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In radiation therapy applications, deformable image registrations �DIRs� are often carried out be-
tween two images that only partially match. Image mismatching could present as superior-inferior
coverage differences, field-of-view �FOV� cutoffs, or motion crossing the image boundaries. In this
study, the authors propose a method to improve the existing DIR algorithms so that DIR can be
carried out in such situations. The basic idea is to extend the image volumes and define the
extension voxels �outside the FOV or outside the original image volume� as NaN �not-a-number�
values that are transparent to all floating-point computations in the DIR algorithms. Registrations
are then carried out with one additional rule that NaN voxels can match any voxels. In this way, the
matched sections of the images are registered properly, and the mismatched sections of the images
are registered to NaN voxels. This method makes it possible to perform DIR on partially matched
images that otherwise are difficult to register. It may also improve DIR accuracy, especially near or
in the mismatched image regions. © 2010 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3267547�
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I. INTRODUCTION

Image registration is a procedure for transforming different
image datasets into a common coordinate system so that the
corresponding points in the images are matched and allow
complementary information from the different image
datasets to be used for various diagnostic and therapeutic
purposes.1 Image registration plays increasingly important
roles in radiation therapy applications since more and more
anatomical images �kVCT, daily megavoltage-CT or cone-
beam-CT, MRI, etc.� and functional images �PET, SPECT,
fMRI, etc.� are adopted into patient radiation treatment man-
agement. Image registration algorithms can be generally
grouped into rigid and deformable �nonrigid� registrations.2

While rigid registration applies only affine transformations
with a limited number of free parameters �up to 12�, deform-
able image registration �DIR� uses a much larger number of
parameters to describe tissue deformation.

DIR3 can be computed based on features extracted from
the images �e.g., points,4 lines,5 and surfaces6� or based on
similarity metrics directly derived from image intensity val-
ues �e.g., sum of squared differences �SSD�,7 mutual infor-
mation �MI�,8 cross correlation,9 and correlation ratio10�.
There are also different categories of algorithms based on the
transformation models and the optimization schemes, for ex-
ample, the thin-plate spline algorithm,11 B-spline
algorithm,12,13 optical flow algorithms,7,14,15 diffeomorphic
algorithms,16,17 block matching algorithms,18 finite element
model �FEM� based algorithms,19,20 etc. Single modality CT-
to-CT DIR is especially important for radiation therapy ap-
plications such as patient response monitoring, treatment ad-
aptation, dose tracking, and patient motion modeling.15,21,22
There are many situations that DIR needs to be carried out
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between two image datasets that only partially match. For
example, �1� the daily CT images �kV-CBCT, MV-CBCT, or
tomotherapy MVCT� have smaller field of views �FOVs� and
superior-inferior coverage than the corresponding treatment
planning CT images, as shown in Figs. 1�a�–1�d�, �2� two
multiple-slice free-breathing ciné mode lung CT scans at the
same couch table position but different breathing phases may
have different image contents due to breathing motion, as
shown in Figs. 1�e� and 1�f�. DIR algorithms usually assume
that the two images to be registered have matching contents
in the whole image domain. If the two images are only par-
tially matched, there will be registration problems associated
with the mismatched image contents, as shown in Fig. 2.
Currently, a general solution is to crop the images so that the
moving image can cover the fixed image entirely in both
volume and image content. The disadvantages are �1� regis-
tration results will be only defined on the smaller cropped
image volumes and �2� useful image information is lost be-
cause of cropping.

II. METHOD

In this article, we propose a method to improve the exist-
ing DIR algorithms so that DIR can be carried out in such
image mismatching situations. The basic idea is to use NaN
values to extend the image volumes instead of cropping them
and to allow NaN voxels to match to any voxels in the reg-
istration computation. As the results, the matched sections
between the images are registered and the mismatched sec-
tions of the images will be mapped to NaN voxels.
For two images �I and J� to be registered, let I be the

1411…/141/5/$30.00 © 2010 Am. Assoc. Phys. Med.

http://dx.doi.org/10.1118/1.3267547
http://dx.doi.org/10.1118/1.3267547
http://dx.doi.org/10.1118/1.3267547


142 Yang et al.: Deformable image registration on partially matched images 142
moving image and J be the fixed image, a deformation vector
field �DVF� V registers I to J when the general system en-
ergy equation is optimized,

