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In recent years, there has been an increasing interest in the study of large-scale brain activity

interaction structure from the perspective of complex networks, based on functional magnetic

resonance imaging (fMRI) measurements. To assess the strength of interaction (functional

connectivity, FC) between two brain regions, the linear (Pearson) correlation coefficient of the

respective time series is most commonly used. Since a potential use of nonlinear FC measures has

recently been discussed in this and other fields, the question arises whether particular nonlinear FC

measures would be more informative for the graph analysis than linear ones. We present a

comparison of network analysis results obtained from the brain connectivity graphs capturing

either full (both linear and nonlinear) or only linear connectivity using 24 sessions of human

resting-state fMRI. For each session, a matrix of full connectivity between 90 anatomical parcel

time series is computed using mutual information. For comparison, connectivity matrices obtained

for multivariate linear Gaussian surrogate data that preserve the correlations, but remove any

nonlinearity are generated. Binarizing these matrices using multiple thresholds, we generate graphs

corresponding to linear and full nonlinear interaction structures. The effect of neglecting

nonlinearity is then assessed by comparing the values of a range of graph-theoretical measures

evaluated for both types of graphs. Statistical comparisons suggest a potential effect of nonlinearity

on the local measures—clustering coefficient and betweenness centrality. Nevertheless, subsequent

quantitative comparison shows that the nonlinearity effect is practically negligible when compared

to the intersubject variability of the graph measures. Further, on the group-average graph level, the

nonlinearity effect is unnoticeable. VC 2011 American Institute of Physics. [doi:10.1063/1.3553181]

Nowadays many real-world systems are often understood

as networks of mutually dependent subsystems. The

connectivity between subsystems is evaluated by various

statistical measures of dependence. For a given system

the mutual dependencies between the corresponding sub-

systems can be represented as a discrete structure called

a weighted graph, where each subsystem is represented

by a single vertex and each dependence by a connection

(an edge) between two such vertices. Each edge can be

labeled with a number called a weight. A weighted graph

can be imagined as a set of points in a space connected by

lines with different widths according to the weights. The

graph representation of a system can be used to study the

system’s underlying properties with the help of graph

theory. Commonly a set of graph-theoretical measures is

computed that characterize properties of the underlying

graph and consequently of the whole system. A poten-

tially critical part of the whole process is the choice of the

statistical dependence measure used for derivation of the

weights during the graph construction. For this purpose,

the simple linear (Pearson) correlation coefficient of

observations from any given two vertices is most com-

monly used. Such a choice may have the disadvantage

that linear correlation does not take into account the non-

linear dependences possibly occurring in data. However

there are measures that capture nonlinearities, e.g.,

mutual information. The main task of this paper is to study

the relevance of nonlinear measures for graph-theoretical

analysis of large-scale brain networks. We do so by assess-

ing the influence of canceling the data nonlinearities,

through the use of linearized surrogate data, on various

graph-theoretical measures when a general nonlinear

dependence measure, namely mutual information, is used

as a measure of connectivity. Apart from its direct rele-

vance for the analysis of resting-state fMRI brain net-

works, this study presents an approach and a general

framework for assessing the relevance of nonlinear meas-

ures for graph-theoretical analysis in other fields.

I. INTRODUCTION

Graph-theoretical measures are becoming popular for

characterization of complex networks,1 such as those

describing the interactions or interdependence structure of
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large-scale, real-world, potentially highly nonlinear dynami-

cal systems. The examples of such systems range from

climatic networks2 to large-scale neural systems.3

The individual interactions between nodes of a given

network can be measured by a variety of methods. While lin-

ear measures such as the Pearson correlation coefficient

(referred to as linear correlation throughout this paper to

stress the distinction from nonlinear correlation coefficient

indices) or coherence are commonly applied, potential

advantages of nonlinear measures are receiving increased

attention.2,4

Nonlinear measures potentially offer higher sensitivity

due to generality of the dependence structures they are able

to capture. On the other hand, linear measures have the

advantage of typically easier implementation and robustness,

as well as straightforward interpretation and accessibility to

a wider community of researchers outside the field of nonlin-

ear dynamics.

However, the question of which interdependence or con-
nectivity measures should be used cannot be answered in

general. The trade-off between the crucial factors is likely

to depend on a particular dataset and scientific problem

considered. For instance, the use of mutual information, a

very general nonlinear dependence measure, has been

recently proposed as advantageous for the analysis of cli-

matic networks.2

While the linear dependence measures (correlation, par-

tial correlation, coherence, partial coherence, partial directed

coherence) constitute a relatively narrow family correspond-

ing to “singular” simplifying linear models of the system,

there is a virtually boundless number of nonlinear depend-

ence measures stemming from various perspectives taken by

the analysts. We refer the reader to a selection of reviews of

some of the nonlinear dependence measures proposed so far

with some emphasize on methods applied in neuroscience.4–6

Importantly among the nonlinear measures, some stand out

due to the generality of the concepts they build upon. For a

system with two variables, a classical example is that of

mutual information, which is a general measure of depend-

ence between two variables in the context of information

theory, corresponding to the amount of common information

contained in two variables. Mutual information is also deeply

rooted to the probability theory, as it can be conveniently

viewed as the Kullback–Leibler divergence of the bivariate

distribution from a hypothetical bivariate distribution of

two independent variables with the same marginal distribu-

tions as the original ones. Thus, instead of having to test a

virtually infinite number of possible nonlinear dependence

measures, we use mutual information as an unbiased infor-

mation-theoretically rooted measure of departure from statis-

tical independence.

Various approaches have been developed for estimating

of information-theoretical functionals.7 A relatively simple

estimator based on marginal equiquantization8 has been pro-

posed for detecting nonlinearity9–11 in combination with the

technique of surrogate data.12 Although other estimators

may have better performance considering estimator bias, in

statistical tests the correct value of mutual information is less

important than the distinction of the data value from a range

related to a null hypothesis, realized using surrogate data.

