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Purpose: A new treatment scheme coined as dense angularly sampled and sparse intensity modu-
lated radiation therapy (DASSIM-RT) has recently been proposed to bridge the gap between IMRT
and VMAT. By increasing the angular sampling of radiation beams while eliminating dispensable
segments of the incident fields, DASSIM-RT is capable of providing improved conformity in dose
distributions while maintaining high delivery efficiency. The fact that DASSIM-RT utilizes a large
number of incident beams represents a major computational challenge for the clinical applications
of this powerful treatment scheme. The purpose of this work is to provide a practical solution to the
DASSIM-RT inverse planning problem.
Methods: The inverse planning problem is formulated as a fluence-map optimization problem with
total-variation (TV) minimization. A newly released L1-solver, template for first-order conic solver
(TFOCS), was adopted in this work. TFOCS achieves faster convergence with less memory usage
as compared with conventional quadratic programming (QP) for the TV form through the effective
use of conic forms, dual-variable updates, and optimal first-order approaches. As such, it is tailored
to specifically address the computational challenges of large-scale optimization in DASSIM-RT in-
verse planning. Two clinical cases (a prostate and a head and neck case) are used to evaluate the
effectiveness and efficiency of the proposed planning technique. DASSIM-RT plans with 15 and
30 beams are compared with conventional IMRT plans with 7 beams in terms of plan quality and
delivery efficiency, which are quantified by conformation number (CN), the total number of seg-
ments and modulation index, respectively. For optimization efficiency, the QP-based approach was
compared with the proposed algorithm for the DASSIM-RT plans with 15 beams for both cases.
Results: Plan quality improves with an increasing number of incident beams, while the total number
of segments is maintained to be about the same in both cases. For the prostate patient, the conforma-
tion number to the target was 0.7509, 0.7565, and 0.7611 with 80 segments for IMRT with 7 beams,
and DASSIM-RT with 15 and 30 beams, respectively. For the head and neck (HN) patient with a
complicated target shape, conformation numbers of the three treatment plans were 0.7554, 0.7758,
and 0.7819 with 75 segments for all beam configurations. With respect to the dose sparing to the
critical structures, the organs such as the femoral heads in the prostate case and the brainstem and
spinal cord in the HN case were better protected with DASSIM-RT. For both cases, the delivery effi-
ciency has been greatly improved as the beam angular sampling increases with the similar or better
conformal dose distribution. Compared with conventional quadratic programming approaches, first-
order TFOCS-based optimization achieves far faster convergence and smaller memory requirements
in DASSIM-RT.
Conclusions: The new optimization algorithm TFOCS provides a practical and timely solution to the
DASSIM-RT or other inverse planning problem requiring large memory space. The new treatment
scheme is shown to outperform conventional IMRT in terms of dose conformity to both the target
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and the critical structures, while maintaining high delivery efficiency. © 2012 American Association
of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4729717]
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I. INTRODUCTION

IMRT (Refs. 1–4) and VMAT (Refs. 5–7) are currently widely
used for RT of various cancers. Each technique captures
certain desirable features of RT, but compromises in other
aspects. IMRT achieves a reasonable dose distribution by in-
tensity modulation with limited angular beam sampling (typ-
ically 5–10 fixed gantry beams). IMRT inverse planning can
be broadly divided into two types of optimization algorithms:
direct aperture optimization (DAO) (Refs. 8–12) and beam-
let based optimization (BBO).13–18 Although DAO takes the
physical constraints of the delivery system into consideration,
it suffers from the problem of multiple local minima due to
the nonconvex cost function. In BBO, on the other hand, the
level of intensity modulation is generally unconstrained and
the resultant number of segments is usually large in order to
generate a reasonable dose distribution. In terms of the plan-
ning quality in IMRT, due to the sparse angular sampling, the
conformity and maneuverability of the resultant dose distri-
bution are often limited.19 On the other hand, VMAT pro-
duces conformal dose distributions by continuously rotating
the gantry while modulating the aperture shape and dose rate.
Because each beam is limited to a single aperture in an arc-
based delivery, it does not provide the desired beam intensity
modulation in some or all directions. In many clinical cases,
single-arc VMAT may unduly compromise the quality of the
dose distribution.20, 21 The use of multiple arcs could be a pos-
sible solution to the problem, but it fails to address the need
for intensity modulation of each individual beam and may de-
feat the purpose of fast delivery. VMAT involves gantry rota-
tion during dose delivery and thus requires additional atten-
tion in QA. Inability to change beam energy during rotational
arc therapy also presents potential pitfalls in practice.

