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Computer-aided detection and diagnosis (CAD) systems are increasingly being used as an aid by clin-
icians for detection and interpretation of diseases. Computer-aided detection systems mark regions
of an image that may reveal specific abnormalities and are used to alert clinicians to these regions
during image interpretation. Computer-aided diagnosis systems provide an assessment of a disease
using image-based information alone or in combination with other relevant diagnostic data and are
used by clinicians as a decision support in developing their diagnoses. While CAD systems are com-
mercially available, standardized approaches for evaluating and reporting their performance have not
yet been fully formalized in the literature or in a standardization effort. This deficiency has led to
difficulty in the comparison of CAD devices and in understanding how the reported performance
might translate into clinical practice. To address these important issues, the American Association of
Physicists in Medicine (AAPM) formed the Computer Aided Detection in Diagnostic Imaging Sub-
committee (CADSC), in part, to develop recommendations on approaches for assessing CAD system
performance. The purpose of this paper is to convey the opinions of the AAPM CADSC members
and to stimulate the development of consensus approaches and “best practices” for evaluating CAD
systems. Both the assessment of a standalone CAD system and the evaluation of the impact of CAD
on end-users are discussed. It is hoped that awareness of these important evaluation elements and
the CADSC recommendations will lead to further development of structured guidelines for CAD
performance assessment. Proper assessment of CAD system performance is expected to increase the
understanding of a CAD system’s effectiveness and limitations, which is expected to stimulate further
research and development efforts on CAD technologies, reduce problems due to improper use, and
eventually improve the utility and efficacy of CAD in clinical practice. © 2013 American Association
of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4816310]

Key words: computer-aided detection and diagnosis (CAD), computer-aided detection (CADe),
computer-aided diagnosis (CADx), performance assessment, standalone performance, reader perfor-
mance, clinical performance

1. INTRODUCTION

It has long been recognized that clinicians do not always make
optimal use of the data acquired by an imaging device.1, 2

The limitations of the human eye-brain system, limitations in
training and experience, and factors such as fatigue, distrac-
tion, and satisfaction of search may all contribute to subop-
timal use of available information.3–5 Image processing tech-
niques can be applied to medical images in an effort to address
some of these issues. Medical image processing attempts to
modify the image presented to the readers in such a manner
that abnormalities are enhanced for the human visual sys-
tem. However, image processing alone is unlikely to com-
pletely address factors such as fatigue, distraction, or limi-
tations in training. Computer-aided detection and diagnosis
(CAD) systems applied to medical images go beyond im-
age processing, such that they may provide specific lesion lo-
cation information and/or other diagnostic analysis to assist
clinicians.

The aim of computer-aided detection (CADe) systems is
to mark regions of an image that may reveal specific ab-
normalities and alert the clinician to these regions during
image interpretation. The aim of computer-aided diagnosis
(CADx) systems is to provide to the clinician an assess-
ment of disease, disease type, severity, stage, progression,
or regression. A CADx system may use image-based infor-
mation alone or, generally, in combination with other rel-
evant diagnostic data and biomarkers. Some CAD systems
may strive to perform both CADe and CADx functions by
first identifying potential abnormal regions and then provid-

ing a qualitative or quantitative assessment of these identified
abnormalities.

Ever-increasing research and development efforts have
emerged in the last 25 years to develop and practically im-
plement CAD systems for various types of diseases.6–13 As a
result, a number of CAD systems are commercially available
in the United States and worldwide, including, for example,
CAD intended for breast cancer detection on mammograms,
lung nodule detection on chest radiographs or on thoracic
CT images, and polyp detection on CT colonography. The
functionalities of CAD systems have also been expanded to
various image analysis methods and quantitative tools (e.g.,
automated segmentation of lesions, size measurement, and
dynamic flow information) that may assist clinicians in diag-
nostic work-up, treatment planning, treatment response mon-
itoring, prognosis prediction, and risk prediction for certain
diseases using image-based biomarkers alone or in combina-
tion with other biomarkers or clinical information.

To address issues in this important area in medical imag-
ing and diagnosis, the Imaging Physics Committee of the
American Association of Physicists in Medicine (AAPM)
formed a Computer Aided Detection in Diagnostic Imag-
ing Subcommittee (CADSC) with the charge “to keep the
membership apprised of new developments in computer-
assisted detection and diagnosis in medical imaging and
to develop techniques, practices and standards that address
issues in the field as they arise.” The CADSC attracts a
diverse membership and participants from various sectors
(radiologists, CAD industries, academic researchers, and gov-
ernment entities) (see the Appendix). The CADSC formed
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subgroups and conducted extensive discussions in four major
areas:

� Methodologies for evaluation of stand-alone CAD sys-
tem performance,

� Methodologies for evaluation of effects of CAD on
users—standardization of CAD evaluation technologies,

� Develop QA procedure recommendations for CAD sys-
tems implemented in clinical use,

� Develop training and QA procedure recommendations
for using CAD systems.

The purpose of this paper is to convey the opinions of the
AAPM CADSC members in the first two areas above. The lat-
ter two areas are covered in a companion paper.14 The opin-
ions aim at stimulating further discussions and may serve as
a framework for future development of guidelines but should
not be interpreted as specific mandates for assessment of CAD
systems. The development of CAD systems goes hand-in-
hand with their evaluation. CAD assessment is important for
a number of reasons, including estimating algorithm perfor-
mance, establishing its effectiveness for use, and facilitating
comparisons among systems with similar intended uses. In
addition, proper system evaluation is essential for algorithm
optimization during the design and development of CAD
systems.

This paper addresses both the assessment of a standalone
CAD system (i.e., a CAD system without the end-user) and
the evaluation of effects of a CAD system on end-users.
Assessment of a standalone CAD system provides informa-
tion about the expected performance, including confidence
bounds, of the computerized system by itself. Evaluation of
the effects of a CAD system on end-users is indispensable and
critical because, by definition, CAD systems are to be used by
a clinician, who is then responsible for making the final deci-
sion for each patient.

A number of study factors can affect the accuracy and pre-
cision of performance assessment. These include:

� the selection of the training and test data sets for system
design and evaluation;

� the method for determining the reference standard, i.e.,
deciding which cases in the data set contain the target
disease, and identifying the location and extent of dis-
ease when present;

� the mark-labeling criterion used for deciding which
CADe (or reader) marks correctly point to the diseased
locations (true positives or TPs) and which point to
nondiseased locations (false-positives or FPs);

� methodology and metrics for assessing standalone CAD
system performance;

� the design of observer performance experiments; and
� methodology and metrics for assessing the clinical im-

pact of a CAD system on clinicians.

The first three factors listed above can affect the perfor-
mance assessment in different and important ways. For each
of these factors, the implementation and the effects are likely
similar for the two types of assessment considered in this pa-

per, i.e., the performance assessment of standalone CAD sys-
tems or that of clinicians aided by the system. For example,
one needs to determine which cases in the data set contain
the target disease regardless of the assessment type, and the
method used for establishing the presence of disease can have
a similar effect on both types of performance assessment.
Therefore, the discussion below pertaining to these three fac-
tors applies to assessment of both standalone CAD and read-
ers with CAD. The evaluation methodologies for CADe and
CADx systems are similar in many aspects, but they also dif-
fer in some critical ways. These important differences will
be noted. In addition, although it is impossible for this pa-
per to cover the specific evaluation methods for each type of
CAD applications, the principles and some basic approaches
addressed herein should be common to and may provide some
guidance for the development of CAD systems in general.