Considering that the surrogate data reliably reflect sources of

estimator bias, estimator variance is more important that the

estimator bias. In such a situation, the simple equiquantal

box-counting algorithm is not outperformed by more com-

plex and computationally more intensive estimators with

lower bias.13 The equiquantal mutual information estimator

has been successfully used in detection and quantification of

nonlinearity in the dynamics of various complex systems,

ranging from the Earth’s atmosphere14 to the human heart15

and brain.16–19

In neuroscience, functional magnetic resonance imaging

(fMRI) is one of the prominent methods for the study of

large-scale brain dynamics. Following the increase of inter-

est in the study of complex network properties, a wealth of

graph-theoretical studies utilizing resting-state fMRI data

has been published in the last 5 yr.20 Importantly, linear con-

nectivity measures such as Pearson or partial linear correla-

tion of the local activity time series are used to derive the

connectivity matrix that is then transformed to the network

representation.

Notably, the suitability of the use of linear correlation as

a dependence measure depends on the Gaussianity of the

joint bivariate distribution. Recent work has shown that

while there is a statistically detectable non-Gaussianity in

the resting brain state fMRI data,21 the approximation of mu-

tual information by linear correlation is relatively close.

In the analysis of complex systems, the question of line-

arity is often discussed. Although not always fully specified,

linearity is often understood in terms of existence of an

underlying linear Gaussian stationary stochastic process gen-

erating the observed data—the question whether the observed

data could be generated by such a process is often posed

and statistically tested.12 Wherever we refer to “linearity

assumptions,” these assumptions are considered. Nonlinearity

then refers to deviation from this data property.

As mentioned above, rather than on testing the linearity

assumptions, this paper focuses on a different though related

question whether linear correlation is a sufficient measure of

bivariate dependences for the purposes of characterization of

the system by graph-theoretical properties of the correspond-

ing connectivity graph. Clearly, if the bivariate distributions

p(Xi, Xj) for each two variables Xi, Xj are Gaussian (which is

trivially valid under the relatively strong linearity assump-

tions), then linear correlation fully captures the full bivariate

dependencies. When we speak about data Gaussianity, we

refer to this Gaussianity of the bivariate distributions of the

marginally normalized data (or surrogates) and non-Gaussianity

refers to deviation from this property. Note that deviation from

this bivariate data Gaussianity might, but not necessarily, lead

to substantial differences in the graph-theoretical properties

between graphs constructed using linear or nonlinear depend-

ence measures.

A question arises, whether the observed deviation of the

fMRI time series from the linear Gaussian properties is rele-

vant for the graph-theoretical properties of the brain inter-

action network. In other words, does the non-Gaussianity

present in the dependence structure of large-scale brain

activity data sufficiently motivate and justify potential use of
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nonlinear measures of connectivity in graph-theoretical stud-

ies of resting-state fMRI data?

In this report, we contribute to the discussion of this

question by comparing the graph-theoretical properties

obtained when using mutual information as a dependence

measure of original and linearized (surrogate) fMRI data.

Using this approach, we circumvent the issues associated

with different numerical properties of mutual information

and linear correlation.

The paper is organized as follows: First, a description of

the acquisition and preprocessing of the data is given in Sec.

II. The section is divided into a description of the data in

Sec. II A, the generation of linear surrogate datasets in Sec.

II B, and the nonlinear connectivity measure we applied in

Sec. II C. Section III provides a brief overview of graph-the-

oretical notions in Sec. III A and describes the applied

graph-theoretical measures in Sec. III B. Further in Sec. IV

we outline the process of analysis. After a general account of

the procedure in Sec. IV A, we continue with descriptions of

particular concepts used in the analysis itself: dominances

are introduced in Sec. IV B, shadow datasets in Sec. IV C,

and additional statistics in Sec. IV D. The results and conclu-

sions are provided in Secs. V and VI.

II. DATA AND PREPROCESSING

A. Data

Resting-state fMRI data from 12 healthy volunteers (5

males and 7 females, age range 20–31 yr) were obtained

using a 3T Philips Achieva MRI scanner, operating at ITAB

(Chieti, Italy). Functional images were obtained using T2-

weighted echo-planar imaging (EPI) with blood oxygenation

level-dependent22 (BOLD) contrast using sensitivity encoding

(SENSE) imaging. EPIs [time to repetition (TR)/time to echo

(TE)¼ 2000=35 ms] comprised 32 axial slices acquired contin-

uously in ascending order covering the entire cerebrum (voxel

size¼ 3� 3� 3.5 mm3).

Each subject underwent two scanning runs. In each

scanning run the initial five dummy volumes allowing the

MRI signal to reach steady state were discarded. The subse-

quent 300 functional volumes forming a 10-min data session
were then used for the analysis. Therefore the data available

for analysis consist of 24 sessions, each containing activity

time series with 300 timepoints for each brain voxel.

A three-dimensional high-resolution T1-weighted image

(TR=TE¼9.6=4.6 ms, voxel size¼ 0.98� 0.98� 1.2 mm3)

covering the entire brain was also acquired for each subject

and used for anatomical reference.

Standard data preprocessing was performed using the

SPM5 software package (Wellcome Department of Cognitive

Neurology, London, UK) running under MATLAB (The Math-

works). The preprocessing steps involved the following: (1)

correction for slice-timing differences, (2) correction of head-

motion across functional images, (3) coregistration of the ana-

tomical image and the mean functional image, and (4) spatial

normalization of all images to a standard stereotaxic space

(Montreal Neurological Institute, MNI) with a voxel size of

3� 3� 3 mm3. For details of the preprocessing methods we

refer the reader to the comprehensive book by Friston et al.23

Ninety parcels from the automated anatomical labeling

(AAL) atlas were used to extract mean BOLD time series

after masking out nongray matter voxels. The anatomical

positions of the parcels are described in the literature.24

Every parcel time series was orthogonalized with respect to

the motion parameters and global mean signal and high-pass

filtered at 1=120 Hz.