Recently, an alternative treatment scheme, termed dense
angularly sampled and sparse intensity modulated RT
(DASSIM-RT), has been proposed.20 It is achieved by
increasing the angular sampling of radiation beams while
eliminating dispensable segments of the incident fields.
DASSIM-RT combines the desirable features of both VMAT
(by increasing the angular sampling) and conventional IMRT
(by allowing multiple field specific segments). It explores
a large area of uncharted territory in terms of the number
of beams and level of intensity modulation and bridges the
gap between conventional IMRT and VMAT. Two recent ad-
vancements in RT support the applications of DASSIM-RT in
clinical practice. On the planning side, IMRT inverse plan-
ning with total-variation (TV) regularization22–24 has been
proposed, which is capable of dispensing unnecessary seg-
ments in intensity modulated beams to produce easily deliv-
erable piecewise constant fluence maps. On the delivery side,
DASSIM-RT is made efficient by the high dose-rate beams
and by autofield sequencing available on TrueBeamTM, which
eliminates the unnecessary operator control of gantry rota-

tion during dose delivery.20 DASSIM-RT improves confor-
mity in dose distributions while maintaining high delivery
efficiency. Hybrids of rotational arc and fixed-gantry dose de-
liveries and/or treatment with mixed beam energies for differ-
ent directions are readily achievable with DASSIM-RT.

Although the proof of concept for DASSIM-RT has been
successfully demonstrated, there remains a major challenge
in practice, and if not resolved, it could hinder the clinical
applications of this powerful treatment scheme. Such a chal-
lenge arises from the fact that DASSIM-RT utilizes a large
number of incident beams and thus involves many more vari-
ables to be optimized. This leads to a several-fold expansion
of the search space and entails a much larger memory in the
optimization process. Although the total-variation regulariza-
tion with quadratic programming (QP) (Ref. 25) was suc-
cessfully applied to optimize the fluence map in conventional
IMRT,22–24 direct application of the method to deal with the
DASSIM-RT inverse planning is rather challenging because
of the dramatically increased scale of problem. The use of a
second-order Newton step in QP for large matrix sizes may
significantly lower the convergence speed and, more compu-
tationally problematic, requires prohibitively large memory
space for the optimization. Therefore, there is an unmet prac-
tical need to develop optimization algorithms that are tailored
to the special challenges arising from the inverse planning for
DASSIM-RT or alike.

In this paper, we utilize a novel optimization framework,
called template for first-order conic solvers (TFOCS),26 to ad-
dress the above challenges in DASSIM-RT planning. Specif-
ically, TFOCS tackles the computation by using first-order
methods and dual variable updates, which allows for sub-
stantially reduced memory usage and assures faster conver-
gence rates during the fluence-map optimization process.
Furthermore, TFOCS provides effective solutions for the
problem of ill-conditioned dose matrices, which has been one
of the major difficulties in total-variation minimization. The
approach thereby ensures more stable and consistent results.
This work demonstrates that the promise of DASSIM-RT
can indeed be realized with the TFOCS-based optimization
algorithm.

II. METHODS AND MATERIALS

II.A. Conventional total-variation minimization
techniques for RT planning and their pitfalls

The idea of total-variation regularization has been success-
fully applied to generate piecewise constant fluence maps. In
the original work, the optimization problem in Eq. (1)

Minimize ‖Ax − d‖2
2 + β ‖Wx‖1 (1)

was solved using QP,22–25 where A is the dose matrix, d
is the prescribed dose, x ∈ Rn is the beamlet-intensity map
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to be optimized, W ∈ R2n×n is the difference matrix for
total-variation in 2D-sense, and β is the regularization param-
eter to be determined. QP-based total-variation regularization
uses a second-order Newton update, represented by Hessian,
whose matrix size is n × n, where n is the number of beamlets
multiplied by the number of beams. As the number of beams
increases, the size of Hessian becomes much larger, thereby
requiring a huge amount of memory and reducing the conver-
gence speed of optimization. Additionally, to reformulate L1-
norm based total-variation regularization in Eq. (1) as a QP
problem, the resultant Hessian matrix is increased to a size of
3n × 3n. This leads to an additional increase in the require-
ment for memory space, on top of the original large Hessian
matrix. The DASSIM-RT fluence-map optimization using QP
is not practical due to the large number of beams involved in
the problem.

