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Abstract

With challenges in data harmonization and covariate heterogeneity across various data sources,

meta-analysis of gene-environment interaction studies can often involve subtle statistical issues. In

this paper, we study the effect of environmental covariate heterogeneity (within and between

cohorts) on two approaches for fixed-effect meta-analysis: the standard inverse-variance weighted

meta-analysis and a meta-regression approach. Akin to the results in Simmonds and Higgins

(2007), we obtain analytic efficiency results for both methods under the assumption of gene-

environment independence. The relative efficiency of the two methods depends on the ratio of

within- versus between- cohort variability of the environmental covariate. We propose to use an

adaptively weighted estimator (AWE), between meta-analysis and meta-regression, for the

interaction parameter. The AWE retains full efficiency of the joint analysis using individual level

data under certain natural assumptions. Lin and Zeng (2010a, b) showed that a multivariate

inverse-variance weighted estimator also had asymptotically full efficiency as joint analysis using

individual level data, if the estimates with full covariance matrices for all the common parameters

are pooled across all studies. We show consistency of our work with Lin and Zeng (2010a, b).

Without sacrificing much efficiency, the AWE uses only univariate summary statistics from each

study, and bypasses issues with sharing individual level data or full covariance matrices across

studies. We compare the performance of the methods both analytically and numerically. The

methods are illustrated through meta-analysis of interaction between Single Nucleotide

Polymorphisms in FTO gene and body mass index on high-density lipoprotein cholesterol data

from a set of eight studies of type 2 diabetes.
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1 Introduction

Genome-wide association studies (GWAS) provide tremendous opportunities for large-scale

exploration of associations between genetic variants and complex traits. Searching genetic

associations based on GWAS has been successfully identifying marginal effects of variants

at multiple susceptibility loci for a wide spectrum of complex traits, e.g. type 2 diabetes

(T2D) (Scott et al. (2007), Zeggini et al. (2008), Morris et al. (2012), Saxena et al. (2013)),

cardiovascular outcomes (Psaty et al. (2009), Sarwar et al. (2012)) and cancer (Song et al.,

2013). The agnostic discovery strategy of GWAS can be used to detect gene-environment

interactions (GEI) that can further characterize the genetic architecture of complex traits

through sub-group or joint effects (Khoury and Wacholder (2009); Mukherjee et al. (2012)).

In general, the definition of ‘environment’ can be broad, including demographic factors

(age, gender etc.), behavioral factors (smoking, alcohol consumption, diet, medication use

etc.), and external factors (exposure to air pollution, radio-active substances etc.). Complex

traits are influenced by both genetic and environmental factors and possibly their interaction,

e.g., physical activity appeared to attenuate the effect of fat mass associated FTO gene

variants on obesity risk (Kilpeläinen et al., 2011). With limited number of findings on GEIs

so far, it is likely that the GEI effects are small to modest, warranting the need for larger

sample sizes and collaboration across different study sites for joint or meta-analysis. Many

collaborative networks have been formed to share individual or summary level data from

multiple GWAS of related traits, e.g. the DIAGRAM (T2D) (Zeggini et al. (2008), Voight et

al. (2010), Morris et al. (2012)), MAGIC (glucose and insulin related traits) (Dupuis et al.

(2010), Scott et al. (2012)), CHARGE (heart and aging research) (Psaty et al., 2009),

GIANT (anthropometrics) (Speliotes et al., 2010), and Global Lipids (Teslovich et al., 2010)

GWAS consortia. There are also computationally efficient tools (e.g. METAL (Willer et al.,

2010)) to implement GWA meta-analysis (GWAMA). However, there are relatively few

papers that explore analytical issues for meta-analysis of GEI (e.g. Manning et al. (2011),

Aschard et al. (2011) to name a couple) compared to meta-analysis of marginal genetic

associations.

Several meta-analytic techniques used for randomized clinical trials can be adapted in

genetic epidemiology, e.g., the fixed-effects model (FEM) (Whitehead and Whitehead,

1991) and random-effects model (REM) (DerSimonian and Laird, 1986). The term ‘fixed

effect model’ in the classical literature (Whitehead and Whitehead (1991), Fleiss (1993),

Borenstein et al. (2010), Lin and Zeng (2010b)) most often refers to a model with fixed and

common effect. But in general, ‘fixed effects model’ (in plural) only requires that there are

fixed and unrelated effects in each study, regardless of the homogeneity assumption. Effect

homogeneity can be tested by the Cochran’s Q-test (Cochran, 1954). In this paper, we

consider the fixed and common effect framework as in Lin and Zeng (2010b) to derive our

analytical results. We comment on this choice as opposed to a general fixed effects model

where the interaction parameter can be different across studies later in the paper.

The joint analysis of individual patient data (IPD) from all studies is typically regarded as

the ‘gold standard’ for evidence synthesis. However, considerable time and resources are

required to share individual level data even in an existing consortium. We refer to the joint

analysis of raw data from all studies as IPD analysis (also called mega-analysis in some
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papers, e.g. Lin and Zeng (2010a)), and classify the methods that combine summary

statistics derived from analysis of different studies as meta-analysis. A natural question to

ask is how much efficiency gain, if any, can be achieved by analyzing IPD over meta-

analysis. Recently, Lin and Zeng (2010b) considered a multivariate IVW (MIVW) estimator

under the common effect model. In constructing the MIVW, if the estimates with full

covariance matrix for all the common parameters are pooled across studies, then the MIVW

is asymptotically equivalent to the IPD estimator. However, in meta-analysis of published

results, it is often difficult to obtain the full covariance matrix, while univariate summary

statistics (e.g. estimate and standard error) for the effects of interest are more likely to be

available. Lin and Zeng also quantified the efficiency loss of using an univariate IVW

(UIVW) versus a MIVW estimator. The results from Lin and Zeng are derived in a very

general setting. In this paper, we specifically focus on the estimation and testing of GEI

parameter. Our goal is to construct estimator for GEI parameter using only univariate

summary statistics, bypassing issues with sharing individual level data or multivariate

covariance matrices across studies, without sacrificing much efficiency or incurring

increased bias.