Before any calculations with resulting time series a specific

“normalization step” was performed. This “normalization” step

consists in assigning the appropriate percentile to each value

of a given variable, and then replacing the original values of

the variable by the values corresponding to these percentiles

in the standard normal distribution. Note that this normaliza-

tion step does not affect mutual information between the

time series if the mutual information is estimated using equi-

probable binning, as described below. Reasons for inclusion

of this step are described in Sec. II B.

After all preprocessing step calculations, the data consist

of 24 sessions, each one consisting of 90 time series with

300 data points each.

B. Generation of linear surrogate data

To assess the effect of nonlinearity on the graph-theoretical

properties of the resting-state fMRI brain networks, we com-

pare the network representations of the data with those of

their linear counterparts.

The linear counterpart of a single session dataset is con-

sidered as a realization of a linear Gaussian process with the

same “linear properties” as the original data. Such realiza-

tions, called surrogate datasets, are created using the method

of multivariate Fourier transform (FT) surrogates25,26—

realizations of multivariate linear Gaussian stochastic pro-

cess which mimics individual spectra of the original time

series as well as their cross-spectrum. The multivariate FT

surrogates are obtained by computing the Fourier transform

(FT) of the series, keeping unchanged the magnitudes of

the Fourier coefficients (the spectrum), but adding the same

random number to the phases of coefficients of the same

frequency bin; the inverse FT into the time domain is then

performed. The multivariate FT surrogates preserve (the

part of) synchronization, if present in the original data,

which can be explained by a multivariate linear Gaussian

stochastic process.

For each session, 99 such multivariate surrogates are

generated to build a solid statistical ensemble to compare the

original data. While the fMRI data marginals typically do

not deviate strongly from Gaussianity, to correct for potential

differences due to univariate non-Gaussianity of the original

data (that would not appear in the linear surrogates), an ini-

tial normalization step described in Sec. II A is performed.

Note that the applied rescaling effectively corresponds

to the initial step of the amplitude adjusted Fourier transform

(AAFT) surrogate generation method12,27—i.e., the normal-

ization of the univariate distributions. As in the AAFT, this is

followed by the Fourier transform and phase randomization.

The final readjustment of the marginals present in the AAFT

method is not carried out in our analysis. There are two main

reasons for this. First, such a rescaling does not change the
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bivariate mutual information and, therefore, does not affect

our results. Secondly, we choose to follow the same frame-

work as used in the earlier paper,21 where the assumption

of Gaussianity of the marginals gives us a convenient

bound on the mutual information IX;Y � IGaussðrX;YÞ ¼
� 1

2
logð1� r2

X;YÞ, where rX,Y is the linear correlation of X and

Y, IX,Y is mutual information between X and Y and IGauss(r) is

mutual information between two variables with a bivariate

Gaussian joint distribution with correlation coefficient r. This

bound on mutual information is in general not valid when the

marginals are not kept Gaussian.

C. Computing functional connectivity by
mutual information

For each session, the network is represented by a func-
tional connectivity matrix. To be sensitive both to linear and

nonlinear connectivity contributions, we use a general de-

pendence measure—mutual information.

For two discrete random variables X1, X2 with sets of

values N1 and N2, mutual information is defined as

IðX1;X2Þ ¼
X

x12N1

X
x22N2

pðx1; x2Þ log
pðx1; x2Þ

pðx1Þpðx2Þ
;

where the probability distribution function is defined by

p(xi)¼PrfXi¼ xig, xi [ Ni and the joint probability distribu-

tion function p(x1, x2) is defined analogously. When the dis-

crete variables X1, X2 are obtained from continuous variables

in a continuous probability space, then the mutual informa-

tion depends on a partition chosen to discretize the space.

Here a simple box-counting algorithm based on the marginal

equiquantization method8,9 was used, i.e., a partition was

generated adaptively in one dimension (for each variable) so

that the marginal bins become equiprobable. This means that

there is approximately the same number of data points in

each marginal bin. The number Q of marginal bins is limited

by the amount of available data.28 Several empirical criteria

have been proposed, e.g., Paluš8,9,28 recommends that N
� Qnþ 1 when computing mutual information of n variables

using time series consisting of N samples. Severity of the

“overquantization” bias depends on the properties of the ana-

lyzed data.28 On the other hand, too coarse quantization

(e.g., Q¼ 4) can neglect some subtle nonlinear effects.

Therefore we used a pragmatic choice of Q¼ 8 bins which

has been found to be sensitive to nonlinear dependence and

even to nonlinear causal effects in a large number of studied

model and real systems.28,29

For each session, we computed the MI for each pair of

parcels, yielding a symmetric 90� 90 matrix of MI values.

III. COMPLEX NETWORKS

Graph theory is a well established field of mathematical

science30–32 with many applications in various natural and

social sciences.33–35 For analysis of neurological data its

most important subfield is probably the theory of complex

networks.1,3 This theory deals with various types of graphs

representing complex behavior of the underlying systems

that these graphs represent. Such analysis usually focuses on

several key graph-theoretical measures. In the following text,

we give a brief overview of the definitions of the concepts

from graph theory that we use, in order to provide a clear

context for the introduction of specific graph-theoretical

measures typically used in complex network analysis.

A. Terms and notations from graph theory

A graph G is a pair, G¼ (V, E), where V stands for a set

of nodes (or vertices) and E is a set of edges where each

edge represents a connection between two nodes. All graphs

considered in this work are undirected.31 For complex network

analysis a simple generalization of graph called weighted graph
is used.30 In weight graphs a weight w is introduced for each

edge by the so-called weight function W : E! R. Graphs

without weights can be called unweighted if there is a need

to distinguish them from the weighted ones.