The increased demand for memory is a well recog-
nized problem in dealing with problems involving L1-norm
regularization.27–30 With widespread interest in compressed
sensing,31–33 several first-order based L1-solvers34–38 have
been developed, which normally refer to the model shown be-
low

Minimize ‖Wx‖1

subject to ‖Ax − d‖2 ≤ ε, x � 0.
(2)

The main advantage of the first-order methods lies in their
faster convergence and minimal usage of memory. However,
the application of L1-solvers with the first-order methods in
RT planning is still quite limited for several reasons. First,
as the difference matrix W for the total-variation is neither
square nor a projection matrix, the inverse operation is not
available, making it computationally intractable. Second, the
dose matrix A has such a large condition number, called ill-
conditioned, that a necessary inverse operation such as in-
verse of ATA is entirely unreliable. Third, adding a con-
straint such as x ≥ 0 can disrupt the process of acquiring
the solution in some cases. Those three factors coupled with
the memory issue prevent these techniques from being prac-
tical solutions to the fluence-map optimization problem in
DASSIM-RT.

II.B. TFOCS as an effective and practical solution for
DASSIM-RT planning

A newly released L1-solver, called TFOCS,26 can effec-
tively tackle the DASSIM-RT plan optimization problem
with the conic forms, the dual-variable updates and the op-
timal first-order approaches, while assuring flexibility and ef-
ficiency. Especially, dual-variable updates can not only ac-
celerate the speed of convergence, but can also overcome
the problems caused by ill-conditioned dose matrices. The
greatest benefit of TFOCS for DASSIM-RT planning with
a large number of beams is that, as TFOCS is based upon
the first-order method without acquisitions of the enlarged
second-order Newton step, it helps save memory space and
achieves faster convergence to the optimal solution than QP-
based techniques. For these reasons, as the number of radia-

tion beams increases in DASSIM-RT, both the computational
time and memory requirement for TFOCS-based optimiza-
tion is expected to grow linearly, rather than exponentially.
The basic model for the optimization of DASSIM-RT used in
this study is expressed in the following way:

Minimize ‖Wx‖1 + μ ‖x − x0‖2
2

subject to
∥∥√

λi(Aix − di)
∥∥

2 ≤ εi = ki · mi

x � 0
, (3)

where x0 ∈ Rn is the initial guess for iterations, μ is a suffi-
ciently small positive constant. The primary goal of the sec-
ond term in the cost function is to ensure the numerical sta-
bility by composing a strongly convex primal objective and
make the dual function differentiable so that the dual ob-
jective can be optimized by means of efficient first-order
methods. Ai ∈ Rmi×n is the dose matrix, and di is the dose
distribution, mi represents the number of voxels, λi is the im-
portance factor of structure i, and n is the entire number of
beamlet elements (size of beamlet multiplied by the number
of beams). The residue imposed on PTV and each structure
i is denoted by εi, which is defined as the product of posi-
tive constant ki and the number of voxels of each structure mi,
i.e., εi = ki · mi. The details of the mathematical techniques
used in TFOCS such as conic forms, dual updates, and first-
order methods can be found in Boyd and Bandenberghe25 and
Becker et al.26

II.C. Design considerations and algorithm
implementation

Dose matrices which describe the relationship between the
dose distributions and the beamlet-intensity map are calcu-
lated using voxel-based Monte Calro simulations.39, 40 Each
field is comprised of 16 × 20 beamlets, with the beamlet size
of 5 mm × 5 mm.

For a fair comparison between DASSIM-RT and conven-
tional IMRT, both the prescribed residues and the impor-
tance factors of the critical structures are maintained to be
the same for all plans in this work. The respective prescribed
residues assigned to PTV and OARs are εPTV = 0.03 · mPTV, εi

= 0.02 · mi for a prostate study and εi = 0.015 · mi for a head-
neck study. The importance factors of the critical structures
represented by λi are heuristically determined considering the
residues imposed on the structures for the different number of
incident beams.