Another pragmatic question to ask is whether we can detect GEI from summary statistics

obtained from previously conducted genome-wide meta-analysis of marginal genetic effects,

without the knowledge of IPD. Meta-regression (MR) is a regression-based technique to

investigate whether some particular study-level covariates explain heterogeneity among

effect estimates from multiple studies. Many studies (e.g., Simmonds and Higgins (2007);

Kovalchik (2013)) have compared aggregate data analysis (e.g. MR) with IPD analysis to

detect treatment-biomarker interactions for randomized clinical trials (analogous to gene-

environment interactions in our case). Simmonds and Higgins considered three methods

IPD, UIVW and MR and showed that under certain natural assumptions, analytical power

formulae to detect interactions can be expressed in terms of total, within and between study

sum of squares (TSS, WSS and BSS respectively) corresponding to the environmental

covariate. In absence of IPD, they recommended using UIVW rather than MR if the WSS

exceeds BSS and vice versa. We borrow from their work to derive similar analytical

expressions for testing GEI under certain assumptions.

Instead of making a discrete choice between UIVW versus MR, we propose a novel

adaptively weighted estimator (AWE) combining UIVW and MR, and archiving the same

asymptotic efficiency as the IPD estimator under certain conditions. The AWE has two

major advantages over the MIVW estimator shown in the following main text: (1) AWE

requires only univariate summary statistics from each study (study-specific estimate and

standard error for the marginal association of G and GEI parameter, and study-level mean of

E); (2) AWE has less efficiency loss compared to MIVW under model misspecification, for

example, when the main effects of G or E are heterogeneous across studies or when a

continuous covariate E is centered within each study at the study level mean. Our simulation

studies indicate that AWE is very robust across multiple model violation scenarios we

considered, including presence of non-linearity in interaction term.

The rest of the paper is organized as follows. In the methods section we describe different

strategies for meta-analysis of GEI, followed by analytical results on bias, variance and
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power properties of the newly proposed method. A comprehensive simulation study was

performed to assess the performance of the meta-analysis methods under a variety of

scenarios. We primarily focus on the issue of covariate heterogeneity, but also explore

several other important factors that could potentially affect the relative performance of these

methods: (1) departures from gene-environment independence; (2) heterogeneity in minor

allele frequencies (MAFs) across cohorts; (3) lack of a common set of covariates to adjust

for across studies; (4) misspecification of the genetic susceptibility model (dominant/co-

dominant/additive); and finally (5) the presence of a non-linear form of interaction. In the

results section, we report simulation findings followed by an illustrative example, where we

examine whether variants in FTO gene modify the effect of environmental factors (age and

BMI) on high-density lipoprotein cholesterol (HDL-C) levels, a T2D related quantitative

trait. This paper is expected to provide useful insights and guidelines for practitioners

conducting meta-analyses of GEI.

2 Methods

2.1 Meta-analysis of GEI under a common effect model

Consider a quantitative trait Y , a continuous environmental exposure E, a bi-allelic genetic

locus G with genotypes of AA, Aa and aa (where A is the minor allele), and other covariates

Z. Suppose that there are K independent studies and a total of N participants, with nk

participants in the k-th study, . Let Yki, Eki, Gki and Zki be the

corresponding observations for participant i in study k, for i = 1, ..., nk and k = 1, ..., K. The

assumed model for individual responses follows

(1)

where β0k is the study specific intercept, βG, βE and βZ are the main effects corresponding to

G, E and Z, and δ is the GEI effect of primary interest. The vector β = (βG, βE, δ, βZ) is

assumed to be fixed and common across studies. The random errors εki's are assumed as

. Our interest lies in estimating the common interaction parameter δ and in

testing H0 : δ = 0.

There are multiple reasons for assuming a common effect model (1). First, this model is

used quite frequently in the literature (Lin and Zeng (2010a),Lin and Zeng (2010b), Hartung

et al. (2011)). Second, the analytical derivation of the relative efficiency and power are

facilitated; Third, meta-regression can only be meaningfully conceptualized if the interaction

parameter is assumed to be same across studies; Fourth, with unrelated but distinct fixed

effects across studies, it is often hard to find a scientific interpretation/relevance of the

limiting/expected value of the population parameter to which the standard inverse-variance

weighted estimator converges to; thus quantities like bias and mean-squared error become

less interpretable. Finally, there was no evidence of effect heterogeneity for the interaction

parameters in our T2D data analysis example of 8 European studies. However, as we will

discuss subsequently, the ‘common effect’ assumption can be relaxed for testing purposes
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and most of the methods we discuss are valid to test the stronger null hypothesis H0 : δ1 = ...

= δK = 0, if we allowed study specific parameters δk in (1).

Various susceptibility models including the dominant model (G = 1 if AA and Aa; G = 0 if

aa), recessive model (G = 1 if AA; G = 0 if Aa and aa), additive model (G = 2 if AA; G = 1 if

Aa; G = 0 if aa) and co-dominant model (G = AA, Aa or aa with aa as the reference level)

are considered. For co-dominant model,  and δ = (δAa, δAA) for genotypes

Aa and AA can be modified accordingly in model (1).

In the following, we first describe in section 2.1.1 three traditional approaches to detect GEI

under model (1). The approaches are IPD analysis, standard meta-analysis (UIVW or

MIVW) and MR. For the sake of completeness, we also describe a two-step estimator

previously suggested by Simmonds and Higgins (2007). We then propose the new AWE in

section 2.1.2. Throughout the paper, we use the generic notation  for the asymptotic

variance (covariance matrix for multivariate ) of any given estimator , and  for the

corresponding estimated variance.

2.1.1 Existing methods

(i) Individual patient data analysis (IPD): The IPD analysis fits model (1) using individual

level data. Methods such as weighted least square (WLS) can be used to handle the

heterogeneous  across studies, if  can be estimated with sufficient accuracy. However,

for simplicity, we consider a simple linear regression model that assumes common residual

variance  for k = 1, ..., K in (1), as the standard implementation of the IPD analysis.

Denote the maximum likelihood estimate (MLE) of δ as , and its estimated variance as

.

(ii) Meta-analysis using inverse-variance weighted estimator: Since the data required for

IPD analysis are seldom available in published results, meta-analysis combining summary

statistics across individual studies is often used. We consider some variants of IVW

estimator under model (1). (ii.A) UIVW: A UIVW estimator needs the collection of the

MLEs  and  estimated from model (1) using data from only study k. Under the

above model, . The UIVW estimator is given by,

The validity of the method requires that  is asymptotically normal  for

a large nk and the asymptotic variance  can be estimated by  with negligible

error (Whitehead and Whitehead, 1991). We refer to these conditions as ‘standard
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conditions’ throughout, and we note that it is often implicitly assumed to hold in classic

meta-analysis literature (e.g., DerSimonian and Laird (1986), Whitehead and Whitehead

(1991), Lin and Zeng (2010b) ).