Nodes are usually denoted as vi or only by their index i
when there is an enumeration of nodes or simply by v if indi-

ces are not important. A similar situation is in the case of

edges for which notations ei,j or fi,jg are used. The number

of vertices is denoted by n¼ jVj and the number of edges by

m¼ jEj. From an algebraic point of view the most important

notion for us is the adjacency matrix.32 An adjacency matrix

A is a matrix A ¼ ðai;jÞni;j¼1 whose elements are ai,j¼ 1 if ei,j

[ E and 0 otherwise. It is useful to conceptualize the set of

vertices that are connected with a given vertex v by edges—

this set is denoted as C(v). A density, defined as

q¼ 2m=(n(n� 1)), represents the relative number of edges

present in the graph with respect to the total number of edges

possible. For a set T � V of vertices E(T) � E denotes a subset

of edges of the original graph that connects only vertices from

set T. Another algebraic structure used here is the distance ma-
trix32 D, defined as D ¼ ðdi;jÞni; j¼1, where di, j is a distance

between vertices i and j that means a shortest path connecting

corresponding vertices where a path is informally a sequence

of vertices that are consecutively connected by the edges, num-

ber of which defines the length of the path.30 If there is no path

connecting two vertices then we set di, j¼1, while the diago-

nal entries of the distance matrix are naturally set to di, i¼ 0.

B. Network characteristics

In this paper, the graph-theoretical properties of undir-

ected unweighted graphs are analyzed, following the most

common analysis approach applied in complex network

analysis.1 The undirected unweighted graphs are obtained by

binarization of the symmetric connectivity matrix using

some thresholds. The main objective of this work is to study

the influence of nonlinearities on various graph characteris-

tics that are also called graph measures. The number of

potentially useful characteristics used is very high and still

rising.1 Therefore testing all possible measures is impracti-

cal. For this reason a subset of measures covering several

general classes of complex network characteristics is chosen.

The considered classes differ in their locality and in the

amount of used information. The following text describes

the nature and calculation of all the measures we used.

The first class involves the local characteristics. Meas-

ures in this class are defined for each node v [ V(G) and they
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do not depend on the aspects of the structure of G that are

located far from the studied vertex v. A classical representa-

tive of this class is the degree of vertex v defined as36

ki ¼
X
j2V

ai;j: (1)

Another widely used local characteristic is the local
clustering coefficient which determines whether vertices that

are linked to a particular vertex vi are likely to be linked to

each other.37 It can be also considered as a measure of how

far a subgraph on a set C(i) is from a complete graph (a

graph with all possible edges present). The local clustering

coefficient is defined as

ci ¼
2jEðCðiÞÞj
kiðki � 1Þ ¼

P
j;‘ ai;jaj;‘a‘;i

kiðki � 1Þ : (2)

We will refer to the second class of measures as meso-
scopic characteristics. These are still calculated for particu-

lar vertices, but a distant structure of G also becomes more

important. A key mesoscopic measure is betweenness cen-
trality (also called the shortest path betweenness centrality)

defined as38

CbðiÞ ¼
X

j;k2V; j 6¼i 6¼k

rj;kðiÞ
rj;k

; (3)

where rj,k denotes the number of all the shortest paths

between vertices j and k and rj,k (i) denotes the number of

the shortest paths between the same vertices that go through

the vertex i (note that particularly in unweighted graphs, it is

common for several or many different shortest paths between

two vertices to exist). This measure expresses how important

the particular vertex is from a perspective of “information

flow” from one vertex to any other vertex. In other words,

how important this vertex is as a mediator between any pair

of vertices. In this paper, the computation was performed

using the algorithm of Brandes.39 This measure is one from a

large family of graph centralities, where the shortest path

betweenness is probably the most used.40 In the following

text, local and mesoscopic measures are often abbreviated

together as local measures and where distinction is needed a

term strictly local is used.

The last class of measures to be considered in this pa-

per is the class of global characteristics. These measures

are not evaluated for specific vertices, but express the prop-

erties of the whole network. Some of the local or meso-

scopic graph characteristics have their counterparts in this

class. An example of this case is the global clustering coef-
ficient or simply a clustering coefficient calculated as the

average of the values of the local clustering coefficient over

all vertices

C ¼ 1

n

X
i2V

ci: (4)

In the same way as the global clustering coefficient,

global betweenness centrality or betweenness centrality is

defined as

Cb ¼
1

n

X
i2V

cbðiÞ: (5)

Another important global measure is characteristic path
length, defined as37

L ¼ 1

nðn� 1Þ
X

i;j2V;i 6¼j

di;j; (6)

where di,j [ D are elements of the distance matrix. For dis-

connected graphs characteristic path length defined accord-

ing to Eq. (6) is not finite and therefore if often not very

convenient. Since this characteristic was shown to corre-

spond to global betweenness centrality41 for connected

graphs and since global betweenness centrality has no com-

putational problems with infinite values, only global betwe-

enness centrality, and not characteristic path length, is used

in further computations.