The optimization algorithm was based on the TFOCS
software package (http://tfocs.stanford.edu) and was modi-
fied to fit the specific needs of RT inverse planning. The
initial guess was defined to be zeros, namely, x0 = 0, and
the difference matrices were designed to give the beamlet
intensity differences between neighboring pixels for total-
variation operation. The algorithm stops when the differ-
ence in L2-norm between two consecutive iterations is less
than 10−4, namely, ‖xk+1 − xk‖2 ≤ 10−4. After fluence-
map optimization, the resultant beamlet intensity map is
converted into deliverable MLC segments using the method
described by Zhu et al.22 For the comparison to TFOCS
for toal-variation in algorithmic performance at the same
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condition, QP-based approach was performed by MOSEK
software package (http://www.mosek.com) with appropriate
modifications in parameter setting. The algorithms were im-
plemented with MATLAB R 2008a on a PC with 4 GB mem-
ory and Intel Core i5 CPU, 2.67 GHz.

II.D. Evaluation

Two previously treated cases, a prostate case and a head
and neck (HN) case, were selected to evaluate the perfor-
mance of the TFOCS algorithm for DASSIM-RT planning.
For both cases, the number of incident beams is assigned to
15 and 30 beams for DASSIM-RT, with the gantry angles uni-
formly distributed with a spacing of 24◦ and 12◦, respectively.
For comparison, we also applied the TFOCS algorithm for
conventional IMRT planning with 7 fixed-gantry beams. The
gantry angles are set up to be 20◦, 70◦, 120◦, 170◦, 220◦, 270◦,
320◦ for the HN case and 30◦, 80◦, 130◦, 180◦, 230◦, 280◦,
330◦ for the prostate patient.

For the prostate patient, the target shape is relatively reg-
ular. The critical structures involved were bladder, rectum,
seminal vesicle, and femoral heads. A total dose of 78 Gy
was prescribed to the PTV. For the HN case, the target shape
is quite complicated, as shown in Fig. 1. The critical struc-
tures involved in optimization were spinal cord, brainstem,
mandible, and oral cavity. For this case, a total dose of 60 Gy
was prescribed to the PTV. In this work, all plans were de-
signed such that 95% of the PTV receives the prescribe dose
about at 75–80 entire beam segments.

The criteria for dosimetric assessment of the planning re-
sults are dose volume histogram (DVH) and iso-dose distribu-
tions. Of diverse techniques proposed to quantitatively eval-
uate the dose conformity to the target in the name of confor-
mality index,41–45 this study adopts the notion of conforma-
tion number (CN), which consist of two different terms mul-
tiplied as shown in Eq. (4), suggested by Van’t Riet et al.41

and Oozeer et al.,42

Conformation Number (CN) = Vτ,ref

Vτ

· Vτ,ref

Vref
(4)

where Vτ is the volume of PTV, Vτ,ref represents the target
volume receiving the dose greater than or equal to the ref-
erence dose, and Vref is the total volume receiving the dose
greater than or equal to the reference dose. The first term
of CN, denoted by CN1 for convenience, describes the cov-
erage of target volume, which is normally required to be

(a) (b) (c)

FIG. 1. (a)–(c) Three axial slices showing all structures on CT images in the
HN case. Target volumes, which are quite complex in shape, are surrounded
by critical structures such as brainstem, cord, mandible, and oral cavity.

greater than or equal to 95%. The second term, CN2, also
called the spill factor, summarizes the fractional volume of
healthy tissue irradiated by a dose greater than or equal to
the reference dose. Increasing the number of incident beams
in DASSIM-RT compared with IMRT can improve the sec-
ond term of conformation number, and thus the overall dose
conformality.