2. DATA SETS

Development and performance assessment of CAD sys-
tems typically require the use of patient images with and
without the target disease. The collections of patient images,
together with other relevant diagnostic data and biomarkers,
used for CAD development and subsequent performance as-
sessment are typically referred to as training and test data sets,
respectively. The target population is defined as the popula-
tion of patient cases to which the CAD system is expected to
be applied. A properly selected training data set allows the
developer to choose and fine-tune the structure and parame-
ters of a CAD system to the expected properties of disease-
positive and disease-negative cases in the target population. A
properly selected test data set allows for estimation of CAD
system performance and facilitates performance comparisons
among CAD systems that have similar intended uses.

2.A. Essential patient data

In the field of medical imaging, the main component of a
data set for a CAD system is human images, although other
supporting data are also essential. For example, for CAD de-
vices targeted for radiology applications, results from another
diagnostic test such as pathologic evaluation are critical for
determining the reference standard. For a CADx system to
achieve its full clinical potential, incorporation of nonimaging
biomarkers and other relevant patient-specific information,
such as patient age, demographics, family history, concomi-
tant diseases, and environmental exposure history, may be
necessary. In addition to patient-specific information, lesion-
specific information such as disease type and lesion size is of-
ten needed for defining the set of patients for primary and/or
sub-group analyses. The image data and any available rele-
vant information for a given patient can be collectively con-
sidered as a case sample in a data set. Although images are
often used as example in the following discussion for data
collection, the requirements such as case composition, sam-
ple size, data verification, and measurement standardization
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are generally applicable to other types of data in the data
set.

2.B. Data set types and composition

CAD systems invariably contain a set of parameters, such
as those for image enhancement, thresholds for selecting
object candidates, variables used in segmentation, features se-
lected for false-positive reduction, and classifier weights. Al-
though it is possible at times to select some of these param-
eters based on the general knowledge of disease appearance,
a set of cases is usually required for selecting and/or opti-
mizing such parameters. The data set used for system design
is called the training data set. The performance estimate ob-
tained by applying the CAD system to the training data set is
termed the resubstitution estimate, which is usually optimisti-
cally biased.15 Ideally, an independent data set is used for esti-
mating the performance of the CAD system or that of readers
using the system. The data set used for system assessment is
called the test data set. In practice, there are also data sets
that lie somewhere between training and test with regard to
their use in the design and intermediate assessment of a CAD
system. For example, a data set may be used for evaluation
within the system development phase, with the results used
as a guide for system optimization. Following the nomencla-
ture used in the fields of statistical machine learning, pattern
recognition, and neural networks, we refer to the data sets
used in these intermediate assessments as “validation” data
sets.16–18

2.B.1. Training data set

To properly train a CAD system, the training set should
include the range of verified abnormalities or features of in-
terest as seen in practice (e.g., different sizes, shapes, loca-
tions, and levels of conspicuity) for the expected range of pa-
tient characteristics (e.g., age and comorbidity). This range
should be consistent with the target population for the CAD
device. A variety of cases without the abnormality of inter-
est should also be included, if such cases are available and if
the inclusion of such cases is appropriate for the task under
investigation. The presence of other concomitant diseases or
abnormalities should be detailed.

Ideally, the training set should be large enough to allow
the estimation of the required parameters, and representa-
tive of the underlying probability distributions in the target
population. In practice, however, due to sometimes unavoid-
able biases in the data collection process, some patient sub-
groups may be under- or over-represented. At other times,
over-representation of certain patient sub-groups may be de-
liberate if it is believed that over-representation of such pa-
tients is beneficial to CAD development, perhaps because the
detection or classification task is particularly challenging for
the sub-group. The effect of the representativeness (or lack
thereof) of the training set on the resulting performance of
the CAD systems is a research topic that requires further in-
vestigation. Because the composition of the training set can
have a significant effect on the performance of the CAD

system, authors of publications should clearly describe rele-
vant characteristics (e.g., image acquisition parameters, lesion
size and shape, etc.) of their training sets, and paper review-
ers should consistently demand these details if they are not
provided.

A training set may also include: (1) cases that simulate the
target disease (e.g., benign tumors, mimickers of malignan-
cies, etc.); (2) images of models or phantoms; (3) simulated
lesions or disease patterns superimposed on disease-free pa-
tient images; (4) electronic addition or removal of disease or
change of location;19, 20 or (5) modification of disease appear-
ance produced by image processing so that the abnormality
is altered (e.g., in size, shape, rotation, edge definition, den-
sity, location, etc.). Images or abnormalities that have been
obtained or modified by image processing should have under-
gone rigorous evaluation to verify that they have character-
istics similar to actual abnormalities depicted on patient im-
ages. A CAD system trained with simulated images that do
not appear authentic may not be generalizable to real patient
images.

2.B.2. Test data set

Ideally, the composition of the test data set should match
the target population to which the CAD system is intended
to be applied. Also, image acquisition and patient preparation
parameters should ideally be representative of those found in
the target population. To allow proper interpretation of test re-
sults, inclusion and exclusion criteria must be clearly stated
and must be justified as necessary. The distribution of the
known covariates (e.g., lesion type and size, disease stage, or-
gan characteristics, patient age, etc.) should be specified, and
any significant departure from those of the target population
should be identified and discussed in the publications that re-
port the result of performance assessment.

For the purpose of performance assessment, especially
when disease prevalence is low, CAD data sets are often en-
riched to include a larger proportion of diseased cases com-
pared with the clinical disease prevalence in the target pop-
ulation. To enrich the prevalence, one option is to collect
a consecutive set of diseased cases and a consecutive or
randomly selected set of nondiseased cases from the target
population. Mathematically, this type of prevalence enhance-
ment does not affect the estimates of sensitivity, specificity,
and the area under the receiver operating characteristic (ROC)
curve, but does impact performance metrics such as posi-
tive and negative predictive values. In addition, it has been
shown that prevalence enhancement can affect reader behav-
ior in observer performance studies.21–23 Sometimes, when
two competing modalities are compared (e.g., two compet-
ing CAD systems, or interpreting cases with or without the
aid of CAD), the test data set may include a larger proportion
of cases that accentuate the difference between the modali-
ties. This type of enhancement, referred to as stress testing, is
covered in more detail below (Sec. 2.C).

Test data set selection can be a major source of bias in
CAD system assessment, which is a risk shared by many

Medical Physics, Vol. 40, No. 8, August 2013



087001-5 Petrick et al.: Evaluation of computer-aided detection and diagnosis systems 087001-5

diagnostic tests. Selection or spectrum biases are introduced
when selected cases for a study are not representative of
the target population.24 Verification bias, among other addi-
tional sources of bias, occurs when a study is restricted to
patients with definitive verification of disease status.25 For
certain diseases and modalities under investigation, it may
be possible to reduce these biases by carefully planning the
study and case selection, or by selecting consecutive cases
from the target population, but some amount of bias from
case selection will be unavoidable in many studies. It is im-
portant to acknowledge and discuss potential biases in the
data set composition to allow proper interpretation of study
results.