Another characteristic called efficiency is commonly

used at the place of the characteristic path length for both

theoretical and computational reasons.42,43 However as effi-

ciency and characteristic path length are not fully equiva-

lent,42,43 we also include an analysis of efficiency, defined as

E ¼ 1

nðn� 1Þ
X

i;j2V;i 6¼j

1

di;j
: (7)

The last global characteristic to be considered in this pa-

per deals with the general tendency in connectivity as a func-

tion of the vertex degree.44 One type of such a general

tendency is whether high-degree nodes are likely to connect

with other high-degree nodes, or to low-degree ones. This

property is called assortativity, or disassortativity, respec-

tively.44–46 Detection of such a behavior is usually a nontri-

vial task, often replaced by a simple coefficient called the

assortative coefficient, defined as44,46

r ¼

X
ði;jÞ2E

kikj �
1

m

X
ði;jÞ2E

1

2
ðki þ kjÞ

2
4

3
5

2

X
ði;jÞ2E

1

2
ðk2

i þ k2
j Þ �

1

m

X
ði;jÞ2E

1

2
ðki þ kjÞ

2
4

3
5

2
: (8)

This coefficient can be used to approximately describe

the behavior of the underlying network from the perspective

of assortativity. Deeper discussion of this topic can be found

in the corresponding literature.44,47

A very important property of the resulting network is the

number of components where a component is the maximal

subset of vertices which is connected, i.e., any vertex from

this set can be reached by a path from any other. While net-

work characteristics are typically well defined even for

graphs that are not connected, i.e., have several components,

the comparison of some measures, especially mesoscopic and

global, can be very sensitive to the resulting component

structure. For these reasons we restrict some parts of our anal-

ysis to the results obtained for such values of the binarization

threshold for which all compared graphs are connected.
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IV. NETWORK ANALYSIS METHOD

The main task of this paper is to detect the potential

influence of nonlinearities possibly present in real fMRI

brain activity data on commonly used graph characteristics.

For this purpose 24 data sessions were preprocessed and ana-

lyzed by the methods described in Sec. II A, giving

Nsess¼ 24 basic datasets, each containing the original time

series together with Nsurr¼ 99 multivariate surrogate time se-

ries generated from the original data by the method outlined

in Sec II B. This section describes how the connectivity mat-

rices corresponding to the multivariate time series are trans-

formed to graphs and further analyzed.

A. Network analysis process overview

For each connectivity matrix from any dataset various

thresholds can be used to construct unweighted graphs

for which a general graph-theoretical characteristic f can

be determined. The whole process containing the steps

described in Sec. II is shown in Fig. 1.

For binarization of the connectivity matrices into

unweighted graphs, thresholds from 0.0 to 1.0 with a step

0.001 were used in general. Mutual information can have

values above 1. Nevertheless results show that these values

are very sparse for our analysis process and therefore we

chose an upper bound of 1. We are interested in the network

structure rather than in the connectivity strength. For com-

paring graph-theoretical properties of different connectivity

matrices, it is more suitable to match the graph density rather

than the thresholds.2 Therefore, for each matrix we evaluate

each characteristic f as a function of density: f¼ f (q).

While for n¼ 90 vertices the maximum X¼ 4005 possi-

ble density values can be obtained by thresholding, in prac-

tice only a subset of densities is attained with adaptive

thresholding of the connectivity matrix. To achieve compara-

ble results across the matrices, the function f¼ f(q) is inter-

polated in Voronoi manner48—to each value of q the value

f (qneigh) is assigned, corresponding to the closest density

qneigh attained by thresholding. In further description, a data

value of the global characteristic for a specific session s and

density q is denoted as f D (s, q). We drop some of the indices

to simplify notation where confusion is unlikely. We further

write fj(s, q) for the values obtained for surrogates, where

j¼ 1, 2, … , Nsurr are the indices of the surrogates. When local

versions of characteristics are used, a parameter i for vertices

has to be also used as in f D(s, q, i) and fj(s, q, i).
For each session, global characteristics are simply com-

puted as functions of density for data and corresponding Nsurr

surrogates. Then functions representing surrogates and data

can be compared using the process depicted in Fig. 1. The

results for surrogates are usually plotted by two gray lines—

minimal and maximal, forming a “belt” of values typical

under linearity. When the black data line falls into this belt,

it suggests that the data nonlinearity does not have a substan-

tial effect on the particular graph measure—the deviation

from linear process is within the natural variation due to

numerical estimation of the connectivity measure from a

finite-size sample. This process is repeated for each session

and the goal is to check whether data functions evade signifi-

cantly from the “belt” representing the linear surrogate

values.

B. Dominances

While the visual inspection of the belt plot provides an

intuitive grasp of the strength of any nonlinearity effect on

the studied graph-theoretical measures, a more formal quan-

titative analysis is beneficial, particularly in the case

of mesoscopic and local characteristics. An intuitive

FIG. 1. Data analysis pipeline: An ini-

tial normalization step described in

Sec. II A is performed using the data

time series. For resulting data, MI is

computed for all pairs, see Sec. II C. In

parallel, linear surrogate data are gen-

erated, see Sec. II B, from the same

data and for each surrogate its MI ma-

trix is computed in the similar way.

Each matrix (corresponding to data or

surrogate) was then threshold at multi-

ple thresholds providing a collection of

graphs. For each such graph a chosen

characteristic f is computed and ana-

lyzed (e.g., plotted as a function of

density).
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formalization of the concept of data “leaving the belt” of sur-

rogates by the concept of dominance is provided below.

Let s and q be fixed. For mesoscopic or local graph char-

acteristic, let us call a vertex i a maximal dominant vertex
when it holds that maxjffj(i)g < f D(i) and similarly minimal
dominant vertex if minjffj(i)g > f D(i). We further define the

maximal dominance indicator function as

f dom
M ðs; q; iÞ ¼ 1; i is maximal dominant

0; otherwise:

�
(9)

Similarly, the minimal dominance indicator function
f dom
m ðs; q; iÞ is defined. Finally, the dominance function is

defined as f domðs; q; iÞ ¼ f dom
m ðs; q; iÞ þ f dom

M ðs; q; iÞ. The fol-

lowing steps can be performed for any of these functions

but we concentrate on the dominance function only. Using

simple summation the graph dominance function can be

defined as

f G;domðs; qÞ ¼
Xn

i¼1

f domðs; q; iÞ; (10)

and finally the overall dominance function is computed as

f T;domðqÞ ¼ 1

Nsess

XNsess

s¼1

f G;domðs; qÞ: (11)

This function is then further analyzed. The same approach is

used for the global characteristic, with the exception that

dominance indicators are not functions of vertices and the

summation step (10) is therefore omitted. Note that the

expected values of the dominances under strict linearity are

about 2%, corresponding to the probability of a single value

out of a set of 100 values (1 data value and 99 surrogate val-

ues) being the highest or the lowest under the simplifying

assumption of existence of a single maximum (or single min-

imum) value.