In addition to the dose conformity, another important prac-
tical aspect in inverse planning is the delivery efficiency of
the resultant treatment plans. For step-and-shoot techniques,
the delivery efficiency is closely related to the total num-
ber of segments and the modulation index (MI).24, 46 In this
work, we will evaluate the change of conformality index
with respect to these two factors for each plan. The MI is
defined as

�u = ‖xu,v,f − xu−1,v,f ‖, �v = ‖xu,v,f − xu,v−1,f ‖
N (f ) = (Number of beamlets such that �u,�v > f · σ )

(f = 0.01, 0.02, . . . , 2)

z(f ) = N (f )

(Nu − 1)Nv + Nu(Nv − 1)

MI =
∫ 0.5σ

0
z(f )df

(5)

where x is the resultant fluence map, Nu and Nv are the
size of beamlet, �u and �v are the intensity change be-
tween adjacent beamlets in perpendicular and horizontal di-
rections, σ is the standard deviation of the beamlet intensities,
and N(f) is the number of beamlets satisfying the condition
above.

The proposed first-order approach is compared with
second-order QP-based approaches for DASSIM-RT plan-
ning. The QP equivalent model with the total-variation mini-
mization is optimized for the prostate and HN cases with 15
and 30 beams. The comparison is made in terms of algorith-
mic performance such as the convergence speed and required
memory usage.

III. RESULTS

III.A. Plan quality

The dose conformity to the PTV for both cases is demon-
strated in Figs. 2 and 3, which show the CN and iso-dose dis-
tributions for plans with 7, 15, and 30 beams. From Figs. 2
and 3(a), 3(c), and 3(e), it can be seen that CN increases as
the number of beams rises. The improvement in the dose con-
formity to the PTV is clearly shown in iso-dose distributions
in Figs. 2 and 3(b), 3(d), and 3(f), where the dose distribution
is more conformal to the target at the same beam segments as
the number of beam increases. The extent of the improvement
in target dose conformity appears to be more remarkable in
the HN case, where the shape of the PTV is bigger and more
complicated than that in the prostate case. This indicates that
DASSIM-RT with an increased beam angular frequency may
be more effective in complicated cases. Table I lists the

Medical Physics, Vol. 39, No. 7, July 2012

http://www.mosek.com


4320 Kim et al.: Dose optimization with first-order total-variation minimization 4320

50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Segments

C
o

n
fo

rm
at

io
n

 N
u

m
b

er
 (

C
N

)

 

 

CN1
CN2
CN

50 60 70 80 90 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Segments

C
o

n
fo

rm
at

io
n

 N
u

m
b

er
 (

C
N

)

 

 

CN1
CN2
CN

50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

1

C
o

n
fo

rm
at

io
n

 N
u

m
b

er
 (

C
N

)

 

 

CN1
CN2
CN

Number of Segments

(a)

(c)

(e)

(b)

(d)

(f)

FIG. 2. Planning results in the prostate case. (a), (c), (e) The variations of CN, CN1; and CN2, (b), (d), (f) iso-dose distributions with 80 segments for 7, 15,
and 30 beams. CN and visualized dose conformity to the PTV tend to increase as the number of beams increases. Also, the dose distribution with 30 beams is
better nearby the femoral heads and normal tissues than that with 7 beams.

numerical results of CNs and its two components for the three
different plans for the three different plans in the prostate and
HN cases with 80 beam segments. With CN1 greater than or
equal to 0.95, both CN and CN2 are improved as the num-
ber of beams is increased. A similar, yet more noticeable,
trend is observed in Table II for the HN case with 75 beam

segments. These results demonstrate the dosimetric advan-
tages of DASSIM-RT over IMRT, by increasing the beam an-
gular sampling.

Figures 4 and 5 show the DVHs of all structures involved
in the fluence-map optimizations with 7, 15, and 30 beams for
the prostate and HN cases. The planning results were obtained

TABLE I. Conformation number, optimization time, modulation index, maximum and mean beam intensity for the prostate treatment plans with 7, 15, and 30
beams at 80 beam segment using the proposed methods.

Conformality index
Time for fluence-map

Beam intensity

CN CN1 CN2 optimization (s) MI Maximum intensity Mean of intensity

7 beams 0.7509 0.9527 0.7882 120 4.33 742 297
15 beams 0.7565 0.9535 0.7934 255 3.61 425 139
30 beams 0.7611 0.9545 0.7974 524 2.51 242 68
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FIG. 3. Planning results in the HN case. (a), (c), (e) The variations of CN, CN1, and CN2, (b), (d), (f) iso-dose distributions with 75 segments for 7, 15, and 30
beams. Improvement in dose conformity to the PTV becomes more remarkable than the prostate case.

with 80 and 75 beam segments for the two cases, respec-
tively. They show that normal tissues can be better spared with
higher beam angular frequencies in DASSIM-RT. The advan-
tage of using more beams in protecting normal tissues is also
evident from Tables III and IV. For instance, in the prostate
case, the mean dose to femoral heads is decreased from 16 Gy
to ∼13 Gy when the number of beams is increased from 7 to
15 and 30. In the HN case, the maximum dose to the brain-
stem and spinal cord is reduced by ∼25% and ∼43% with 15
beams and the dose reduction is even more with 30 beams.
Doses to other organs are also reduced with DASSIM-RT, al-
though by a smaller amount.

