicians remains highly limited. And ironically much of the effort to

enhance the relevance of modeling through increases sophistication (complexity;(13)) in fact

hinders both reproduction and dissemination. Efforts to automate a modeling “pipeline” still

require some engineering/computational proficiency (14,15)). Though several recent effort

have compartmentalized the tools needed (16,17).

We propose that broad dissemination requires an intuitive, simple, and stand-alone software.

Moreover, the ability to user to explore and design montages in real-time, based on their

own clinical/experimental experience and objectives, is critical to develop intuition on dose

strategies(18). This is because decision about what dose and related brain current flow

pattern is “optimal” will be dependent on the specific study objective and investigator bias

on neuromodulation mechanisms (e.g. role of collateral targets). Here we introduce two

complimentary open-source platforms for this purpose: SPHERES and BONSAI

Fundamental challenge in dissemination

Any attempt to enhance access for clinicians and behavior researchers to tES modeling must

address two fundamental challenges. First and foremost is the myriad of potential montages

that can be evaluated (variations in electrode number and for each electrode: waveform,

current, size, position, and shape;(6)) compounded by individual variations in current flow

for any given montage(3,19). Inevitably, modeling publications on dose design can consider

only a very limited selection of montages, and one or a limited set of “representative” head

models. Pipeline computational processes accelerate this process but do not remove the

underlying problem. Ironically, it is precisely because models illustrate the importance of

montage and anatomy, that generic models may be imprecise. Our recent invention

leveraging linearity allows for an approach where individual High-Definition electrode

activation are pre-solved for a given head model, and then any HD and conventional pad

montage (by grouping adjacent electrodes) is instantly predicted by linear summation(20);

moreover an optimal montage can be predicated for any given target and orientation (21)

without the need for iterative search. None-the-less, these new approaches do not remove the

need for extensive computational resource for preprocessing, are individual head specific,

and are further limited by assumptions on tissue segmentation and tissue conductivity(22).

The second fundamental challenge relates to representation of brain current flow. Most

modeling studies follow the “quasi-uniform” assumption and presume neuromodulation is

represented by local tissue current density or electric field(23). Even so, the combination of

multiple regions being stimulated (a large fraction of the entire brain for conventional tDCS

montages;(24)) compounded by the details of idiosyncratic current flow (changing even with

a single gyri (25)) make representation complicated. Even for a given montage and head, the

regions and details of interest will vary across investigators. Inevitably, publications cannot

with limited figures detail brain current flow in every region of potential interest.
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The SPHERES and BONSAI software each address these limitations in a distinct manner

while meeting our requirement that modeling tools be instantly and simply accessible. The

overall objective is to encourage exploration, and analysis, and optimization of tES dose by

the behavioral scientists and clinicians.

SPHERES

SPHERES (available at Neuralengr.com/spheres) is a stand-alone graphical user interface

(GUI) application that allow consideration of arbitrary montages on a concentric sphere

model by leveraging an analytical solution(26). SPHERES further allows adjustment of

“tissue” parameters, namely sphere thickness and conductivity. The technique is rooted in

the spherical harmonic expansion of the applied scalp currents and induced electric fields,

allowing for a linear systems formulation of the TES forward problem. SPHERES can

reproduce and expand on any numerical simulation study on tES.

At a time when increasing complexity often drives modeling efforts, the rationale for

concentric sphere simulations should be emphasized. It is precisely because head anatomy is

irregular, and indeed highly individual, that sphere modeling provides an initial basis to

consider the principles of dose design (1,13,27,28). For example, using spheres the role of

inter-electrode distance or CSF conductivity can be considered independent, while in a

realistic head multiple confounds from other anatomical factors (e.g. inhomogeneous skull

thickness under the electrode, proximity for foramen;(29,30)) cannot be excluded. Spherical

models ignore the critical role of tissue inhomogeneity and anatomical detail, especially

cortical folding(24,25,31). None-the-less, spherical models are useful to understand what

features of dose design and tissue properties are thus valuable tool to both experts and

novices.