To achieve robustness in the statistical comparison of

the dominances, these were further averaged across a range

of relevant densities. The resulting upper and lower density

bounds are presented in Fig. 2. The lower bound is deter-

mined so that for all sessions, all the resulting graphs are

connected, i.e., consist of a single component to guarantee

good comparability across graphs. For each session s a mini-

mal density qm,s is determined, assuring that the data graph

and all graphs of surrogates are connected. We use

qm¼maxs qm,s¼ 0.3216 as the lower bound of the interval

of interest. The upper bound is equal to qM¼ 0.69613, above

which the resulting graphs are likely to be extremely influ-

enced by noise. This density corresponds to threshold

sM¼ 0.0865 for the mutual information. This is the estimated

expected mutual information for the equiquantization

method and sample size (see Sec. II C) under the condition

of total independence of the two variables. The value was

estimated as the mean of mutual information values gener-

ated for 50 000 bivariate samples from a bivariate distribu-

tion with zero correlation, each with N¼ 300 observations.

C. Control for numerical bias using shadow datasets

To explicitly control for any potential bias in the numer-

ical generation of the surrogate distributions, we repeat for

each session the whole procedure for Nshadow¼ 39 linear,

“shadow” datasets. For each session, 39 shadow datasets

were created as a multivariate FT surrogate of the marginally

normalized original dataset. Thus the shadow dataset pre-

served only the linear (correlation) structure of the original

dataset of the respective session. Subsequently, each shadow

dataset has undergone the same procedure as original data,

including the initial normalization, generation of multivariate

FIG. 2. Generation of the relevant den-

sity interval for dominance averaging.

Top left: number of components Cn in a

chosen session and it surrogates with

lower bound for single-component

graphs qm,s. Top right: dependence

between density and threshold with indi-

cated upper bound qM. Bottom left: val-

ues of qm,s for various sessions (showing

also the across-subject maximum qm).

Bottom right: the same as bottom left

but using only data; without maximiza-

tion across all surrogates.
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surrogates, computation of MI, and generation of binary

graphs using the appropriate thresholds. In this way, we mimic

the full procedure of processing the original data while using

linear shadow datasets, accounting for any potential slight

bias introduced by numerical properties of the algorithm.

Then, the dominances for relevant graph measures computed

from the data are compared with the distribution obtained

from the linear, shadow datasets. In particular, if the data

dominance value is higher than at least 38 out of the 39 domi-

nance values obtained from the shadow datasets, this would

correspond to the significance level p < 2=40¼ 0.05 (no cor-

rection for multiple comparisons applied).

D. Additional statistics

To support the results obtained from the dominance

quantification we carry out one more statistically potentially

stronger and quantitatively more informative analysis step.

The key idea is to compare the bias and extra variability con-

tained in the nonlinear results with the random intersurrogate

variance observed in the linear results and further with the

intersession variability capturing the differences within and

between subjects. In other words, we want to quantify the

nonlinear effects and compare them to random error and a

realistic true effect, to see if the potential nonlinear effects

would be relevant in practice.

To derive these comparisons, we first consider a general

global characteristic f. For a given session s an average value

of the general characteristic f for surrogates can be deter-

mined as

f̂ Sðs; qÞ ¼
PNsurr

j¼2 fjðs; qÞ
Nsurr � 1

: (12)

We have omitted the first surrogate as it is going to serve as

a reference element for all comparisons with the data values.

As the order of surrogates bears no relevant information, the

first one can be technically considered to be chosen at

random.

We estimate the average difference of (nonlinear) data

with respect to (linearized) surrogates by

f̂ DðqÞ ¼
PNsess

s¼1 ðf Dðs; qÞ � f̂ Sðs; qÞÞ
Nsess

; (13)

and also estimate the standard deviation of such differences

as

r̂DðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNsess

s¼1 ðf Dðs; qÞ � f̂ Sðs; qÞ � f̂ DðqÞÞ2

Nsess � 1

s
: (14)

These values are compared to similar quantities com-

puted using the “reference” linear surrogate (that was previ-

ously excluded from the average surrogate value comparison

to achieve independence of the estimates)

d̂ðqÞ ¼
PNsess

s¼1 ðf1ðs; qÞ � f̂ Sðs; qÞÞ
Nsess

(15)

and

r̂ðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNsess

s¼1 ðf1ðs; qÞ � f̂ Sðs; qÞ � d̂ðqÞÞ2

Nsess � 1

s
: (16)

For local characteristics just one extra step is included in

that all the described statistics are at first determined for

each vertex and subsequently the graph values are computed

by averaging over vertices.

V. RESULTS

We first present a graphical comparison of the graph-

theoretical measures evaluated for data and linear surrogate

graphs. The results for the global clustering coefficient calcu-

lated using Eq. (4) from a representative session are shown

in Fig. 3(a). Similar results can be found for other sessions.

The figure shows that the original data line is not leaving the

“belt” defined by the minimal and maximal values of the

linear surrogates, suggesting that the nonlinear effect is neg-

ligible with respect to the error variance due to mutual infor-

mation estimation.

A similar picture can be observed in Fig. 3(b), where the

global values of efficiency given in Eq. (7) are depicted.

FIG. 3. Two graph characteristics as functions of density q for a graph rep-

resenting original data (black line) and minimal and maximal surrogate lines

(gray lines) for a representative session.
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Similarly to the previous case, the data line is located well

within the belt created from corresponding surrogates. The

same behavior can be observed in the case of the assortative

coefficient and global betweenness centrality (Fig. 4).