(ii.B) MIVW: Let  be the MLE of β from study k, with estimated

variance-covariance matrix . When both  and  are available from each

study, we consider the MIVW estimator following Lin and Zeng (2010b),

Then  and  corresponding to the interaction parameter δ can be obtained

from the corresponding element in  and  respectively. Following Lin

and Zeng (2010b),  has full asymptotic efficiency as  under the common effect

model (1). However the full covariance matrix  is not likely to appear in meta-

analysis of published results and different studies may adjust for different covariates Z. So

 remains the most commonly used meta-analytic method in spite of potential

efficiency loss as compared to  and .

(iii) Meta-regression: The true model (1) implies that the Y − G association depends linearly

on E. So we consider a linear MR model to reveal the underlying dependence between the

marginal genetic effects and the aggregated study mean values of E (say mk = δi Eki/nk).

Screening for the marginal effect of G is routinely performed as the first step in GWA

analysis. For each study k, we first consider the association model

(2)

where the errors . At the second step, the MLE  is regressed on mk

through the MR model

(3)

To account for the potential heterogeneity in  across studies, we consider the WLS

estimator of γ, with weight  assumed as known, i.e., .

Denote the WLS estimator of γ in model (3) by . Then  and  can be

expressed as
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The advantage of MR approach is that one can identify GEI with only limited summary data

on E (only the mean mk's) and published results of marginal genetic effects (  and

).

(iv) Two-stage estimator: Let  denote the overall sample mean of E,

 be the total sample variance of E,  be

the sample variance of E within the k-th study. Denote the corresponding population

parameters for m, mk, ,  as μ, μk, ,  respectively. We make the usual partition of

the total sum of squares (T SS) of E as the sum of the within-study sum of squares (W SS)

and between-study sum of squares (BSS), i.e., T SS = W SS +BSS, where

,  and

. Throughout this paper, we assume nk/N → k ∈ (0,1) as N → ∞

Consider the limiting true population quantities as ,  and

. We have , , , as N →

∞.

Motivated by the fact that asymptotic relative efficiency (ARE) of  compared to 

is driven by bss/wss, we consider a two-stage approach analogous to Simmonds and Higgins

(2007) as

i.e., using  instead of  if W SS ≥ BSS and vice versa. Note that  is an ad-hoc

procedure of discretely determining which method to use, based on the statistic BSS/W SS

that measures heterogeneity in E between studies relative to within study variation in E.

2.1.2 Adaptively weighted estimator—We note that, using only summary statistics,

both  and  can potentially lack precision. Moreover,  can have significant

ecological bias (Morgenstern (1982), Greenland (1987), Schwartz (1994), Berlin et al.

(2002)) if the aggregate data relationship differs from the one observed in individual level

data. Thus, we propose an adaptive estimator that combines  and  to trade-off

between bias and efficiency in a data adaptive way. We first prove the following lemma

which is also used in Kooperberg and LeBlanc (2008) and Dai et al. (2012).
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Lemma 1. Let Yi be independent random variables with equal variance, for i = 1, ..., n, and

let  be the j-th predictor, j = 1, ..., p + q. Let  and  be

the MLEs of the parameters under the two nested linear regression models

then  and  are asymptotically independent.

Proof of Lemma 1 is presented in Appendix B.1.

Applying Lemma 1 to models (1) and (2), the marginal genetic association  and GEI 

are asymptotically independent within each study k, as they are coming from two nested

linear regression models using data within study k. Note that  is a linear combination

of , and that  is a linear combination of , then the following corollary holds.

Corollary 1.  and  are asymptotically independent.

The independence of the two estimators are critical as we can now borrow the classical idea

of constructing an IVW estimator using these two independent ingredients. Assuming the

standard conditions, we propose an AWE of the form

which combines  and  using their inverse-variances as weights. In order to

calculate , summary statistics of study-specific effect estimates ( , ,  and

) and study-level covariate means mk are needed from each study k. The intuitive

rationale behind the AWE is that, when  is relatively smaller than ,

 puts more weight on  and vice versa.

Theorem 1. For the class of weighted estimators , 0 ≤

w ≤ 1,  attains its maximum at  if and only if the

weight .

Theorem 1 proved in Appendix B.1 establishes the optimality of the inverse variance

weights for AWE. A consequence of Theorem 1 is that the precision of  is the sum of

the precisions of  and . Under the standard conditions, the estimated variance of
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the AWE estimator is given by . We will further

show that  is fully efficient as  under certain plausible assumptions in section 2.2.

Remark 1: Co-dominant model. For the co-dominant model with , it is

straightforward to translate the proposed methods to their bivariate counterparts. In

particular,  and  can be directly obtained from (1);  and  can

be obtained as  and  and

 can be obtained from  and ; MR model can be modified as

a multiple response regression , where  and

. Corollary 1 and Theorem 1 also hold following Lemma 1 for bivariate

δ. A bivariate form of AWE can be considered as

.

2.2 Analytical results

This section presents some analytical results regarding bias, variance and power properties

for the adaptive estimator described in section 2.1.2. We consider models without covariate

Z to simplify the presentation.

2.2.1 Bias—Following classic linear regression and meta-analysis results, , 

and  are all asymptotically unbiased estimators of δ. However,  is not necessarily

unbiased for δ in general. The relationship between the marginal effect of G and the study-

specific means mk may differ from the underlying relationship between the marginal effect

of G and individual level data for E. This phenomenon is known as ‘ecological bias’ or

‘ecological fallacy’, and is well characterized in the literature (Morgenstern (1982),

Greenland (1987), Schwartz (1994)). However, we note that  is an unbiased estimator of

δ under the following G-E independence assumption, which is a plausible assumption well-

discussed in the literature. We use the generic notation P (·) to denote the distribution of a

random variable.

Assumption 1. P(G, E| study = k) = P(G| study = k)P (E| study = k), for k = 1, ..., K, i.e., G

and E are independent within each study.

Proposition 1. Under Assumption 1,  of model (3) is asymptotically unbiased for δ.

Proof of Proposition 1 is presented in Appendix B.2. In the following Remark 2, we further

discuss the issue of potential bias of  and thus in  (which assigns a positive weight

on the MR estimator) if Assumption 1 is violated.
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Remark 2: Bias of  and . Without Assumption 1, we showed (in Appendix B.2)

that the limiting value of the bias of  is proportional to the ratio tss/bss and the

correlation between G and E. If the G-E correlations within each study are 0, then

. If Assumption 1 holds,  is an asymptotically unbiased estimator of

σ as both its components are unbiased. Moreover, we show later in section 2.2.2 that the

limiting value of the weight corresponding to  in  is bss/tss. So  adaptively

puts less weight on  when the bias of  increases. We find through our numerical

investigation that  is robust to potential ecological bias in  even when the

ecological bias is substantial (please see Appendix Figure 9 and Table 6 for the simulation

results, and main text Table 4 corresponding to the T2D example).