Figures 6 and 7 show the dose conformity to the target
(or CN) as a function of the total number of segments and

MI. It can be seen that in both cases, DASSIM-RT (15 and
30 beams) is able to achieve a higher CN than IMRT
(7 beams) with a similar number of beam segments, and with
a significantly reduced MI. For instance, as shown in Table I
for the prostate case, the MI is reduced by 40% with the 30-
beam DASSIM-RT plan compared to the 7-beam IMRT plan.
The reduction in MI is even more dramatic in the HN case,
by as much as 60%, as shown in Table I. The reduction in
MI is a manifestation of the simplicity of the resultant flu-
ence maps, which are illustrated in Figs. 8 and 9, for the
prostate case and HN case. This demonstrates that as the num-
ber of beams increases in DASSIM-RT, the fluence maps be-
come more piecewise constant and thus are more efficient to
deliver.

TABLE II. Conformation number, optimization time, modulation index, maximum and mean beam intensity for HN treatment plans with 7, 15, and 30 beams
at 75 beam segments using the proposed methods.

Conformality index
Time for fluence-map

Beam intensity

CN CN1 CN2 optimization (s) MI Maximum intensity Mean of intensity

7 beams 0.7554 0.9501 0.7951 97 4.40 1304 96
15 beams 0.7758 0.9501 0.8165 168 3.12 695 45
30 beams 0.7819 0.9504 0.8224 352 1.73 394 23
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TABLE III. Planning results compared with the clinical acceptance criteria in the prostate case.

Results

Acceptance criteria 7 beams 15 beams 30 beams

PTV % vol ≥ 78Gy > 95 95 95 95
Rectum % vol ≥ 40Gy ≤ 35 31.68 30.03 29.08

% vol ≥ 65Gy ≤ 17 3.84 3.92 3.86
vol > 79.6Gy ≤ 1cc 0 cc 0 cc 0 cc

Bladder % vol ≥ 40Gy ≤ 50 10.81 10.71 10.67
% vol ≥ 65Gy ≤ 25 2.59 2.34 2.41

Femoral heads % vol ≥ 45Gy ≤ 1 0 (mean: 16.06 Gy) 0 (mean: 13.03 Gy) 0 (mean: 12.56 Gy)
Seminal vesicle – Mean: 30.45 Gy Mean: 30.26 Gy Mean: 30.23 Gy

Note: As seminal vesicle has no specific criteria, its mean dose is shown here.

TABLE IV. Planning results compared with the clinical acceptance in the HN case.

Results

Acceptance criteria 7 beams 15 beams 30 beams

PTV % vol ≥ 60Gy > 95 95 95 95
Brainstem Maximum <54 Gy Max.: 20.90 Gy (Mean: 2.52 Gy) Max.: 15.75 Gy (Mean: 2.42 Gy) Max.: 14.25 Gy (Mean: 2.39 Gy)
Spinal cord Maximum <45 Gy Max.: 17.41 Gy (Mean: 2.62 Gy) Max.: 9.97 Gy (Mean: 2.34 Gy) Max.: 10.03 Gy (Mean: 2.36 Gy)
Mandible – Mean: 14.10 Gy Mean: 13.82 Gy Mean: 13.84 Gy
Oral cavity – Mean: 6.64 Gy Mean: 6.61 Gy Mean: 6.46 Gy

Note: Since mandible and oral cavity have no specific criterions, the mean dose of the structures was provided.
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FIG. 4. (a) DVHs of the resultant plans with 7, 15, and 30 beams in the prostate case and (b) the magnified views, where the solid(-), the dashed-dotted(-•),
and the dashed lines(–) correspond to 7, 15, and 30 beams, respectively. The DVHs were acquired with 80 segments for all plans. The dose conformity to the
critical structures, especially left/right femoral heads, is noticeably enhanced with DASSIM-RT (15 and 30 beams) over IMRT (7 beams).
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Regarding the plan quality comparison between TFOCS
and QP-based methods, the DVHs and iso-dose distributions
are very similar with the same beam configuration for the
prostate and HN cases as shown in Fig. 10 although minor
differences are present. With respect to the dose conformity
to the target, TFOCS yields greater CN than QP-based meth-
ods for both cases as presented in Table V.