2.C. Special types of test data sets

2.C.1. Stress testing

The purpose of a stress test is to study differences between
competing systems or reading modalities using cases selected
specifically to challenge those differences.26 Because of the
special selection, these cases are not expected to be present
in a similar proportion as that in the target population. As a
result, performance estimates for each modality may be bi-
ased, and are therefore unlikely to exactly match the perfor-
mances in the target population. In the context of CAD, the
goal of stress testing is not to evaluate CAD performance on
an absolute scale, but to compare the relative performance of
two CAD systems, or clinician performance without and with
CAD in a specific scenario. For example, if it is expected that
the difference between radiologists interpreting images with-
out and with CAD is in cases containing small noncalcified
lesions, a test data set enriched with cases containing small
noncalcified lesions may be appropriate.

Not all types of enrichment is stress testing, and not all
types of enrichment are appropriate for CAD assessment. For
example, when evaluating the effect of CAD on radiologists,
it is not appropriate to include only the subset of cases where
the CAD system has a smaller than average number of FPs.
Even if one observes an improvement with CAD for this sub-
set of cases, the results may not be generalizable to the target
population of cases because radiologists’ performance may
deteriorate with CAD for cases that have a larger than aver-
age number of FPs.27

2.C.2. Test data set reuse

Sample size is a major factor that affects the variance of
performance estimates, and, given the difficulties of collect-
ing a large and representative data set, it is tempting to reuse
the same test data set multiple times for CAD assessment.
However, this practice creates the risk of tuning the CAD
algorithm implicitly, or even explicitly, to the test data. For
example, with the knowledge that the CAD system failed to
provide correct result for a given test case, it may be relatively
easy to find a remedy that may solve the problem for this spe-
cific case. Even if the CAD developer is not informed of the

results of individual cases but is allowed to test the CAD sys-
tem on a given data set unlimited times and informed of the
collective performance every time, the CAD system could still
be tuned to obtain high performance for the test set eventually.
However, such performance may or may not be generalizable
to the target population. In these situations, the integrity of
the test data set as an independent set may be compromised.
Using a completely new data set for each evaluation study re-
duces or eliminates this bias, but it will cause a substantial
cost increase in CAD development and assessment. In addi-
tion, it will be difficult to increase the size of the test data
set to reduce the variance in the performance estimates if old
cases have to be removed.

Research is needed to develop techniques that balance the
variance reduction in reported performance estimates with
the potential bias associated with data reuse. One approach
might be to add newly collected cases to an older test data
set allowing the test data set size to grow (i.e., reduce the
variance) and then utilize a random sample from this larger
data set. This approach still has the potential to bias the re-
sults due to repeated use of some of the test cases. Restricting
the developers of CAD algorithms from having direct access
to the data and detailed knowledge of performance may re-
duce, but not eliminate, this bias. In general, when data reuse
is allowed in the process of CAD assessment, techniques
should be incorporated to ensure the integrity of the test
data by demonstrating that the reused data does not introduce
unreasonable bias.

2.C.3. Common sequestered test data sets

Patient image data sets and relevant auxiliary data (e.g.,
reference standard, lesion location and extent, imaging equip-
ment and acquisition parameters, and patient demographics),
as well as other relevant biomarkers if available, accessible to
the scientific community are essential for increasing the pace
of CAD research and development. Such data sets may help
researchers navigate an important barrier to the initiation of
a new CAD project, i.e., the collection of a large, represen-
tative and adequately verified database. For established CAD
applications, a properly administered common database may
facilitate the performance comparison among CAD systems
or a comparison of previous and current versions of the same
CAD system.

Currently, only a small number of such data sets are
available for CAD development.28–30 CAD developers can
use these data for training, validation, and testing purposes.
Therefore, evaluation results reported on public data sets may
be anywhere between an estimate of resubstitution perfor-
mance to true test performance. A possible solution to this
problem may be to have an independent laboratory conduct
the testing by using a sequestered data set. Clearly, the issues
discussed above related to reusing test data will need to be
addressed so that the CAD systems will not be trained to the
sequestered test set and lead to biased performance estimates.
Measures to reduce bias should be implemented such as us-
ing only a random subset of the sequestered data set for each
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test of a given CAD system, providing the CAD developer
only the overall results (e.g., sensitivity, specificity, or possi-
bly a performance curve), and continuing to collect new cases
to the sequestered test set. More research is needed to study
the potential bias on performance estimates with the reuse
of a sequestered data set, and how to minimize this potential
bias.

We believe that establishing an independent laboratory to
oversee the collection of sequestered data sets, and to conduct
independent testing, as well as further development of public
data sets for CAD system training for various clinical tasks
will accelerate the advancement of CAD.

3. REFERENCE STANDARD

CAD device development and evaluation generally rely
on databases of medical images with known disease status
for each patient, and marked location and extent of the dis-
ease within each image. We use the term “reference standard”
to indicate the established factual information regarding pa-
tient’s status for the target disease and other relevant informa-
tion such as the location and extent of the disease. For clar-
ity, a case-level and a lesion-level reference standard should
be defined separately. The case-level reference standard is the
determination of the disease status for each patient. The case-
level reference standard is often all that is required for con-
ducting certain types of clinical CAD evaluations. The lesion-
level reference standard includes a determination of disease
status as well as the location and extent of the disease for all
individual lesions, which are important, for example, for eval-
uating the capability of a CADe system in alerting the clini-
cian to specific lesion locations or a CADx system in quanti-
fying lesion sizes for characterization or monitoring treatment
response.

3.A. Performance assessment with a “gold”
reference standard

The disease status of a patient or lesion is often obtained
through an established clinical method, usually relying on
a determination from an independent device or procedure;
through follow-up clinical examinations; or through the in-
terpretation of the image data by reviewing clinician(s). Ide-
ally, the reference standard is a perfect gold standard, which is
also sometimes referred to as the ground truth. Although the
formation of a perfect gold standard is rarely if ever achiev-
able in practice, the performance assessment of many CAD
devices is often based on such an assumption. An example is
the use of biopsy and pathologic examinations as the refer-
ence standard for the presence of cancer in radiological im-
ages of a patient or region. Biopsy is often considered the
“gold standard”, even though the reported frequency of er-
rors for anatomic pathology could range from 1% to 43%
of specimens.31 The reference standard for positive cases is
generally based on the pathology report for the presence of
disease. The reference standard for negative cases is gen-
erally established by biopsy or follow-up over an appropri-

ate time interval to demonstrate that the case is negative for
the target disease. Examples of other gold reference stan-
dards include the use of conventional catheter angiography for
coronary plaques and optical colonoscopy for polyps in CT
colonography.