2.2.2 Variance and Relative Efficiency—Explicit variance formulae  and 

for each estimator of δ are derived under Assumption 1 in Appendix B.3. Because the linear

regression likelihood  corresponding to model (1) does not use any

assumptions about the joint distribution of G and E, the role of the G-E independence

assumption in this paper is only to provide simpler expressions for the variances. This is

different from case-control studies where assuming G-E independence and using the

retrospective likelihood can lead to large gains in efficiency (Piegorsch et al. (1994),

Umbach and Weinberg (1997), Chatterjee and Carroll (2005)).

In this section 2.2.2, for simplicity of presentation we assume  for k = 1, ..., K, and

consider a dominant susceptibility model for stating Theorems 2 and 3. Let G = 1 (G = 0)

indicate whether an individual is a carrier (non-carrier) of the minor allele A, and let pk

denote P(G = 1| study = k) the carrier frequencies in study k, k = 1, ... , K.

Theorem 2. Under Assumption 1, .

The equality holds if and only if pk = p, for k = 1, 2, ..., K, where p is the common carrier

frequency across all studies.

Proof of Theorem 2 is given in Appendix B.4. Under Assumption 1, the precision of  is

in general greater than that of . However, under the additional assumption of

homogeneity of the MAFs (Assumption 2 stated below), we have equality

.

Assumption 2. The MAFs corresponding to the susceptible SNP are constant across all

studies, i.e. pk = p, for k = 1, 2, ..., K.

Theorem 3. Under Assumptions 1 and 2,

, where
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,  and

.

Proof of Theorem 3 is given in Appendix B.5. Following Theorem 3, the asymptotic

variances , ,  and  are all expressed in terms of

covariate heterogeneity of E. The ARE between  and  is wss/tss (bss/tss).

So , if wss bss, and vice versa. For the extreme case, when there is

no between-study heterogeneity in the study means of E (i.e. μk = μ),

), and  reduces to ; in contrast, if all  (i.e. E is

constant within each study), , and  reduces to .

The limiting weights in  can be simplified as

. Since

 and , as N → ∞ we can use the estimated

weights W SS/T SS and BSS/T SS in , which leads to

 adaptively captures the precision trade-off between the two estimators:  puts

more weight on  if W SS is relatively larger than BSS, and vice versa. In summary,

under Assumptions 1 and 2,  is a consistent, unbiased, and asymptotically fully

efficient estimator, which uses only univariate summary statistics without the knowledge of

the original IPD. The operating characteristics for the proposed meta-analytic methods are

summarized in Table 1. The results in Theorems 2 and 3 are numerically evaluated through

a simulation study to examine the effect of relaxing Assumption 1 or 2, and relaxing the

homogeneity assumption of .

Remark 3: Additive and co-dominant models. In general, it is difficult to provide analytical

results related to  in Theorems 2 and 3 for an additive model, but we can directly

translate Theorems 2 and 3 for δAa and δAA respectively under a co-dominant model if we

assume  for  in the MR model, i.e., two separate MRs. The

statements in Theorems 2 and 3 are numerically evaluated for additive and co-dominant

models through a simulation study relaxing Assumptions 1 or 2, and relaxing the

homogeneity assumption of .

Remark 4: Centering of covariate E. Continuous E is often centered to facilitate the

interpretation of βG as the main effect of G at the mean value of E. Under a meta-analysis

set-up, it is natural to consider each study k fits model (1) with E centered at their respective
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study specific means mk. For the IPD analysis, it is natural to consider that E is centered at

the overall mean m. With these centering strategy, , ,  and  remain

invariant, and results in Theorems 1-3 still hold for the centered models. The details are

shown in Appendix B.4. However, properties of  do not hold under the above

centering strategy. It is not fully efficient, because mk-centered model creates artificial

heterogeneous main effects of G (depending on mk) across studies. The mk-centered model

only has two common fixed-effects compared to the true model having three common fixed-

effects (Appendix B.4), and this leads to efficiency loss of  according to Lin and

Zeng (2010b). In terms of efficiency,  is preferable to  when covariate E is mk-

centered using the study level means.

Remark 5: Relaxing the common effect assumption. First, we consider heterogeneous main

effects of G and E, namely (δGk, δEk) with a common GEI δ across studies in model (1). To

handle effect heterogeneity, we could replace (βG, βE) by (βGk, βEk) in model (1) for the IPD

analysis; replace MR model (3) by  for the MR analysis; and still use

 as it does not require homogeneity of (βGk, βEk). According to Lin and Zeng (2010b),

the modified estimator has the property that  because

δ is the only common parameter across studies. Theorem 1 still holds since it makes no

homogeneity assumption on (βGk, βEk). Then we have . In terms of

precision,  is better than  when (βGk, βEk) are heterogeneous. Next, we consider

heterogeneous GEI δ1, ..., δK across studies in model (1), regardless of (βGk, βEk) are

homogeneous or not. In this case, it is hard to interpret the expected value of ,

,  or  as a scientifically relevant population parameter. Thus, estimation

properties such as bias and mean squared error (MSE) become less meaningful. In this case

we are simply getting an weighted average of within study interaction estimates. Although

the analytical results corresponding to  are derived under a common effect model, the

test based on  is still valid for the stronger null hypothesis H0 : δ1 = ... = δK = 0. We

will numerically evaluate the power and Type-I error under violation of the common effect

assumption through simulation studies.

2.2.3 Power—For dominant and additive models, we consider the Wald-type test statistic

 for testing the null hypothesis H0: δ = 0 against H1: δ≠ = 0. The power to

detect an effect size δ* at level α is approximately

, where Φ is the cumulative

distribution function (CDF) of a standard normal variable Z and  is the corresponding  th

upper percentile. For co-dominant models, we consider a joint Wald test statistic

 for testing H0: δ = 0 against H1: δ ≠ 0, where  is a Chi-square

distribution with two degrees of freedom. The power is approximately
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, where  is the CDF for a  distributed

random variable and  is the corresponding th upper percentile. The power

functionPw(δ*, α) or simply Pw, is strictly decreasing in the variance  Thus, the results

regarding variances in Theorems 1-3 also determine relative power properties.

Table 1 provides a glossary table for all the methods we have discussed, along with their

properties, and the summary statistics required to carry out these procedures.