E = �
�

S�V�I�,J�d� + �2�
�

R�V�d� , �1�

where V�I� is the deformed moving image I, S is the simi-
larity function, R is the smoothness constraint function, � is
the image domain, and � is a configurable constant. To allow
mismatched images, we slightly modify the system energy
equation to

E� = �
��

S��V�I��,J��d�� + �2�
��

R�V�d��, �2�

where I� and J� are the images with their volumes extended
with NaN values, �� is the extended image domain, the
similarity measurement function S� is slightly modified to
take only valid �non-NaN� voxels. For example, if SSD is
used as the similarity metric, the similarity term can be writ-
ten as

�
��

S��V�I��,J��d�� = �
��

Z��V�I�� − J��2�d��, �3�

where the NaN value checking function Z�x� is defined as

Z�x� = �0 x is NaN

x x is not NaN.
� �4�

However, adding the function Z into the system energy
equation �2� makes Eq. �2� not differentiable because Z is not
differentiable and there is no simple way to write it in a

FIG. 1. Examples of images partially matching situations. �a�–�d� are the
scans of a prostate cancer patient. �a� and �c� are tomotherapy MVCT scans.
�b� and �d� are the corresponding conventional kVCT scans. �a� and �b�
demonstrate the different superior-inferior coverage between the MVCT and
kVCT. The dashed lines in �b� and �d� mark the boundaries of the corre-
sponding MVCT volume. �c� and �d� demonstrate the differences in FOV.
The circle in �c� is the tomotherapy MVCT FOV circle. The rectangle marks
the maximal cropped region if the MVCT image is cropped to be completely
within the FOV. �e� and �f� are two 64-slice axial CT lung scans at the same
couch position but at different phases of the breathing cycle. The arrows in
�e� demonstrate the directions of tissue motion to match the scan in �f�.
differentiable formulation. One approximation is to defer the
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NaN checking from the system energy equation to iterative
solutions by which the system equation is solved. To dem-
onstrate such an approximation, we use the Horn–Schunck14

�HS� optical flow algorithm which computes DVF using the
following iterative equation:

Vk+1 = V̄k −
�J − I + V̄k · �I� � I

�2 + ��I�2
, �5�

where Vk is the DVF at iteration k and V̄k is Vk averaged in
the neighborhood of every voxel. V0 is initialized to all 0 for
k=0. To check the NaN values in the iteration, this equation
is modified to

Vk+1 = V̄k − Z	 �J� − I� + V̄k · �I�� � I�

�2 + ��I��2

 . �6�

Even though there are only slight modifications in the
system energy equation and the iterative solution, there are
several aspects that require further explanation. First, the rea-
son to use NaN instead of other floating values for undefined
voxels is that NaN is transparent to all arithmetic operations
that DIR computations are based on. The results of arith-
metic operations, such as addition, multiplication, etc., will
be NaN if any operand of an arithmetic operation is a NaN.
The undefined voxels need to be tracked through out the DIR
iterative computations. NaN values are appropriate as the
indicators for these voxels while other floating-point values,
such as 0 or negative values, could not straightforwardly
serve the same purpose because they could not maintain their

FIG. 2. Demonstration of registration problems on the 64-slice lung CT
scans. The CT scan in Fig. 1�e� is used as the moving image and the CT scan
in Fig. 1�f� is used as the fixed image. �a� and �d� are the deformed moving
image. �b� is the moving image in transverse view. �c� is the fixed image in
transverse view. The arrows indicate the most significant registration errors.
The motion vectors in �a� and �d� also show the incorrect transverse motions
as the diaphragm should move mainly in the superior-inferior direction in-
stead of in the transverse direction.
values throughout arithmetic operations as NaN values do.
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The second issue is whether allowing NaN voxels to be
registered to any voxels �whether or not they are NaN vox-
els� would cause inaccurate registrations. Image intensity in-
formation is not available for undefined voxels; so there is no
way to determine the image motion for these voxels. Assign-
ing NaN values to these voxels and allowing them to match
to any voxels is equivalent to not computing image motion
on these undefined voxels. Global smoothing mechanisms of
the DIR algorithms help to propagate motion from the valid
image regions to the NaN region. Therefore, image motions
on the undefined voxels are estimated using image motion
information from the neighboring voxels containing valid in-
tensity values.