When the location and extent of the disease are required
(e.g., for standalone evaluation of a CADe system), the task
reverts to having experts (i.e., experienced clinicians specifi-
cally tasked with defining parts of the reference standard) re-
view the imaging study to identify the location and extent of
the lesions by using any available clinical and pathology re-
ports and follow-up information for verification. This process
can be quite challenging and is in many aspects similar to the
lack of a gold standard scenario discussed below. It may be
necessary to match a lesion on one reference modality with
the same lesion on the images to which CAD will be applied
(e.g., matching lesions found in reference optical colonoscopy
with their presentation in CT colonography). It is also im-
portant to verify that the disease is visibly depicted in the
modality to which CAD will be applied, because there is gen-
erally no interest in highlighting totally occult abnormalities
that can only be detected by a different procedure or modal-
ity. Often, a single clinician can perform this task, but inter-
and intrareader variability exist in defining the location and
extent of a lesion. This variability is likely to depend on the
imaging modality, disease, and availability of other sources
of information in addition to the clinical images. Although it
is difficult to provide a general recommendation on this com-
plex issue, one acceptable, although still imperfect, solution
may be to have multiple clinicians perform this task and de-
velop a combined reference standard for lesion location and
extent (see Sec. 4).

Clinicians participating in the truthing process should not
participate as users for performance assessment of the CAD
device because doing so might introduce bias into the study
results.

3.B. Performance assessment without a “gold”
reference standard

It may sometimes be difficult or impossible to establish a
gold reference standard. As an example, CT pulmonary an-
giography has become the standard of proof for pulmonary
embolism (PE) in a patient, but there is no independent test
for verifying the location of most PE seen on thoracic CT
images. Therefore, while clinical evidence may be used to
establish a gold standard for the disease status, it is not yet
possible to establish a reliable gold standard for specific PE
locations to be used in CADe for PE on CT pulmonary an-
giography. As a second example, while pathology may serve
as the reference standard for other CAD systems, pathology
CAD systems (i.e., CAD algorithms designed to aid in detect-
ing or diagnosing disease on pathology slides) may not have
a readily available independent test to serve as the reference
standard.

When a gold standard is lacking, one common approach is
to establish a reference standard by having an expert panel
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of clinicians interpret the images along with other avail-
able clinical information (e.g., the radiology report).32–36 and
combining these expert interpretations. One approach for
combining expert interpretations is to have each expert first
independently review the information and make an initial de-
termination on his or her own. After their initial readings, an
adjudication method (e.g., majority opinion, independent ar-
biter, or a statistical technique such as latent class analysis36)
may be utilized for defining a binary reference standard.

As a general rule, when a new technology has a higher
sensitivity than an existing technology, abnormalities detected
by the new technology may be scored erroneously as FPs
if the reference standard is based only on the existing tech-
nology. Considering CAD as the new technology, review
of CAD marks by the expert panel members may there-
fore potentially be helpful in determining the reference stan-
dard in the absence of a gold standard. However, this po-
tential should be weighed against the risk of inflating the
performance of the specific CAD system used to assist in
determining the reference standard, and the risk of underes-
timating the performance of other CAD systems that may be
evaluated with the resulting reference standard. In any case,
the panel should not rely only on CADe marks in the truthing
process.

An important consideration in conducting subsequent eval-
uations that rely on imperfect truth (e.g., panel-based truth) is
that the uncertainty in the truth leads to additional uncertainty
in the observed results.37 This additional uncertainty should
be accounted for in the final analysis whenever possible.32

In general it is very difficult to achieve a perfect refer-
ence standard in many situations, as even pathology is im-
perfect. On the other hand, the needed level of “truthing”
will depend on the objective of the study, and imperfect but
perhaps sufficient information may be used to establish an
adequate reference standard for the intended purpose of as-
sessing CAD performance. For a given data set, the method
of establishing the reference standard should be clearly
described.

4. MARK-LABELING

The performance of a CADe system often depends not
only on whether it can correctly identify a diseased case but
also whether it can correctly locate the abnormality in the pa-
tient images. Mark-labeling is defined as the set of rules used
for deciding which marks correspond to the targeted abnor-
malities. These rules establish the amount of correspondence
required between the CADe (or reader) marks and the dis-
ease location/extent in the reference standard. A mark is con-
sidered a TP if it satisfies the mark-labeling rule, and an FP
otherwise.

A wide range of mark-labeling rules has been used by
CAD researchers. The following, either alone or in combi-
nation with others, are some of the rules used most often for
defining TPs:

(1) There is an overlap in area between the mark and the
reference standard annotation,38, 39 and this overlap di-

vided by the union of the two areas exceeds a pre-
selected overlap threshold,40 or this overlap divided
by the area of the reference standard exceeds a pre-
selected overlap threshold.41–43

(2) The distance between the centroid of the CADe (or
reader) mark and the annotated reference standard is
less than a preselected distance threshold,44–47 or a
distance threshold that depends on the size of the
lesion.48, 49

(3) The center of the mark is within the annotated
abnormality,50–52 or vice versa.53

(4) Visual evaluation by an expert or a researcher
indicates that the mark points to the annotated
abnormality.51, 52, 54

The choice of the mark-labeling rule can have a major
effect on the reported performance of the CADe system.
Kallergi et al.55 studied different rules for mark-labeling, in-
cluding some of the methods mentioned above, and found that
different criteria can result in dramatically different TP and FP
estimates. It is therefore critical that the mark-labeling rules
used for standalone and clinical assessment for a CADe sys-
tem be described, and rationale for choosing such a method be
provided.

Mark-labeling by a human expert might be a more ex-
pensive approach compared with objective rule-based mark-
labeling. In addition, mark-labeling by a human expert does
not lend itself to an objective comparison of different tech-
niques developed by different groups because it is likely to
be more subjective and will involve intra- and interobserver
variations. However, since the purpose of CADe marks is to
improve the detection and perception of abnormalities by hu-
man readers, a human reader may be a good judge for decid-
ing whether a mark points to the true lesion. If this approach
is used, the mark-labeler should not be a participant in the
clinical assessment of the CADe system, should not have a
stake in the outcome of the assessment, and should be pro-
vided with both the mark and the reference standard anno-
tation. Moreover, the expertise level of the mark-labeler, any
instructions to the mark-labeler, and specific criteria used as
part of the mark-labeling process should be documented along
with the reported results. When multiple mark-labelers are in-
volved, the process by which their interpretations are com-
bined to make an overall mark-labeling decision should be
described.

An objective rule-based approach for mark-labeling will
generally be consistent; however, the mark-labeling rule
should be carefully selected so that computer/reader marks
are consistent with clinical interpretations. Marks labeled as
TPs that are unlikely to attract the attention of the reader
to the abnormality are particularly worrisome because they
may lead to inflated standalone CAD performance estimates.
For example, a large mark that covers a large portion of the
breast has a higher chance to overlap with a reference mark
but the CAD system may actually have missed the true le-
sion. Extreme caution is therefore warranted for rules that al-
low large marks to be used for TP labeling. The use of these
types of rules should be accompanied by additional statistics
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and analyses to demonstrate that the rules are reasonable. In
general, the areas of the TP marks are expected to be com-
parable to the lesion sizes as determined by the reference
standard.