2.3 Simulation study

In order to study the role of G-E independence (Assumption 1) and homogeneity in MAFs

across cohorts (Assumption 2), we consider P (G, E) under four different settings: when

Assumptions 1 and 2 hold and do not hold. To study the role of covariate heterogeneity in E,

we consider cases where wss is greater or smaller than bss, for a fixed value of tss. The

details of generating data pair (Gki, Eki) jointly are described in Appendix B.6.

Given (Gki, Eki), we then generate the continuous trait Yki under the IPD model (1), where

the study specific intercepts are sampled from , and the true effect sizes

( , , β*) are determined such that G, E and GEI explain 1%, 10% and 0.5 − 1% of the

total variation in Y respectively, in terms of partial R2. The residuals follow a 

distribution, i.e. no requirement for homogeneity of  is made. In particular, we generate

 that leads to a marginal distribution of Y ~ N(1.4, 0.42). The choice of

N(1., 0.42) is motivated by the distribution of log HDL-C level (mmol/l) in our T2D data set.

We generate K = 20 studies with different sample sizes involving a total of N = 10, 000

participants (nk = 200, for k = 1, ..., 6; nk = 400, for k = 7, ..., 11; nk = 500, for k = 12, ..., 17;

n18 = 800; n19 = 1000; n20 = 2000).

We calculate  and  corresponding to each proposed estimator, including , ,

, ,  and . We carry out R = 1, 000 replications under each setting, and

summarize the results in terms of relative bias , average

model based variance , empirical variance ,

, power (proportion of simulations rejecting the null

hypothesis using the Wald test) and Type-I error (proportion of simulations rejecting the null

hypothesis when the data are generated under the null).

Lack of common set of covariates across studies: We then consider covariate Z = (Z1, Z2,

Z3) that stand for typical covariates (age, sex, race) in the IPD model (1). In particular, age

(Z1) is continuous and associated with E, gender (Z2) is binary and independent of both (G,

E), race (Z3) is a 3-level categorical variable and associated with both (G, E), with  is

determined such that the Type-III partial R2 corresponding to (Z1, Z2, Z3) is (2%, 1%, 1%)
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respectively. Let Zk be the set of covariates for the k-th study. We consider an analysis

where Zk is only partially available from individual studies, and refer to this situation as

‘lack of common set of covariates across studies’. In particular, we consider

 for k = 1, 2, 3;  for k = 4, 5, 6;  for k = 7, 8,

9;  for k = 10, 11, 12;  for k = 13, 14;  for k = 15, 16; 

for k = 17, 18; No Zk available for k = 19, 20. For IPD analysis without any imputation of

covariates, one can only obtain an IPD estimator based on the common subset of variables

available across all studies, which reduces to an unadjusted model in the above setting. We

refer it as a naive IPD estimator . For the meta-analysis, we obtain  and

 from the k-th study model adjusted for available Zk, for k = 1, ..., K. For MR, we

adjust for Zk at the first stage in the marginal genetic association model, and regress the

MLEs of adjusted effects of G on mk. These methods are compared with an ideal IPD

estimator  that adjusted for all Z.

Non-linear GEI model: We consider a non-linear GEI model where the phenotype-

genotype association parameter βG(E) varies with E through a sigmoid function βG(E) = 2

exp(E − 50) /{1 + exp(E − 50)} + 2, instead of the assumed linear interaction (shown in

Figure 1). In this case, βG(E) changes at different rates for different values of E (sharper

around the mean value of E, flatter at more extreme values of E), which leads to non-linear

interaction. In Figure 1, most studies only contribute to a restricted range of E, leading to

heterogeneity of individual interaction estimates across studies. In this case, meta-analysis

with a misspecified linear interaction model might fail to detect the true non-linear

interaction. In the simulation study, we generate K = 20 studies, where 4 studies have

relatively larger within study variability (studies 5, 10, 11, 15 in Figures 1 and 2) as

compared to the other 16 studies. The complete description of nk, mk and σEk for the 20

studies are given in Figures 1 and 2. We generate Y through the non-linear interaction model

Yki = β0k + βG(Eki)Gki + εki, where . The within study relationships of the

marginal effects of G as a function of E, namely, βG(E) are substantially different across

studies. The effect heterogeneity and non-linearity might influence the validity and relative

performance of the proposed methods where a linear form of interaction is assumed.

Therefore, we evaluate the robustness of the proposed meta-analysis estimators under this

non-linear GEI model.

3 Results

3.1 Simulation results

The simulation results are summarized in terms of bias, variance, MSE and power

(Appendix Tables 1-4). The relative performances of the methods are very similar across all

three susceptibility models and all four settings, so we only present in the main text the most

general setting where the data are generated without either Assumption 1 or 2. The detailed

simulation results are given in the Appendix, and we only summarize the key features in the

following.
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Gene-environment independence and ecological bias: For bias, comparing

settings with and without G-E independence, we observe no substantial difference the

proposed estimators, including the potentially biased estimators  and  (Appendix

Tables 1-4). When Assumption 1 is relaxed (Appendix Tables 3 and 4), the magnitude of

relative bias of  may be up to ±7% but bias of  is still well controlled (up to ±4%).

Comparing to the Monte Carlo error (up to ±3% even for the unbiased estimators), the bias

of  is not to a level of practical concern even when there is some bias in . In

additional simulation settings where  is susceptible to substantial ecological bias (up to

35%) and when G-E correlation is extremely strong, our results (Appendix Figure 9 and

Table 6) indicate the adaptive feature of  in controlling the bias from  by assigning

decreased weight. The relative bias of  is still < 5%. Thus the issue of ecological bias

for aggregate analysis in  is less of a concern for . For variance, we did not

observe precision gain by making the G-E independence assumption as expected. Results

stated in Theorem 2 appear to hold numerically for all three genetic susceptibility models,

even when Assumption 1 is relaxed (Appendix Tables 3 and 4).

Homogeneity in allele frequencies across cohorts—Comparing settings with and

without homogeneous allele frequencies across studies, we did not observe any appreciable

differences in results. Results in Theorem 3 hold numerically for all three genetic

susceptibility models, even when Assumption 2 is relaxed.

Covariate heterogeneity in E—We observe that the ARE between  and

 can be well characterized in terms of wss/tss (bss/tss) respectively. We found that

 is more efficient than  if wss > bss, and vice versa. The precision trade-off is

captured well by the adaptively determined weights in . We observe that  is

more efficient than the usual meta-analytic estimators ,  or , and had almost

the same efficiency as  and  under all simulation scenarios. The findings with

finite samples are consistent with our analytical results in Theorems 2 and 3 and Lin and

Zeng (2010b).