III.B. Optimization efficiency

Tables I and II list the time elapsed for fluence-map op-
timization at 7, 15, and 30 beams, for the prostate and HN
cases, respectively. For most of the plans, the results were
achieved within 2000 iterations using TFOCS algorithm with
the stopping criterion given, ‖xk+1 − xk‖2 ≤ 10−4, except
for the HN case with 7 beams, where the complexity of the
fluence map becomes high. In such a case, the stopping cri-
terion was strengthened by lowering the difference in L2-
norm between two consecutive iterations to less than 10−5.
The optimization time required for a 30-beam DASSIM-RT

plan is <9 min and ∼6 min for the prostate and HN cases,
respectively. It is worth noticing that in both cases, the com-
putational time for fluence-map optimization increases only
linearly with respect to the number of beams instead of expo-
nentially as the number of variables to be updated at every it-
eration linearly increases in the TFOCS based approach. This
is a main practical benefit of the proposed algorithm for the
DASSIM-RT.

Table V lists the time elapsed for fluence-map optimiza-
tion with the proposed method and QP-based approach for
DASSIM-RT plans with 15 beams. The QP-based approaches
converge to the solution ∼15–20 times slower than the
TFOCS based algorithm in both cases. Even worse, the QP-
based approaches cannot even process the DASSIM-RT plans
with 30 beams because its memory requirement exceeds what
our current computing platform can offer (4 GB memory),
which can demonstrate the superiority of the proposed algo-
rithm for DASSIM-RT plans in memory efficiency. Table V
also shows the actual memory usage spent in each algorithm
in the unit of gigabyte (GB), which is ∼2.5–4 times greater

TABLE V. Comparisons in algorithmic performance between TFOCS and QP-based approaches for HN case with 15 beams DASSIM-RT with respect to (1)
the computational time and (2) the actual memory space required for the fluence-map optimization and (3) conformality index by CN.

Prostate HN

Time for fluence-map Actual memory Time for fluence-map Actual memory
optimization (s) usage (GB) CN optimization (s) usage (GB) CN

TFOCS 255 0.92 0.7565 168 0.56 0.7758
QP 3911 2.54 0.7014 3597 2.41 0.7665
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in QP-based method than that in the first-order method,
TFOCS.

IV. DISCUSSION

DASSIM-RT has recently been proposed to fully utilize
the degrees of freedom of angular and intensity modulation in
unison. A major obstacle in the practical implementation of
DASSIM-RT is how to find the solution that best balances the
intrabeam modulation and angular sampling. The complica-
tion here arises from the fact that a large number of incident
beams are involved, which necessitates a much larger mem-
ory in the optimization process. Conventional total-variation
regularization techniques based upon the QP do not handle
these large-scale problems properly due to the computational
time and memory expenses.

In this work, we tackle the issue of computational effi-
ciency by adopting a novel L1-solver called TFOCS. It uti-
lizes first-order methods and assures faster convergence time
to the solutions than conventional second-order methods such
as QP. In addition, because it does not involve the enlarged
Hessian matrix for the second-order Newton step, TFOCS re-
quires much less usage of memory than the QP-based meth-
ods. These desirable features are ideally suited for DASSIM-
RT where the size of dose matrix becomes much larger than
in conventional IMRT. Indeed, as the results showed in both
cases, the computational time for fluence-map optimization
increases almost linearly (instead of exponentially) with re-
spect to the number of beams. Significantly, the fact that QP-
based approaches cannot process the DASSIM-RT plans with
30 beams, while the first-order TFOCS method can perform
with our computing platform, demonstrates the superiority of
the proposed method in memory efficiency. Specifically, in
the TFOCS-based approach, the memory charge is mostly de-
termined by the total number of voxels of entire structures
multiplied by the entire beamlet elements ((

∑N+1
i=1 mi) × n),

where the N+1 is the total number of organs. Contrarily, the
QP-based approach for TV form requires a much bigger ma-
trix for composing additional matrix element (3n × 3n). At
each iteration, the first-order method only updates multiple
times of n elements for primal and dual variables, whereas
QP based second-order approach updates 3n × 3n variables.
These make an enormous difference between the two methods
in terms of memory usage and convergence time. It clearly
shows the practical applicability of the TFOCS algorithm for
large-scale optimization problems such as the DASSIM-RT
inverse planning.