A large fraction of CADe publications do not describe the
mark-labeling rules used in system assessment. We selected
a random sample of 58 CADe publications on nodule detec-
tion in thoracic CT published in the last ten years; 47 of them
did not describe the mark-labeling protocol. In a similarly se-
lected sample of 21 publications on polyp detection in CT
colonography, 9 did not describe the mark-labeling method.
It is impossible to put into proper perspective the assessment
results of a CADe system if details of mark-labeling are miss-
ing or incomplete. Authors of publications should clearly de-
scribe the mark-labeling method used in CADe studies, and
reviewers should consistently demand details of the mark-
labeling process if they are not provided.

5. CAD ASSESSMENT METRICS

This section discusses the methodologies and metrics that
are available for measuring CAD performance, either stan-
dalone or when the CAD system is used by a clinician. Most
of this section focuses on CAD assessment for a binary refer-
ence standard which contains only two possible truth states
(e.g., diseased/nondiseased or lesion/nonlesion). The cases
that contain a lesion will be referred to as actually positive
cases, and those that do not contain a lesion will be referred
to as actually negative cases. The multiclass problems (i.e.,
more than two possible truth states) are briefly discussed in
Sec. 6.D.

5.A. Basic definitions

When both the reference standard and the diagnostic test
results are binary, the sensitivity (or TP fraction, TPF) of the
test is defined as the percent correct on the set of actually pos-
itive cases, and the specificity is defined as the percent correct
on the set of actually negative cases. The FP fraction (FPF)
is defined as 1-specificity. TPF and FPF are properties in-
herent to the diagnostic test, and are independent of disease
prevalence, so that the results from a prevalence-enriched test
data set are representative of the true TPF and FPF of the
test.

The positive predictive value (PPV) is defined as the pro-
portion of positive calls by the test that are TPs, and the nega-
tive predictive value (NPV) is the proportion of negative calls
that are true negatives (TNs). These two measures can be ex-
pressed in terms of TPF, FPF, and disease prevalence. Because
prevalence is incorporated, PPV and NPV are not properties
of the test alone, but the results of applying the test to a certain
data set or target population.56

5.B. Metrics based on ROC analysis

Most CADx systems provide a multilevel (i.e., more than
a binary or two-level) rating for clinicians to consider as part

of their interpretation. For such systems, and when the ref-
erence standard is binary, ROC analysis is a common choice
for standalone performance assessment. Likewise, ROC anal-
ysis is typically appropriate when the task of the clinician is
to provide an ordinal rating for the likelihood of disease in
a case. The ROC methodology analyzes ratings by labeling
them according to the truth state and the comparison of the
rating to a decision threshold. To obtain an empirical ROC
curve, the threshold is varied to cover the entire range of pos-
sible ratings, and the TPF is plotted as a function of the FPF.
The specific (TPF, FPF) pair at a given decision threshold is
termed an operating point.

An advantage of the empirical ROC curve is that no struc-
tural assumptions are made about the form of the plot and the
underlying distributions. However, an empirical ROC curve is
not smooth, particularly when the data and/or the number of
levels in the rating scale are limited. Parametric ROC meth-
ods model the data for actually positive and actually negative
cases so that a smooth ROC curve is obtained. However, any
incorrect assumption related to the underlying model would
impact the quality of the fitted ROC curve. The binormal
model57 was one of the earliest parametric approaches for
fitting an ROC curve to raw data. Later approaches, such as
the bi-gamma,58 proper binormal,59 and contaminated60 ROC
models, were mainly aimed at addressing some of the unde-
sirable artifacts (e.g., nonconvexities or degeneracies) caused
by the earlier models.

Various figures of merits (FOMs) can be estimated based
on the fitted ROC curves, including the AUC, the partial
AUC61 (area under just a portion of the ROC curve), and a
sensitivity/specificity pair at an operating point. These FOMs
can also be estimated directly from the raw ROC curve by
nonparametric methods.62 Both parametric and nonparamet-
ric methods have been developed for estimating the uncer-
tainties in ROC curves and FOMs. These methods have been
further extended for statistical comparison of two (or more)
systems or readers. An extensive body of publications exists
for the development and application of parametric and non-
parametric approaches to ROC analysis. We can refer only to
a limited subset here.26, 63–72 Articles by Wagner et al.26 and
the International Commission on Radiation Units and Mea-
surements (ICRU) (Ref. 71) provide a comprehensive sum-
mary and explanation of these assessment methodologies and
also refer to other prior publications.

When the ratings are multilevel and the reference standard
is binary, ROC methodology has advantages over a sensitiv-
ity/specificity pair determined at a single decision threshold.
For example, in many studies comparing clinicians’ perfor-
mance with and without CAD, the sensitivity at a selected
threshold may be higher when the clinician is aided by CAD,
but the specificity may be higher without CAD. When the
ROC curves do not cross, the AUC difference, which repre-
sents the average sensitivity over the entire specificity range,
may be used to rank the two modalities, with confidence in-
tervals that depend on the magnitude of the difference and
the variability of the AUC estimates. The use of the AUC
not only eliminates the need to use an arbitrary threshold,
but may also reduce the uncertainty of the FOM compared
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to a sensitivity/specificity pair. The AUC, partial AUC, and
a clinically relevant sensitivity/specificity pair can all be re-
ported as metrics depending on the purpose of the study. How-
ever, it may be appropriate to report metrics relevant to bi-
nary ratings (e.g., sensitivity/specificity pair, PPV/NPV pair)
in prospective studies that evaluate a CAD system in clinical
settings.

Finally, it is important to predefine which FOM will be
used as the primary endpoint of a particular study, because
different FOMs may or may not lead to the same sample size
estimate (through power analysis) or study conclusion.

Dedicated software has been developed for estimating
ROC-based FOMs.73–75 When using the software packages
or any other methods to estimate FOMs, uncertainties (e.g.,
standard deviations or confidence intervals) should always ac-
company the point estimates. It is a good practice to inspect
the ROC curves even when the primary purpose of the ROC
analysis is to report an FOM, because a visual inspection can
easily discover artifacts or crossing curves when two or more
ROC curves are compared.76

5.C. Metrics based on location-specific ROC analysis

The data required for location-specific ROC analysis con-
sist of the identified locations of suspected abnormalities and
a rating for each abnormality. These data are generally avail-
able in standalone CADe assessment and can be collected
in many reader performance studies involving CADe. Each
rating-location pair is labeled as a TP or FP depending on the
location of the computer/reader mark, the rating, and the truth
state.