In terms of power, we find the proposed methods (IPD, UIVW, MIVW, MR, TS and AWE)

are divided into three groups in Figure 3, as expected. Group 1: IPD, MIVW and AWE;

group 2: UIVW; group 3: MR. Group 1 has the most powerful tests, which is consistent with

our analytical results and Lin and Zeng (2010b); group 2 is more powerful than group 3 if

bss < wss, and vice versa. TS performs similarly as the better group between groups 2 and 3.

The empirical estimates of Type-I error are close to the true 0.05 level for all tests.

Heterogeneous GEI effects across studies—We examine the power and Type-I error

corresponding to the proposed methods, where δ1, ..., δK are heterogeneous across studies in

model (1). In particular, for each true effect size δ* determined by a given R2 as in section

2.3, we generate  that vary across studies but has the same mean δ*.

Appendix Table 5 shows the power and Type-I error under data generated from the
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heterogeneous GEI model, where we do not observe any substantial difference with the

testing results under homogeneous GEI model.

Misspecification of the genetic susceptibility model—We examine the power

under misspecified susceptibility models (dominant/additive), where the true generating

model is co-dominant. When δAA = 1.5 δAa (we accordingly choose ), i.e., the

second copy of A has an effect size between the two assumed in dominant (δAA = δAa) and

additive (δAA = 1.5 δAa) models, there is no substantial difference of power between the

misspecified dominant/additive model and the co-dominant model (shown in Appendix

Figures 7), because the misspecification is not strong and the fitted dominant or additive

models use one less parameter. When δAA = − δAa (we accordingly choose ,

i.e., the second copy of A has a reverse effect, the fitted dominant or additive models had

much less power than the co-dominant model (shown in Figure 5). Thus, it could happen

that the co-dominant model has more power compared to other simpler models, though it

uses two additional parameters for capturing GEI.

Lack of common set of covariates across studies—Figure 4 shows the power

curves under this situation without either Assumption 1 or 2. Compared to the basic setting

without covariate adjustment (Figure 3), there is no substantial difference in the relative

performances of these methods. We observe that the GEI estimate  and variance  is

fairly stable, though the main effects of  and  are substantially influenced under this

situation. VanderWeele et al. (2012) also show similar results that, under G-E independence,

there is no effect of unmeasured environmental confounding on the GEI parameter; and that

if G and E are dependent, the environmental confounding needs to be very strong to incur

substantial bias in GEI. Power curves under various other settings with similar results are

given in Appendix Figures 4-6.

Non-linear GEI model—When the IPD are generated under the non-linear GEI model,

the power to detect GEI from individual studies is very low (< 0.25), except study 10 where

the sample size n10, effect size (depends on E) and variance  are all relatively larger than

the other studies (Figure 2). In Table 2, IPD, MIVW and AWE show the highest powers.

 is close to  because the model based standard errors of  and  are

asymptotically the same. Because most of the 20 studies are unable to capture the true non-

linear GEI, especially those with restricted range of E at the two extremes of the E

distribution, the non-linearity of GEI leads to the low power of . In this particular

example, we observe that  is greater than . Instead of choosing alternatively

between  and , we can use  as the default meta-analytic estimator. The

relative performance of  is close to . This is a practically noteworthy finding as a

linear interaction model is typically the initial screening tool, and the AWE is able to pick up

signals under model misspecification that univariate meta-analysis methods can not.
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3.2 Data analysis for a set of studies investigating T2D

The proposed methods are applied to a set of studies investigating T2D, including 8

European cohorts: FIN-D2D 2007 study (D2D2007), DIAbetes GENetic study (DIAGEN),

Finnish Diabetes Prevention Study (DPS), Finland-United States Investigation of NIDDM

Genetics study (FUSION, FUSION S2), Nord-Trϕndelag Health Study 2 (HUNT),

METabolic Syndrome in Men study (METSIM) and Tromsϕ study (TROMSO). A number

of SNPs in the FTO gene region (16q12.2) have previously been identified to be associated

with T2D and BMI in the DIAGRAM consortium (Zeggini et al. (2008), Voight et al.

(2010)), where the variants at FTO gene are known to influence T2D predisposition through

an effect on BMI. Age, BMI and sex are all known risk factors for T2D and the T2D related

quantitative trait HDL-C (Scott et al. (2012), Morris et al. (2012)). In this paper, we

investigated whether SNPs in FTO gene modifies the effect of environmental factors (e.g.

age and BMI) on HDL-C. The effect modification characterized by interaction on HDL-C

has not been reported so far, though marginal association between SNPs in FTO and HDL-C

have been noted previously (Kring et al. (2008), Doney et al. (2009)).

Among the 8 cohorts, we have a total of N = 11, 150 genotyped participants who have HDL-

C levels, age, sex and BMI available, with sample sizes ranging between 172 and 2,729.

Participants known to be on lipid medication are excluded from this analysis. The

descriptive summary statistics for the 8 cohorts are shown in Table 3. Since the SNPs we

initially examined (namely, 10 SNPs in FTO strongly associated with T2D/obesity/BMI that

are listed on the National Human Genome Research Institute GWAS catalog) are in high

linkage disequilibrium and show very similar results, we only present our results for one

representative SNP, rs1121980. The SNP's genotype follows Hardy-Weinberg equilibrium,

and we did not need any imputation given the missing genotype proportion < 0.1%. The

MAF of rs1121980 ranges from 0.40-0.49 across cohorts, as a suggestive evidence for no

violation of Assumption 2. As in Table 3, the mean age ranges from 55-67 years except

FUSION (mean age=39). This cohort is younger because it is actually a sub-cohort of the

original FUSION study, with either spouse or offspring of T2D selected. The mean BMI

ranges from 26-28 kg/m2 except the DPS cohort (mean BMI=31). DPS cohort has an

inclusion criterion of having BMI> 25 at baseline. The covariate heterogeneity of E between

cohorts is relatively small, where BSSage/T SSage = 15% and BSSBMI/T SSBMI = 2%

respectively. The two ‘outlier’ cohorts, FUSION and DPS, both have only very small

sample sizes compared to the other studies, so their influence on UIVW and MIVW is

expected to be small. However, their influence on MR could be substantial due to a small

number of studies.