In regards to the first challenge to dissemination, SPHERES uses a closed-form analytical

solution to allow modeling of any arbitrary electrode montage (the “point spread function of

the head”; (26)) with little computation (seconds on a conventional PC); moreover, tissue

properties, including frequency-specific tissue resistivity, can be readily adjusted. Inter-

individual variation can be considered in the abstract sense by individual sphere radius or

conductivity (32). In regards to the second challenge of dissemination (for better or for

worse), it is straightforward to represent current flow through the spheres precisely because

anatomical detail is absent - though quantitative inferences about current spread (focality

and deep structures) should be made with caution. The overall result of the SPHERES

program is a tool-box that allows infinite variations in dose and analysis by users,

specifically for their given application, consistent with the overall objective.

BONSAI

BONSAI is a web (cloud) based application (available at Neuralengr.com/bonsai) that can

be accessed through any flash-supported browser interface. Data from any simulation of

current flow, regardless of how it was generated, can be uploaded as serial images and then

viewed using the BONSAI web interface. Evidently, users cannot consider changes in

montage of head models not already included (uploaded) – BONSAI does not support, for

example, adjusting the position of an electrode to an arbitrary location. To automatically
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parse data from commercial FEM solvers to BONSAI scripts may be developed. Regardless

of FEM package, solutions can be exported in a text format as a list of nodes and elements

with corresponding electric field values. Scripts in software packages like Matlab or Python

can be used to interpolate, scale, and export slice images co-registered to the original model

MRI. If the data was derived from a given publication, that publication is referenced both

providing insight into the given approach and enhancing the impact of the publication. If a

suitable approximation of simulation montage is available in BONSAI, it can be used to

inform dose design and in subsequent publications.

In regards to the first and second challenge of dissemination BONSAI takes a highly

accessible and simple (if “brute force”) approach of simply coalescing individual modeling

efforts in indexed images. However, in contrast to dispersed individual publications, 1)

BONSAI represents a growing database on montages and approaches that can be compared

and contrasted, 2) the methods and results are fully disclosed allowing reproduction and

further analysis; 3) and the BONSAI interface allows sharing of more images (cross-

sections) than possible in any publication. Though limited in flexibility, the overall result of

the BONSAI “library” is a tool-box that encourages analysis and optimization by users for

their given application consistent with the overall objective of dissemination.
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Figure 1. SPHERES modeling software allows simple and rapid simulation ina concentric
spheres head representation (available free at neuralengr.com/spheres)
(1) Head Parameters: Users are able to adjust the tissue thickness for brain, CSF, skull, and

scalp with their respective slider in meters, as well as entering the corresponding

conductivity values for each tissue. (2) Electrode Parameters: Users are able to select the

size of the electrode being used in the drop down menu, and enter the amount of current

being applied in mA at the specific positions. Note the anode current positive while the

cathode current is negative, the sum of the currents entered in the table should add up to

zero. (3) Entering a frequency of stimulation value will automatically change the tissue

conductivities to tACS values. To return to tDCS values, the user needs to press “Reset to

Default Values” as tDCS is the default option. (4) “Generate Field” button will compute

your input values and generate the corresponding figure. The movement of the slider

changes how deep you are looking inside the human head. The current depth is displayed in

meters. (5) “Export Data” will allow the users to save the data used to generate the current

image in a “.mat” file, only usable by matlab. “Export Figure” will directly allow users to

save the figure.
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Figure 2. BONSAI modeling software allows selection from pre-solved high-resolution MRI-
derived models simulations and web-based exploration of current flow (available free at
neuralengr.com/bonsai)
Bonsai user interface walkthrough: Click start (1). Select a “Basic Head” or a “Case Study”

(2). If a “Basic Head” was selected, now select the electrode configuration. Left click a box

under “active electrode” and under “return electrode”, and then click “Load the data now”

(3). After loading, a 3-D rendering of the electric field intensity can be rotated left or right

by clicking the respective arrows or by clicking and dragging over the image. Information

about the electrode configuration and intensity scale are given on the right (4). Alternate

views of the data, 2-D slices (5) or a rendering of the segmentation (6), can be selected from

the tabs at the top of the window. Under “2-D View” coronal, axial, and sagittal slices of the

Electric field intensity are displayed along with their respective MRI slice. The images can

be overlaid by clicking the converging arrows between the FEM solution and MRI. Pen/

Highlighting tools are available at the top left (5).
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