In the localization ROC (LROC) paradigm, the most suspi-
cious location in each image is marked and rated. The LROC
curve plots the fraction of actually positive images with a
correctly localized lesion as a function of the FPF for ac-
tually negative images.77 In the free-response ROC (FROC)
paradigm, the number of mark-rating pairs for an image is not
constrained. The FROC curve plots the fraction of correctly
localized lesions as a function of the average number of FPs
per image.78

For LROC data, a model and fitting procedure have been
described.79 In order to fit FROC data, some researchers
relied on parametric ROC methods,80 while others devel-
oped a visual search model81 and used a maximum likeli-
hood procedure.82 Chakraborty also developed a jackknife
FROC (JAFROC) method, available as dedicated software,83

that provides an FOM to summarize FROC data and sta-
tistically compares the FOMs of competing systems.84, 85

Other approaches for defining and analyzing location-specific
FOMs include: an approach that penalizes for the number
of FP marks, rewards for the fraction of detected abnormal-
ities, and adjusts for the effect of the target size;86 the use
of bootstrapping to estimate the uncertainties in the FROC
FOMs;87, 88 and the use of an exponential transformation for
the number of FPs per image (EFROC curve) to overcome
the theoretically infinite limit to the area under the FROC
curve.89

Simulation studies have been conducted to compare some
of the location-specific ROC methods and to compare them
to ROC analysis.90 The results demonstrated that FROC is
statistically more powerful than ROC.84, 90 From a statistics
point of view, location-specific ROC methods may be more
appropriate when location data are available. However, in
studies involving observers, the data collection and analysis
methods (with or without localization) will depend on the
specific task and the relevance of the task to clinical prac-
tice. In situations where data collection without location is
clinically more relevant, ROC methods may still be more
appropriate.

6. STANDALONE CAD ASSESSMENT

Standalone performance is an important measure for a
CAD system as it may reveal the magnitude of the potential
impact (or limitation) of the system at an early stage prior
to testing of reader performance using the CAD system. It
also provides an assessment of the system performance in-
dependent of the human factors and can be used to efficiently
study the system performance on subgroups of the population.
Standalone performance assessment studies can often be con-
ducted on larger data sets compared to reader studies, which
are considerably more burdensome to perform on large data
sets. Standalone performance assessments can therefore pro-
vide a more detailed description of the algorithm performance
compared with reader studies.

6.A. ROC or location-specific ROC
performance assessment

A CAD system may provide either a multilevel rating or a
binary output for the user. When a multilevel computer out-
put is available, the standalone CAD performance can be an-
alyzed using ROC or location-specific ROC methods. Many
CAD systems that provide only a final binary output actually
convert a multilevel output to a binary value by selecting an
operating point at the end of system development. For these
systems, it is logical to assess the standalone CAD system
based on its performance over the entire range of potential
thresholds, before the operating point is selected, by using
ROC or location-specific ROC analysis. For the assessment
of standalone CADe systems, location-specific ROC is more
appropriate than ROC since these systems provide marks
corresponding to computer-detected locations of lesion can-
didates. As discussed below, it is also critical to assess such
systems at the selected operating point.

6.B. Performance assessment for CADe at the
selected operating point

The output of a CADe system is usually displayed to the
end-users as prompts at a given decision threshold or device
operating point. Therefore, another relevant metric for an end-
user is the performance of the CADe system at the chosen
operating point. At a minimum, the sensitivity and the mean
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number of FPs per case should be reported with accompa-
nying confidence intervals. The performance at an operating
point can be further stratified by lesion sub-type, size, case
type, or image acquisition parameters for a more in-depth un-
derstanding of standalone performance.

When multiple, independently acquired views of an or-
gan are available for CADe (e.g., in mammography and CT
colonography), or when the images contain multiple abnor-
malities, different definitions of sensitivity are possible. For
example, one can define a “lesion-based” sensitivity for which
each missed lesion constitutes a false-negative (FN), a “view-
based” sensitivity for which only actually-positive views with
no correctly localized lesions constitute FNs, or a “case-
based” sensitivity for which only actually-positive cases with
no correctly localized lesions constitute FNs. To avoid con-
fusion, it is important to clearly define the type of sensitivity
used in a standalone CAD assessment study.

A commonly used method for estimating the confidence
interval for a fraction such as the sensitivity is based on the
normal approximation (also known as the Wald interval).91

However, for small sample sizes and near the endpoints,
the normal approximation performs poorly and is not rec-
ommended. For computing the confidence interval, either
the Jeffreys interval92, 93 or the Agresti-Coull94 interval is
recommended.

The mean number of FPs (per case or per view) is gen-
erally assumed to be a random variable with a Poisson
distribution95, 96 and is estimated using the sample mean (λ̂).
Chakraborty and Winter97 derived the confidence intervals by
using the standard normal approximation and by using the fact
that λ is a scaled version of the FPF. If the normal approxima-
tion is inadequate, the Jeffreys interval93 is recommended.

The confidence intervals recommended above assume that
the observations (i.e., CAD system outputs) are independent.
Appropriate modifications have to be made if they are not
independent. In most CADe applications, the CADe marks
will be dependent because there may be multiple lesions or
marks in the same case, and CADe ratings for multiple le-
sions or regions in the same case are typically correlated.
Such data are referred to as clustered data.98 If the correla-
tions are positive, the variance will be underestimated by the
conventional binomial method, which assumes independence.
To correct for this underestimated variance, a ratio estimator
for the variance of clustered binary data has been derived.99

Alternatively, bootstrap methods can be used for computing
the confidence intervals.100

6.C. Nature of FPs and FNs

Characteristics of FPs and FNs are important additional in-
formation related to the standalone performance of a CAD
system.101 Analysis of these characteristics for a particular
CAD system will help developers target these types of errors
in their future work. In addition, the characteristics might pro-
vide information on whether some FPs are easy for a clinician
to dismiss and whether some FNs are easy for the clinician to
detect or diagnose even without CAD.102 As an example, a
good CADe system designed for a second-reader mode ap-

plication should point out inconspicuous lesions that, when
highlighted, can be identified as disease by a clinician. It may
be acceptable if a CADe system misses lesions that are easy
to detect because a clinician will be likely to detect them in
his/her unassisted interpretation.

6.D. Multiclass classification

The assessment methods described above are designed for
classification tasks for which the reference standard is binary.
For some tasks, the reference standard may contain more than
two truth states (or classes), and the CAD system may be de-
signed to distinguish among more than two classes. A number
of methods have been proposed in the literature for the eval-
uation of this multiclass problem. One approach is to break
the problem into multiple two-class classification tasks, and
to use ROC methodology to analyze these multiple two-class
problems.103, 104 Another approach is to treat the problem as
multiclass, but consider only a fixed operating point. Yet an-
other approach is to generalize ROC analysis to full multiclass
problems.105–110 Although FOMs for multiclass ROC analy-
sis have been defined under certain restrictive assumptions, a
general FOM remains a subject of ongoing research.

7. ASSESSMENT OF READER PERFORMANCE
WITH CAD

CAD devices are specifically designed to aid the clinician
in the decision making process, so the clinician is an integral
part of the evaluation of their effectiveness. For simplicity, we
use the term “reader performance assessment” to denote a test
(study) designed to evaluate the performance of a clinician us-
ing CAD as part of the decision making process, regardless of
whether the CAD system is an aid for image interpretation or
other diagnostic purposes. Reader studies are more indicative
of the clinical effectiveness of a CAD device compared with
standalone testing.

If a single reader participates in a reader study, many of
the methods described in Secs. 6.A and 6.B are applicable.
For example, if the reader provides a multilevel rating, the
reader data can be analyzed using ROC or location-specific
ROC methods. If the reader provides a binary rating, then
sensitivity, specificity, and their confidence intervals can be
estimated using methods described in Sec. 6.B. However, as
described below, single-reader studies are generally not suffi-
cient for CAD assessment as they do not capture reader vari-
ability, and their results are typically not generalizable to the
population of readers targeted for the device. We discuss the
generalizability of CAD reader performance studies and anal-
ysis techniques next.