Analysis Model: The IPD model we fitted is given by log(HDL-Cki) = β0k + βGGki +

δGki×Eki + βaageki + βb BMIki + βssexki + βtT2Dki + εki(4) for k = 1, ..., 8; i = 1, ..., nk. In

model (4), SNP rs1121980 is used for G with both additive and co-dominant coding; BMI

and age is used as E in two separate analyses; T2D status is adjusted to account for biased

sampling of the genotyped subjects (more T2D cases are genotyped than non-cases). HDL-C

is log-transformed in order to reduce the skewness of its distribution. The proposed methods,

including IPD, UIVW, MIVW, MR and AWE, are implemented and compared. G-E

independence appears to be violated for rs1121980×BMI analysis (Spearman correlations
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across studies are reported in Table 3). This is expected as FTO is an obesity related gene.

G-E independence does not appear to be violated for rs1121980×age (Table 3).

Results: Figure 6 shows the forest plots of estimated GEI from individual cohorts and the

combined estimates using joint analysis and meta-analysis. The corresponding numerical

results are summarized in Table 4. There is no evidence of effect heterogeneity for both

rs1121980×BMI (P = 0.87) and rs1121980×age (P = 0.90) interactions based on Cochran's

Q test, so we proceed with a common effect model. In Figure 6 and Table 4, all these meta-

analytical methods UIVW, MIVW and AWE showed very similar results as IPD, except

MR. For example, rs1121980×BMI, the marginal SNP effects of rs1121980 with mean BMI

values across cohorts are shown in Appendix Figure 8, where MR is very sensitive to the

outliers as the number of cohorts is small (K=8). MR also appears to lack efficiency due to

small K and small ratio BSS/W SS. Here,  is robust to the bias from  since it only

assigned a weight of 0.05 on . This is

further evidence that  can data adaptively shrink to the ‘better’ estimator.

In the interaction model (4), positive rs1121980×BMI interactions are found under all

proposed methods (except MR) in Table 4, with P-values ranging from 0.01 to 0.03 for the

additive model. In particular, the estimates obtained from model (4), when converted in

terms of percentage change in actual HDL-C levels, indicated that: with 1 kg/m2 increase in

BMI, (1) under additive model, HDL-C level on average decreased by 1.53% (95% CI:

(1.37, 1.70)) given rs1121980=GG, by 1.39% (95% CI: (1.28, 1.49)) given rs1121980=AG

or GA; and by 1.24% (95% CI: (1.06, 1.42)) given rs1121980=AA; (2) under co-dominant

model, HDL-C level decreased by 1.51% (95% CI: (1.33, 1.69)) given rs1121980=GG, by

1.41% (95% CI: (1.27, 1.56)) given rs1121980=AG or GA; and by 1.21% (95% CI: (0.99,

1.42)) given rs1121980=AA. The results under additive and co-dominant models are very

close. The trend of the effects of BMI among the three groups defined by rs1121980

indicated that the presence of minor allele A in rs1121980 attenuated the negative

association between BMI and HDL-C. We did not find similar rs1121980×BMI interaction

effect on low-density lipoprotein cholesterol (LDL-C), total cholesterol or LDL-C/HDL-C

ratio. The suggestive effect modification of BMI by the SNPs on FTO that we have found

for HDL-C needs to be replicated in independent studies and validated in larger meta-

analysis.

4 Discussion

In this paper, we proposed and compared a set of meta-analysis approaches for analyzing

GEI. We showed the proposed AWE, as a combination of meta-analysis and meta-

regression estimators, performed better than discretely choosing between the two estimators

in terms of precision and power. We showed that the precision trade-off between the two

components in AWE depends on the covariate heterogeneity through the ratio of the

between and within study variances of the covariate E, and that the AWE adaptively weights

its component estimators to minimize the variance of the resulting hybrid estimator. The

resulting AWE retains full efficiency of the joint analysis using IPD under certain
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assumptions. The AWE is very simple to calculate based on summary statistics for marginal

genetic association and gene-environment interaction parameters (estimate and standard

error) along with the covariate mean of E (see Table 1). The computation is simple and

scalable to genomewide analysis. We suggest possible use of AWE as a default choice for

the meta-analysis of GEI based on summary data. We studied several key features that could

potentially influence the efficiency and power for meta-analysis of GEI. The features

included: (1) departures from G-E independence; (2) heterogeneity in MAFs across cohorts;

(3) lack of a common set of covariates across studies; (4) misspecification of the genetic

susceptibility model (dominant/co-dominant/additive); and (5) the presence of a nonlinear

form of interaction. Under all the above situations, we found the performance of AWE is

close to IPD estimator. In particular, under the non-linear interaction model setting, where

standard meta-analytical technique failed and the AWE is able to capture the lost efficiency

based on the summary data. We also reported some suggestive evidence for GEI between

rs1121980 on the FTO gene and BMI on HDL-C levels.

As a reviewer has pointed out, we are risking some bias for gaining precision in AWE by

including MR as a component, and MR is susceptible to ecological bias. However, as we

note in the analysis of the T2D example in Table 4, where the MR estimate is quite different

from the rest, the AWE aligns itself with the more sensible UIVW estimator. Our simulation

results also indicate this adaptive feature of AWE in controlling the bias from the MR

component by assigning decreased weight to it (Appendix Figure 9 and Table 6). Moreover,

regardless of ecological fallacy, under the additional assumption of G-E independence,

AWE remains unbiased. Thus the issue of ecological bias for aggregate analysis in MR is

less of a concern for AWE. We also noted that AWE performs well across the whole

spectrum of BSS/T SS ratio, not just intermediate values of this quantity (Appendix Figure 9

and Table 6).

We have mainly focused on quantitative traits with an underlying common fixed effect

model. The potential limitation of this approach is that the results might not translate directly

to dichotomous traits under a case-control design, where assuming G-E independence can

lead to huge gain in efficiency (Piegorsch et al. (1994), Umbach and Weinberg (1997),

Chatterjee and Carroll (2005)). We plan to extend our methods using a retrospective

likelihood framework under a case-control design. Investigating the results under a truly

random effects meta-analysis model is another possible extension to our work. Sample code

for all methods is available at http://www-personal.umich.edu/~bhramar/software/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Non-linear GEI model: the (red) sigmoid curve shows the true relationship between Y -G

association and E, namely, βG(E) = 2 exp(E − 50)/{1 + exp(E − 50)} +2; the boxplots show

the covariate heterogeneity of E across studies where the dots show the corresponding

covariate means of E.
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Figure 2.
Non-linear GEI model: the height of the bars represent the power to detect GEI across

individual studies; the (green) curve shows the value of the true non-linear GEI parameter;

the top panel shows the sample sizes nk and the within study standard deviations σEk of E,

the four studies with relatively greater σEk are highlighted (in red).
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Figure 3.
Comparison of the proposed meta-analytical methods (in terms of power) under different

scenarios of susceptibility models and covariate heterogeneity through a simulation study,

where data are simulated without any assumption on gene-environment independence or

homogeneity in allele frequencies across studies.
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Figure 4.
Comparison of the proposed meta-analytical methods (in terms of power) under different

scenarios of susceptibility models and covariate heterogeneity through a simulation study