In general, the global network characteristics we consid-

ered do not seem to be substantially influenced by possible

fMRI data nonlinearities, since similar graphs were obtained

for the other sessions, too. To analyze this behavior in a

more formal way the dominances described in Sec. IV A

were calculated for the data and the generated shadows data-

sets as described in Sec. IV C.

For each global characteristic, the dominances form a

set of 40 functions of density that express the single domi-

nance function for the original dataset and 39 dominances

for the shadow datasets. As the global characteristic domi-

nances do not include the extra step of averaging over

vertices, extra robustness and easier interpretation is attained

by averaging the values across a range of densities (see

Sec. IV B).

The resulting comparisons of the observed data value

and the 39 shadow data values for all characteristics are

shown in Fig. 5. For all characteristics except efficiency the

dominances observed for the original dataset stay within the

range of dominances observed for shadow datasets. Domi-

nance of the original dataset for efficiency is out of this inter-

val. However it is a minimum of this set placed not far from

the set itself. Such placement would suggest that the domi-

nance effects in shadows were stronger than in the original

data which therefore cannot be caused by nonlinearities

(original data more similar to linear surrogates than observed

for typical shadow dataset). This more detailed analysis con-

firmed that nonlinearity does not have a substantial effect on

the graph-theoretical properties of the resulting graph, with

the data giving similar results as completely linearized

shadow datasets.

In the following we present results obtained for the local

graph-theoretical characteristics that might potentially be

more sensitive to some localized nonlinearity. Due to the

extra dependence on choice of vertex, the resulting diagrams

such as those in Figs. 3 and 4 are not easily readable and

therefore only the resulting dominances are shown. On the

other hand, due to averaging over vertices the dominance

functions are robust and smooth enough to be visually inter-

pretable. Such a graph for the local clustering coefficient is

shown in Fig. 6(a).

Similar results were obtained for dominances computed

for betweenness centrality, see Fig. 6(b). This time, one may

suspect some nonlinear effects from visual inspection of the

diagram—while the data line is not consistently outside the

gray belt, it follows its top boundary across a wide range of

densities. The diagram comparing the data and shadow data

dominance is shown in Fig. 7. Here we see that the data

dominances are significantly higher than dominances for the

shadow datasets, which stay close to the expected value of

2%. This again suggests some influence of nonlinearities.

To assess this influence and its practical relevance

quantitatively, the statistics described in Sec. IV D were

FIG. 4. Two graph characteristics as functions of density q for a graph rep-

resenting original data (black line) and minimal and maximal surrogate lines

(gray lines) for a representative session.

FIG. 5. Values of global dominances averaged over an interval of interest

for shadow datasets (gray squares) and original dataset (black lines) for

global clustering coefficient (C), global betweenness centrality (Cb), effi-

ciency (E), and assortative coefficient (r). Values on y axis are dominances

in percent.
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calculated. The results for the clustering coefficient are pre-

sented in Fig. 8(a). Here it is possible to see that the differ-

ence between r̂DðqÞ and r̂ðqÞ, which represents the extra

variability due to nonlinearity (on top of random estimation

error), is almost negligible. Moreover, the intersession vari-

ability represented by d̂ðqÞ is at least an order of magnitude

higher than the nonlinearity effect ĈDðqÞ (which is practi-

cally zero) as well as the difference r̂DðqÞ � r̂ðqÞ. In other

words, while potentially detectable by a sensitive statistical

approach on the group level, the nonlinearity effect even on

these local graph-theoretical characteristics is negligible when

compared to the intersession and intersubject variabilities. A

similar diagram obtained for betweenness centrality is shown

in Fig. 8(b).

VI. DISCUSSION AND CONCLUSIONS

We have assessed the effect of accounting for nonlinear

dependences on the results of graph-theoretical analysis of

large-scale brain networks. In particular, we used resting-

state fMRI, a type of data recently receiving increased

attention.

For the global graph-theoretical measures, we have

shown that the results obtained from data are well in the

range of the results obtained for linear multivariate surro-

gates (in which nonlinearities are removed by construction).

This indicates that potential nonlinearity in the studied

fMRI resting state data does not significantly affect the cal-

culation of the global graph-theoretical measures. This ob-

servation has been shown to be valid for a wide range of

global graph-theoretical measures differing in the complex-

ity of graph properties utilized in their computations. For

instance, assortative coefficient uses only the degree values,

while efficiency already uses some basic structural informa-

tion represented by shortest paths. On the other side, cluster-

ing coefficient takes into account the neighboring structures

of each vertex. Finally, global betweenness centrality is an

average of local betweenness centralities that each reflects the

full graph structure.

For the clustering coefficient and betweenness centrality

a more detailed local analysis was performed. Here, we have

observed a statistically significant deviation of results from

those obtained from control linearized shadow datasets.

Nevertheless, a quantitative comparison showed that the

nonlinearity effect is practically negligible when compared

to the intersession variability.

It is worth mentioning that the slight differences

observed might be due not only to nonlinearity, but also due

to nonstationarity of the time series. Therefore the observed

miniscule deviation from linearity might actually already be

inflated over the true value by potential nonstationarity con-

tributions. While this offers an alternative explanation to the

slight deviations observed, it does not alter the conclusion

regarding the unimportance of non-Gaussian contributions to

graph-theoretical measures in networks constructed from

fMRI resting-state time series. However, the problem of

FIG. 6. Values of two local dominances f T,dom as a function of density for

shadow datasets presented by minimal and maximal curves (gray color) and

original dataset (black color). Values on y axis are dominances in percent.