The results from two patient studies demonstrate that, by
increasing the angular beam sampling and effectively elim-
inating the dispensable segments using TFOCS based total-
variation minimization, DASSIM-RT provides better dose
conformity to both the critical structures and the target than
conventional IMRT. The improvement of dose conformity
was demonstrated in various aspects such as DVHs, iso-dose
distribution, and conformality index.

Although the organ doses are all within the planning limits
in both cases, it can be argued that in radiation therapy, fewer
doses to normal tissues are always better with the same PTV

coverage. Further, the dosimetric advantages of DASSIM-RT
can prove important for more complex cases or for patients
who have received RT before or are receiving hypofraction-
ated RT.

In addition to a highly conformal dose distribution, it is
also important to maintain the delivery efficiency. DASSIM-
RT achieves this goal by greatly reducing the complexity
of intensity modulation, measured by MI and the number
of beam segments. As the number of beams increases in
DASSIM-RT, the complexity of intensity modulation mea-
sured by MI significantly decreases and the resultant fluence
maps become nearly piecewise constant, which should trans-
late into efficiency in the dose delivery process. In our origi-
nal paper,20 we have compared the estimated delivery time of
DASSIM-RT, IMRT, and VMAT. We found that for three clin-
ical cases, the estimated dose delivery time for a DASSIM-RT
plan with 15 beams and 5 intensity levels is around 4.5 min,
which is similar to the delivery time of step-and-shoot IMRT
plans with 7 beams and 10 intensity levels. VMAT plans take
less time to deliver (1.5 and 2.5 min for a 1-arc and 2-arc plan,
respectively).

The actual need of the number of beams is case-dependent.
Our results suggest that the effect of increasing the angular
sampling frequency would be more dramatic when (1) the
shape of the target is more complicated as in the head-neck
patient data used in this study, or/and (2) the critical struc-
tures are located quite close to the target, thereby requiring
high dose sparing to the critical structures. In one of those
two cases, just as confirmed in the results of the HN patient
study, dose conformity to the PTV is noticeably better with
the same or fewer beam segments and with much less fluence-
map complexity.

Future work of DASSIM-RT planning includes a more
comprehensive evaluation on more clinical cases in more
anatomic sites. The optimal number of beams and the ex-
act beam orientation will also be investigated in a general
framework for DASSIM-RT planning. The proposed first-
order based L1-solver can be used in other medical appli-
cations which require large-scale optimization, such as CS-
based iterative cone-beam CT reconstruction.28

V. CONCLUSIONS

Angular beam sampling and intrabeam intensity modula-
tion represent two important aspects in conformal radiation
therapy. DASSIM-RT combines the desirable features of both
VMAT and conventional IMRT, by increasing the angular
sampling of radiation beams while eliminating dispensable
segments of the incident fields. Computationally, the use of a
large number of beams may be problematic for conventional
second-order optimization methods, leading to a slow conver-
gence and large memory expense. We have applied a newly
available first-order based L1-solver to address the computa-
tional challenges of large-scale optimization in DASSIM-RT
inverse planning. For DASSIM-RT planning with 15 beams,
the algorithm converges in ∼5 and 3 min in the prostate and
HN case. Compared with conventional QP-based approaches,
the proposed algorithm achieves faster convergence by a fac-
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tor of ∼15–20 and smaller memory requirements. This work
provides a practical and timely solution to the DASSIM-RT
inverse planning problem and could lead to new treatments
that provide quality dose distributions in clinical practice.
The proposed first-order based L1-solver can also be applied
in other medical applications, which require large-scale op-
timization, such as CS-based iterative cone-beam CT recon-
struction.
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