(representing the situation of lack of common set of covariates across studies), where data

are simulated without any assumption on gene-environment independence or homogeneity

in allele frequencies.
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Figure 5.
Power curves under misspecified susceptibility models (dominant/additive), where the gen

erating co-dominant model has δAA = −δAa, where data are simulated without any

assumption on gene-environment independence or homogeneity in allele frequencies.
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Figure 6.
Forest plots showing the estimated gene-environment interactions (under additive model of

rs1121980) across the 8 European cohorts, as well as the combined estimates through meta-

analysis. [IPD: individual patient data; UIVW: univariate inverse-variance weighted

estimator; MIVW: multi variate inverse-variance weighted estimator; AWE: adaptively

weighted estimator combining UIVW and Meta-regression.]
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Table 1

Glossary of the meta-analysis methods for GEI with summary properties. [IPD: individual patient data

analysis; UIVW: univariate inverse-variance weighted estimator; MIVW: multivariate inverse-variance

weighted estimator; MR: Meta-regression; AWE: adaptively weighted estimator combining UIVW and MR.

 stands for estimates of marginal genetic association and  stands for gene-environment interaction

respectively.]

Methods Data shared Bias AREa

IPD individual level data unbiased 1

UIVW δ̂k , v̂(δ̂k ) unbiased wss/tss under Assumptions 1 and 2

MIVW β̂k , v̂(β̂k ) unbiased 1 under assumptions in LZ

MR λ̂Gk , v̂(λ̂Gk ) and mk unbiased under Assumption 1 bss/tss under Assumptions 1 and 2

AWE λ̂k , v̂(λ̂k ); λ̂Gk , v̂(λ̂Gk ) and m k unbiased under Assumption 1b 1 under Assumptions 1 and 2

a
ARE: asymptotic relative efficiency as compared to 

b
bias adaptively controlled in AWE.
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Table 2

Comparison of methods in terms of estimate, standard error of the estimate and power for GEI, under a

simulation study of non-linear GEI. [IPD: individual patient data; UIVW: univariate inverse- variance

weighted estimator; MIVW: multivariate inverse-variance weighted estimator; MR: Meta-regression; AWE:

adaptively weighted estimator combining UIVW and MR; TS: two-stage approach.]

Methods Estimate SEa Power

IPD 0.21 0.045 0.98

UIVW 0.18 0.070 0.69

MIVW 0.21 0.045 0.98

MR 0.23 0.060 0.82

AWE 0.21 0.045 0.98

TS 0.85

a
SE: standard error.
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Table 3

Summary statistics for the 8 European cohorts.

T2D HDL-C (mmol/l) rs1121980 Age (year) BMI (kg/m2) Gender SNP*Age SNP*BMI

Cohortsa N Mean (SD) MAFb Mean (SDb) Mean (SD) Female (%) Corr (P)c Corr (P)

D2D2007 2116 14 1.46 (0.35) 0.41 58.8 (8.3) 27.2 (4.8) 54 −0.03 (0.19) 0.03 ( 0.24)

DIAGEN 1510 29 1.45 (0.47) 0.46 63.3 (14.3) 27.9 (5.2) 55 −0.01 (0.76) 0.03 ( 0.24)

DPS 433 0.0 1.22 (0.29) 0.44 55.1 (7.1) 31.3 (4.6) 68 −0.02 (0.69) 0.16 (<.01)

FUSION 172 0.0 1.29 (0.32) 0.43 38.6 (10.9) 26.2 (4.9) 55 0.04 (0.56) 0.23 (<.01)

FUSION-S2 2729 31 1.45 (0.41) 0.40 57.3 (8.4) 27.9 (5.1) 44 −0.02 (0.22) 0.06 (<.01)

HUNT 1324 43 1.26 (0.38) 0.47 67.2 (13.1) 28.0 (4.4) 48 <.01 (0.94) 0.06 ( 0.03)

METSIM 1456 43 1.42 (0.40) 0.44 56.3 (6.6) 27.9 (4.7) 0 −0.05 (0.08) 0.03 ( 0.32)

TROMSO 1410 50 1.43 (0.42) 0.49 59.9(12.5) 27.6 (4.7) 50 <.01 (0.91) 0.04(0.15)

Entire study 11150 31 1.41 (0.40) 0.44 59.4(11.3) 27.8 (4.9) 44 <.01 (0.85) 0.05 (<.01)

a
Data reflect patients who were genotyped from the 8 European cohorts;

b
SD: standard deviation; BMI: body mass index; MAF: minor allele frequency;

c
Corr(P): Spearman correlation between SNP rs1121980 and environmental factor with corresponding P-value.
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Table 4

IPD/Meta-analysis results of GEI for the T2D study, where log transformed HDL-C level was regressed on

SNP, age, BMI, sex, T2D status, cohorts, and SNPxE interaction (E as BMI and age in two separate analysis)

in the IPD model. Estimates, SEs and CIs have been multiplied by 1000.

Methodsa rs1121980 (additive) x BMI P-value*

Estimate SEb 95% CIb Additive Co-dominant

IPD 1.474 0.687 (0.128,2.821) 0.03** 0.03*

UIVW 1.731 0.675 (0.407 , 3.054) 0.01* 0.02*

MIVW 1.518 0.663 (0.219 , 2.816) 0.02* 0.01*

MR −0.719 3.136 (−6.866, 5.429) 0.81 0.69

AWE 1.622 0.660 (0.328, 2.916) 0.01* 0.02*

rs1121980 (additive) x age Additive Co-dominant

IPD 0.011 0.304 (−0.585 , 0.606) 0.97 0.68*

UIVW 0.046 0.337 (−0.613 , 0.706) 0.89 0.74

MIVW −0.008 0.307 (−0.610, 0.594) 0.97 0.69

MR 0.180 0.522 (−0.843 , 1.203) 0.73 0.77

AWE 0.086 0.283 (−0.469 , 0.640) 0.76 0.69

a
IPD: individual patient data; UIVW: univariate inverse-variance weighted estimator; MIVW: multivariate inverse-variance weighted estimator;

MR: Meta-regression; AWE: adaptively weighted estimator combining UIVW and MR.

b
SE: standard error; CI: confidence interval.

*
indicating significance at α = 0.05 level.

*
indicating whether additive or co-dominant model has smaller AIC under the IPD model.
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