FIG. 7. Values of local dominances averaged over the interval of interest

for shadow datasets (gray squares) and original dataset (black lines) for clus-

tering coefficient and betweenness centrality. Values on y axis are dominan-

ces in percent.
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conflation of nonlinearity and nonstationarity is worth men-

tioning, in general, in this context as it might become crucial

if the conclusion were to be that a substantial deviation is

observed from the linear Gaussian stationary stochastic pro-

cess—in this case, false positives due to nonstationarity

should be considered. For a discussion of such scenarios and

proposed nonstationarity tests we refer the reader to the rele-

vant literature.49–52

To assess the general (potentially nonlinear) dependence

between the network nodes, we used mutual information—

a fully general, information-theoretical rooted bivariate

dependence measure. This represents a natural nonlinear

counterpart to the use of linear correlation—in fact, mutual

information can be considered as a generalization of linear

correlation in the specific sense that for bivariate Gaussian

distribution the two are linked by a functional relation

IðX; YÞ ¼ IGaussðrX;YÞ ¼ � 1
2

logð1� r2Þ.
A potential limitation of the current study is that, at

least in theory, “exotic” processes may exist, for which the

departure from Gaussian dependence would not show in

bivariate dependencies but only if multivariate dependen-

cies including temporal embeddings were taken into

account. Thus, only measures that incorporate these multi-

variate patterns such as mutual information between the

symbolic sequences of ordinal patterns (proposed origi-

nally in the context of complexity estimation53), would

theoretically be sensitive in these cases to properties of

the signals that the corresponding linear model would

not detect.

Note that in the framework of the multivariate informa-

tion functionals such as ordinal patterns mutual information,

the comparison with simple linear correlation would be bi-

ased against the linear correlation, as this measure utilizes

only information in the equal-time bivariate distribution.

Therefore a comparison with a suitable candidate linear de-

pendence measure derived from a linear model of corre-

sponding order would be necessary. On the one hand, we

believe that such a generalization of our procedure is of real

theoretical interest, and potentially may be also valuable for

some specific applications. On the other hand, an unbiased

testing using information-theoretical functionals of the vari-

ous multivariate dependence scenarios is limited. This limi-

tation lies in the computational expense and the demand for

long observation time series due to the curse of dimensional-

ity and in the problems with the estimation of appropriate

model order. Importantly, the detection of an effect of non-

Gaussianity in equal-time bivariate dependencies on graph-

theoretical properties of complex networks, as presented in

the current paper, is reasonably tractable and already pro-

vides important insights valuable for the many practical

applications where equal-time dependencies are generally

considered informative.

Regarding the methodology of the statistical testing, a

careful reader might notice the potential degree of freedom

in the choice of the dominance indicator functions in Sec. IV

B—instead of the maximum and minimum, a suitably chosen

couple of “extreme” percentiles (e.g., 95th and 5th) could

have been used in the definition of dominant vertices. The

corresponding redefined dominance function would then

have a different expected value (e.g., 10% with the above

choice), but may potentially represent a more robust domi-

nance estimate yielding higher sensitivity of the subsequent

statistical comparisons. Nevertheless, a control analysis with

dominance definition based on the (convenient but still rather

arbitrary) 95th and 5th percentiles did not substantially alter

the results. Thus we have chosen to keep in this report the

definition with maximum and minimum—mainly for sim-

plicity and consistence of the presented methods. Moreover,

as the statistical tests did reveal some significant differen-

ces and are moreover complemented by the quantitative

analysis for the two most “suspicious” graph measures, we

find the general issue of potentially suboptimal sensitivity

of particular statistical tests used not crucial for the results

presented.

In general, it remains an open question to what extent

our results regarding observable dependence nonlinearities

generalize to the connectivity during psychological task

rather than resting-state conditions, or to data acquired in

patient cohorts. We believe it is not unreasonable to conjec-

ture that the general nature of the activity process in terms of

the degree of (non)linearity is going to be preserved. While

FIG. 8. Statistics described in Sec. IV D for local version of two

characteristics.
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the ultimate answer would require extensive testing in vari-

ous settings and task or disease conditions, in the following

paragraphs we review some of the relevant evidence.

On the one hand, the overall pattern of spontaneous

brain activity represented by the correlated low-frequency

fluctuations of the so-called resting-state networks is gener-

ally ongoing, although altered, even under task conditions—

for a review of the interactions between intrinsic and stimu-

lus driven activity we refer the reader to a recent publication

by Northoff et al.54 Moreover, the resting-state networks

have been shown to correspond to the major functional net-

works as discovered in task studies.55 Similar arguments

apply to generalization of our findings to fMRI data acquired

in patients—while specific differences in the spatiotemporal

patterns of intrinsic brain activity have been observed in var-

ious patient groups, the overall spontaneous activity pattern

is generally conserved. For detailed review of current knowl-

edge of alterations of spontaneous brain activity in disease

we refer the reader to two recent overview papers.56,57

On the other hand, it is indeed possible that specific task

conditions might lead to spatiotemporal activity dynamics

that would manifest itself in activity interdependencies with

relatively higher degrees of nonlinearity than observed in

typical resting-state conditions. While extensive evidence

regarding this is still lacking, we refer the reader at least to a

brief review of some relevant research that is included in a

recent modeling study.58 Of potential interest, the main mes-

sage of the cited paper lies in proposing an ambitious nonlin-

ear multivariate interaction model for task-condition

activations. Unfortunately, the specificity of the model intro-

duced therein and of its analysis precludes direct quantitative

comparison to the analysis of the resting-state activity de-

pendence structure presented in Ref. 21 and in the current

paper.

In summary, we have provided quantitative evidence

suggesting that linear correlation is a satisfactory connectiv-

ity measure for graph-theoretical analysis of resting-state

fMRI brain networks and application of nonlinear depend-

ence measures is not likely to bring substantial new informa-

tion. While we have focused on the particular application to

fMRI studies of intrinsic brain activity, we suggest that the

approach used in this paper may be applied to data describ-

ing other complex networks of interest not limited to neuro-

science—this could be of special interest for fields such as

meteorology or geophysics. In general, this would facilitate

informed decisions regarding the application of nonlinear de-

pendence measures for graph-theoretical study of real-world

complex networks.
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