7.A. Generalizability of reader performance studies

An important consideration in the design of any perfor-
mance study is the generalizability of the results. Generaliz-
ability is a design concept that allows a system to be evaluated
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in such a way that the results from the study can be gener-
alized to a wider population. Ideally, the results of a reader
performance study should generalize to the targeted popu-
lations of patients examined, the clinicians interpreting the
images, the imaging hardware utilized, and the reading envi-
ronment. However, developing a globally generalizable study
under controlled conditions can be cost-prohibitive. Instead,
a controlled study is limited to sampling influential groups or
factors such that the study results can be generalized only to
these specific, but limited populations or conditions.

In general, two important factors in CAD assessment are
the population of patients undergoing the examination (cases)
and the population of clinicians interpreting the image data.26

Both of these have been found to be major sources of vari-
ability in medical image interpretation. While it is generally
recognized that differences in cases add variability, the po-
tentially large variability from a population of interpreting
clinicians is sometimes overlooked. A classic demonstration
of reader variability is found in the work of Beam et al.111

This study included 108 mammographers in the United Stated
reading a common set of mammograms and showed that read-
ers had a 40% range in sensitivity, a 45% range in speci-
ficity and an 11% range in radiologists’ ability to detect can-
cer as indicated by the AUC.111 The study showed both a
range in reader expertise (i.e., some mammographers per-
formed better than others in terms of a higher ROC curve)
and a range in reader operating points (i.e., the mammogra-
phers self-calibrated to different tradeoffs between sensitivity
and specificity in terms of operating at different points along
an ROC curve). Both of these factors are important and may
contribute to overall reader variability.

Multireader multicase (MRMC) study designs have been
developed to appropriately account for both reader and case
variability, and they are the most practical designs for eval-
uating reader performance with CAD. Other factors (e.g.,
patient preparation, acquisition parameters) may need to be
accounted for in specific types of CAD devices, but at a min-
imum both reader and case variability should be addressed
when CAD is assessed.

7.B. Multireader multicase (MRMC) analysis methods

In MRMC reader studies, a set of readers interprets a com-
mon set of patient images under all competing reading con-
ditions (e.g., unaided readers versus readers aided by CAD).
This study design is preferred for evaluating the impact of
a CAD on reader performance because it accounts for both
reader and case variability and has been used by a number of
researchers in their CAD studies.27, 112–115 For MRMC studies
of CADe, the style of the mark used to identify an abnormal-
ity (e.g., arrow point to or circle surrounding the abnormality)
may impact reader performance.116 Consistency in the mark
style across CADe algorithms in a comparison study is rec-
ommended to minimize the impact of any confounding effect
associated with a difference in mark styles.

An MRMC study is called “fully crossed” when all par-
ticipating readers independently read all of the cases with
all modalities. This design offers the most statistical power

for a given number of truth-verified cases.26 While the fully
crossed design is the most common approach in retrospective
reader studies, other hybrid MRMC study designs have been
proposed117, 118 which may be more efficient in time and cost
compared to a fully crossed MRMC study.

Various groups have developed approaches to analyzing
the statistical significance of effects and for sizing MRMC
studies based on pilot data. These methods vary in their
assumptions.119 Some of the most common MRMC methods
include the Dorfman-Berbaum-Metz (DBM) method,120 the
Obuchowski-Rockette (OR) method,121, 122 and the one-shot
MRMC variance estimate.123

The DBM method is based on an ANOVA analysis of
jackknife pseudo-values,120 while the OR method employs
ANOVA, but with a modified F-test to correct for the corre-
lations between and within readers.121 The one-shot MRMC
method is based on the mechanistic MRMC variance and the
nonparametric variance of a single-reader U statistics AUC
estimate.123 All of the methods handle a range of perfor-
mance metrics (e.g., AUC, sensitivity, specificity), accom-
modate nonparametric estimates, and have software available
for download.73–75, 86, 124 The DBM and OR methods also ac-
commodate parametric models. In addition, Chakraborty and
Berbaum developed a JAFROC method to analyze an alterna-
tive free-response ROC figure of merit in MRMC studies as
discussed above.84

7.C. MRMC study designs

7.C.1. Prospective CAD studies

Reader performance testing can be conducted through a
prospective reader study or field test (e.g., a randomized con-
trolled trial) evaluating the CAD system under actual clinical
conditions. Prospective studies of CAD are uncommon be-
cause they require more coordination to ensure that patient
care is not adversely affected, typically take longer for accrual
of patients, and generally require a much larger patient popu-
lation, especially when the prevalence of the target disease is
low (e.g., breast cancer screening).

Prospective evaluations of CAD typically fall into one of
the following three categories:

� Cross-sectional comparison studies: In a cross-sectional
comparison study, the clinician interprets each case first
without the assistance of CAD and then, after formally
recording his or her findings, interprets the case again
while reviewing the CAD results. This specific study
design, which uses the same clinician and the same
patient as the control, can compare the interpretation
without and with CADe as a second reader, with
fewer confounding factors and less variability than
the historical-control design. However, it requires the
recording of both the unaided and aided reading results.
Recording of the intermediate unaided readings, which
may not be a part of standard practice, may be cum-
bersome for the reader, and can impact the interpreta-
tion process and study conclusions. The cross-sectional
design has been used in the evaluation of CADe in
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mammography and CT colonography in several
prospective studies.125–130

� Historical-control studies: In a historical-control study,
the interpretations of a group of clinicians with CAD
over a period of time is compared collectively to the un-
aided readings of the same or another group of clini-
cians in a different (usually prior) time interval, or to
compare the cancer detection rate and other metrics in
a clinic before and after implementation of CAD.131–133

An advantage of this approach is that it can be imple-
mented directly within routine clinical practice. A disad-
vantage is that other longitudinal changes that may have
occurred between the control period and the study pe-
riod will confound the results of the performance com-
parison.

� Comparison with double reading studies: In a compar-
ison with double reading, clinicians’ performance with
CAD is compared with that of double reading, which
consists of having two clinicians interpret each case
separately.134, 135 This type of studies may be performed
either retrospectively in the fashion of case review or
prospectively within a large prospective trial.

An important consideration in a prospective CAD reader
study is the choice of endpoints. Assessing CAD before, dur-
ing, or after its introduction into clinical practice may require
different study designs and study endpoints.136 Nishikawa
and Pesce argue that evaluation of the impact of CAD us-
ing a historical-control study design is fundamentally differ-
ent from using a cross-sectional study design, especially when
the cancer detection rate is chosen as the endpoint which may
not correctly measure the clinical impact of CAD.137 This is
because the introduction of CAD affects the number of de-
tectable cancers in the target population so that the target pop-
ulations in the two time periods are different. Therefore, it is
possible that the cancer detection rate would not be substan-
tially different between the two arms of the study even when
the CAD actually does lead to earlier, and potentially addi-
tional, cancer detections. They suggested that alternative end-
points to assess the effectiveness of CAD, such as changes in
size, stage, or nodal status, may be more appropriate in these
studies.137 The results from a recent study by Fenton et al.136

may be an illustration of these effects. The authors reported
that the use of CAD was associated with greater rate of detec-
tion for ductal carcinoma in situ (DCIS), albeit at the expense
of an increase in diagnostic workup among women without
breast cancer, but no difference in invasive breast cancer in-
cidence. They also reported that CAD was associated with
greater likelihood of stage I to II versus III to IV cancer be-
ing found among women with invasive cancer. These obser-
vations suggest that CAD may have served the purpose of im-
proving detection of cancers at the early stages even though
the total cancer detection rate might not change.