For the modified HS algorithm, the function Z checks the
DVF adjustment �the operand of function Z in Eq. �6��, de-
noted as �V, at every iteration. �V will be NaN for the
undefined voxels as well as neighboring voxels because of
image gradient and deformation computations that use neigh-
boring voxel intensities. How a NaN voxel affects �V in its
neighborhood depends on the actual implementation of im-
age gradient computation and image deformation. In our
implementation, the image gradient is computed in a way

FIG. 3. New registration results using the NaN voxel extension. Both CT sc
�a� and �f� are the moving image. �b� and �g� are the fixed image. �c� and �h
scan boundary before NaN voxel extension. �d� is the different image before
image after registration. The arrows in �c�, �h�, and �i� indicate the deformed
in �c�.
similar to �In+1− In−1� /2 and trilinear interpolation is used for
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image deformation. A NaN voxel will affect �V in the neigh-
boring voxels but not further. One should note that the V in
Eq. �6� will not have NaN values after the function Z is used.
This ensures that global smoothness mechanisms applied
during the iterations will continue to work and will diffuse
the DVF into the undefined image regions.

Finally, an image boundary should be extended far
enough to cover the maximal image displacement at the
boundary. Smoothing operations, such as Gaussian low-pass
filtering, will propagate NaN values into the neighboring
voxels. Necessary image smoothing should be carried out
before the image volumes are expanded with NaN voxels.

III. RESULTS AND VALIDATION

Figure 3 shows the results of registration between two
64-slice axial CT scans with mismatched image contents.
Both CT images were 512�512�64 with voxel size of
0.9765�0.9765�0.625 mm3. They were acquired at the
same couch table position but different breathing tidal vol-
umes. This 4DCT registration situation has been an inter-
ested problem for respiratory motion studies23,24 but has

re extended in the superior-inferior and lateral directions with NaN voxels.
the deformed moving image. The dotted lines in �c� mark the original CT

stration. �e� is the different images after registration. �i� is the checkerboard
voxels. The transverse slice shown in �f� to �i� is marked by the dashed line
ans a
� are
regi

NaN
never been successfully solved previously. The proposed
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method in this paper makes a better solution for this prob-
lem. As shown in Fig. 3, we can directly register these two
4DCT scans by extending them in the superior and inferior
directions by eight slices �5 mm� with NaN voxels before
registration. Compared to the results in Fig. 2, the results in
Fig. 3 are visually better.

We have performed landmark-based validation for this
4DCT example. For 20 manually selected corresponding
landmarks �lung-bronchi bifurcation points� in both CT
scans, the average distance between the corresponding land-
mark pairs was 4.3 mm before registration. The registration
errors, which are defined as the absolute distances from the
registered landmark points in the deformed moving image to
the target landmark points in the fixed image, were
0.8�0.3 mm.

We have also performed quantitative validation for the
MVCT and kVCT volume and FOV mismatching situations
shown in Fig. 1. We used a digital phantom �a kVCT image
defined by a known DVF� with an artificial FOV cutoff. We
carried DIR using the original kVCT as the moving image
and the digital phantom as the fixed image. We quantitatively
compared the registration errors against those from a regular
DIR without using NaN extension. The results listed in Table
I suggest that the proposed method could reduce registration
errors, comparing to regular DIR results for the FOV mis-
matching situations.

IV. DISCUSSION AND CONCLUSION

The proposed method is able to estimate the DVF in the
image mismatching image regions. Therefore, it has the ad-
vantage to allow DIR computation in larger image volumes
comparing to the regular approach which crops the image
volumes before DIR computation. Allowing the NaN voxels
to match to any other voxels is also the primary limitation of
the proposed method. The DVFs computed on the undefined
voxels are not obtained by image intensity matching, but by
propagating the DVF from the neighborhood valid voxels.
While DVF propagating is a reasonable method for estimat-
ing DVF on the undefined voxels where image information is
not available, the accuracy cannot be guaranteed.

In conclusion, we have proposed a method to improve the
existing DIR algorithms to handle partially matched images.
The core concept is to extend the image volumes with NaN

TABLE I. Registration results comparison for the MV

Image region

Ground truth image
displacement

�mm�

Entire image 8.2�4.8
Inside FOV 9.7�4.2
Outside FOV 7.3�5.2
Within 10 pixels inside
FOV

9.2�4.7

Within 10 pixels outside
FOV

8.5�4.3
voxels and to allow such NaN voxels to match to any voxels
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in the other image. The proposed method could be applied to
many radiotherapy applications similar to the examples used
in this paper. It is also possible to apply this method in simi-
lar ways to other algorithms that are based on different simi-
larity metrics, including mutual information and cross corre-
lation, even though we have to leave out such discussions
from this short paper.
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