7.C.2. Retrospective CAD studies

Prospective testing is ideal for evaluating the utility of
CAD in the true clinical setting. However, prospective test-

ing may require an excessively large number of patients when
the disease prevalence is low, and a retrospective reader study
might serve as an appropriate alternative for some purposes
such as initial assessment of the effects of a given CAD sys-
tem on reader performance. In a retrospective reader study
design, cases are collected from a patient archive and are read
offline by one or more readers. For low-prevalence diseases,
the most common approach for retrospective CAD evaluation
is to use an enriched reader study design whereby the popula-
tion of cases is enriched with patients known to be diseased.
This approach has the advantage of substantially reducing the
number of cases required for achieving statistically significant
results. However, retrospective studies may also impact the
behavior of readers compared with clinical practice because
readers know that they are participating in a study that does
not affect patient management. Readers may also become
cognizant of the enrichment relative to their clinical practice
and adapt accordingly. Likewise, the case mix can influence
the study results. Under these conditions, the results of a ret-
rospective study for each modality (with-CAD and without-
CAD) may not generalize to clinical practice. However, it is
generally assumed that each modality is affected similarly by
the nonclinical study conditions and data set. The without-
CAD modality is used to benchmark reader performance al-
lowing it to be compared with the with-CAD performance.
Retrospective reader studies are the typical study design used
by CAD manufacturers to support the FDA approval of CAD
devices.

7.C.3. Performance metrics used in clinical
assessment studies

The performance metrics utilized in the reader perfor-
mance assessment of CAD are the same as those used in stan-
dalone performance (see Secs. 5 and 6). In addition, a region-
based ROC analysis approach138, 139 has been used in reader
studies, but it is not commonly used in standalone testing. In
this approach, the image (or patient) is divided into ROIs (e.g.,
five lobes of the lung). Instead of performing ROC analysis at
the patient level, the ROI is treated as the unit of analysis,
and each ROI is scored as in conventional ROC analysis re-
gardless of the location of the detected lesion within the ROI.
ROI-based performance metrics include the AUC, sensitivity,
specificity, and others as described above.

7.D. Reader training for participation in MRMC studies

User training for the appropriate use of CAD in the clin-
ical setting is discussed in a companion paper.14 In MRMC
studies, appropriate reader training on both the use of CAD
and on how to participate as a reader is extremely important.
CAD training should include at least a description of the func-
tion of the CAD system and its average performance, the type
of CAD information provided to the user, how CAD would
be implemented as part of the clinical workflow, instructions
on how to follow the study protocol, on the appropriate use of
any study-specific scoring or rating scales, and on the use of
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any data entry forms. Training should also include reading a
set of example cases, which are not used in the actual reader
study, without and with CAD and feedback of typical TPs,
FPs, and FNs of the CAD system. In addition, a pilot study is
recommended to identify pitfalls in the proposed study proto-
col or reader training.

8. SAMPLE SIZE ESTIMATION

The sample size used in a CAD assessment study is an
important factor that affects the confidence intervals of the
observed FOM(s), which, in turn, may influence the conclu-
sions that can be drawn from the study. Sample size refers to
the number of cases in CAD assessment, or to the number of
cases, the number of readers, or both in a reader study. Sam-
ple size estimation is critical in CAD assessment because data
set collection and reader studies are resource intensive. Both
under- and over-powered studies are undesirable because the
former may have an unacceptable risk for type II error (fail-
ing to reject the null hypothesis when it is actually false), and
the latter may allocate unnecessarily large resources to the
study.

A number of research groups have developed sample
size estimation methods targeted at diagnostic imaging.
Obuchowski140 conducted a review of methods that consider
the following FOMs: sensitivity/specificity pair, sensitivity at
a particular FPF, likelihood ratio, full AUC, and partial AUC.
She also discussed a method for sample size estimation for
MRMC ROC studies.122, 140 More recently, Hillis et al. pro-
vided a power and sample size estimation method for the
DBM method,141 and unified sample size estimation tech-
niques for the DBM and OR methods.142 Gallas et al.118

compared the power of different reader study designs in
CAD assessment by using a variance expression derived for
a nonparametric MRMC AUC estimate. A web applet is
available to perform sample size estimation using a vari-
ety of variance estimation methods for the AUC.143 Obu-
chowski and Hillis provided sample size tables for MRMC
CAD studies that account for multiple actual positives us-
ing the region-based ROC analysis approach.144 Chakraborty
discussed how methods designed for ROC analysis can be
adapted for sample size estimation in location-specific ROC
analysis.145

Components of variance and effect size are important pa-
rameters needed for sample size estimation. A pilot study,
conducted before a pivotal study, may be the best way to esti-
mate these parameters. Besides sample size estimation, a pilot
study on CAD assessment may provide crucial information on
a variety of study design issues, including reading protocol
and reader training as discussed previously.

9. CONCLUSION

A number of CAD devices have been approved for clinical
use and many more are currently under development. These
devices are designed to provide decision support to clinicians

in tasks such as risk prediction, disease detection, differen-
tial diagnosis, and treatment decisions. At different stages of
development, investigators may be interested in assessing dif-
ferent aspects of CAD performance: standalone performance,
relative performance compared with other CAD systems, im-
provement in clinicians’ performance in controlled studies
compared to that without CAD, and ultimately, improvement
in clinical practice. The AAPM CADSC has attempted to
identify and provide initial opinions on important components
to be considered or to be included as a part of CAD study de-
sign in an effort to stimulate further discussion and to help
develop a consensus on appropriate approaches for CAD sys-
tem assessment.

The CADSC identified the following major areas for con-
sideration when assessing CAD: training and test data sets;
reference standards; mark-labeling criteria; standalone per-
formance assessment metrics and methodologies; reader per-
formance assessment metrics and methodologies; and study
sample size estimation. For each of these areas, we summa-
rized the current state of knowledge, identified practical tech-
niques and methodologies to be followed, provided recom-
mendations that might be useful in real-world situations, and
identified some reporting and study design requirements that
may be critical. We also discussed areas where further re-
search is needed. We hope that the ideas discussed herein
will serve as a framework for further development of struc-
tured, unified guidelines for CAD performance assessment
and help improve the reliability of reported performance re-
sults. Although most of the discussion focuses on the more
commonly used lesion detection and diagnosis systems, the
principles and basic approaches should serve as a guide for
performance assessment of other CAD systems. Proper as-
sessment of the CAD system standalone performance or its
impact on the user will lead to a better understanding of its
effectiveness and limitations, which, in turn, is expected to
stimulate further research and development efforts on CAD
technologies, reduce problems due to improper use, and even-
tually improve the utility and efficacy of CAD in clinical
practice.
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