
Przegląd Gastroenterologiczny 2014; 9 (2)

Review paper

The role of gastrointestinal hormones  
in the pathogenesis of obesity and type 2 diabetes

Edyta Adamska1, Lucyna Ostrowska2, Maria Górska3, Adam Krętowski1,3

1Centre for Clinical Research, Medical University of Bialystok, Poland
2Department of Dietetics and Clinical Nutrition, Medical University of Bialystok, Poland
3Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Poland

Prz Gastroenterol 2014; 9 (2): 69–76
DOI: 10.5114/pg.2014.42498

Key words: gut hormones, obesity, diabetes.

Address for correspondence: Edyta Adamska MD, Centre for Clinical Research, Medical University of Bialystok,  
24a M. Sklodowskiej-Cure St, 15-276 Bialystok, Poland, phone: +48 693 726 228, e-mail: edyta.adamska@umb.edu.pl

Abstract
Obesity, influencing the increase of incidence of type 2 diabetes, cardiovascular complications and cancer is a growing med-

ical problem worldwide. The feelings of hunger and satiety are stimulated by the “gut-brain axis”, where a crucial role is played 
by gastrointestinal hormones: glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide, pancreatic polypeptide, 
peptide YY, oxyntomodulin, cholecystokinin and ghrelin. These hormones affect not only the functioning of the digestive tract, 
but also might have effects on insulin secretion and are mediators which affect brain areas involved in the regulation of food 
intake. The effect of their actions can be antagonistic as well as an additive or synergistic, and their secretion is dependent on 
many factors, such as dietary nutrients or the energy state of the body. Changes in circulating gut hormones concentrations result 
in activation of various pathways primarily within the hypothalamus and brain stem areas, which modulate feeding behaviour 
and a number of metabolic processes.

Brain – gut axis regulation
The central nervous system (CNS) (the paraventricular 

nucleus and the hypothalamic arcuate nucleus), which re-
ceives signals from the alimentary tract as well as from ad-
ipose tissue, plays a key role in the body’s energy balance. 
The feelings of hunger and satiety are regulated in the 
CNS via the brain-gut axis, with a number of hormones 
playing critical roles (Table I). Ghrelin is the main and, as it 
seems, the only known appetite-stimulating gastrointesti-
nal hormone. Its levels increase with fasting and stimulate 
food intake via the vagus nerve, the brainstem and the 
hypothalamic arcuate nucleus; whereas satiety-stimulat-
ing hormones such as pancreatic polypeptide (PP), peptide 
YY (PYY), oxyntomodulin (OXM), cholecystokinin (CCK) and 
glucagon-like peptide-1 (GLP-1) are released during eat-
ing (Figure 1) [1–6]. Some of these hormones also affect 
insulin secretion. Glucagon-like peptide-1 and glucose-de-
pendent insulinotropic peptide (GIP) are hormones that 
stimulate postprandial insulin secretion. 

Gastrointestinal hormones affecting 
hunger/satiety

Ghrelin 
Ghrelin, also known as “the hunger hormone”, pro-

duced in the so-called X/A-like endocrine cells of the 
gastric fundus, is the only known appetite-stimulating 
gastrointestinal hormone [7]. Ghrelin is recognized as 
a meal-initiating hormone. Its levels are increased after 
overnight fasting, they rise approximately two-fold im-
mediately before a meal and decrease to their lowest 
values 1 h after each meal (Figure 2) [8, 9]. Postpran-
dial decrease of ghrelin levels is further dependent on 
meal calorie value and composition; for example, the 
decrease is lower after fat-based meals compared with 
carbohydrate- or protein-based meals [10, 11]. Basic 
ghrelin levels respond in a compensatory manner to the 
energy deficit/excess: low ghrelin levels are observed 
in obesity, whereas high levels in anorexia (Figure 2) 
[12, 13]. A lower decrease in ghrelin levels in relation 
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to fasting values is observed in postprandial obese in-
dividuals [14].

Ghrelin is acylated at position 3 into an active, ac-
ylated form that can pass the blood-brain barrier and 
bind to a receptor that stimulates growth hormone 
(GH) secretion. In the CNS, ghrelin stimulates hypotha-
lamic production of neuropeptide Y (NPY) and Agouti 
protein (AgRP) by influencing mitochondrial uncoupling 
proteins (UCP2) [15–17]. Acylated ghrelin neutraliza-
tion reduces food intake and leads to weight-loss in 
diet-induced obese mice [18]. Long-term ghrelin admin-
istration in experimental animals leads to weight gain, 
resulting from hyperphagia, and increased expression 

Table I. The main mechanisms of action of gut hormones and “adiposity signals” (modified according to Suzuki 
et al. Endocr J 2010) [6]

Gastrointestinal hormones – ”satiety signals” regulating the beginning, end and intervals between meals

GLP-1 Incretin effect, satiety regulation, delayed gastric emptying

GLP-2 Affects gastrointestinal motility and trophic effect in the intestinal tract

Ghrelin Hunger stimulation

PYY Satiety regulation, delayed gastric emptying

PP Affects gastric motility, satiety regulation

OXM Satiety regulation, affects HCl secretion, incretin properties

CCK Affects gastrointestinal motility, exocrine pancreatic enzyme secretion, secretory 
function of the gallbladder

GIP Incretin effect

Amylin Affects glucose homeostasis, gastric motility

“Adiposity signal” hormones – role in regulating the formation of energy reserves

Insulin Affects glucose homeostasis, glycogen synthesis

Leptin Regulates energy metabolism

Figure 1. Hunger/satiety regulation in CNS  
(“gut-brain axis”)

---I anorectic effect,          orexigenic/stimulatory effect,  
NPY – neuropeptide Y, AgRP – Agouti-related peptide, POMC – pro-
opiomelanocortin, CART – cocaine- and amphetamine-regulated 
transcript, GLP-1 – glucagon-like peptide-1, GIP – glucose-
dependent insulinotropic peptide, PP – pancreatic polypeptide, 
PYY – peptide YY, OXM – oxyntomodulin
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Figure 2. Mean 24-hour plasma ghrelin profiles 
in normal-weight and obese subjects (modified 
by Cummings et al. NEJM 2002) [9]
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of enzymes that promote fat accumulation in the adi-
pocytes [19].

Cholecystokinin
Cholecystokinin (CCK) was the first gastrointestinal 

hormone found to act as a hunger suppressant [20]. 
Cholecystokinin is mainly produced in the L-cells of 
the duodenum and small intestine [21] in response to 
a meal, to stimulate pancreatic hormone secretion, bile 
secretion [22] and inhibition of gastric emptying [23]. 
An increase in CCK blood levels is observed approxi-
mately 15 min after meal initiation [22]. Therapeutic 
use of CCK is restrained due to its 1–2-minute half-life. 
Administering CCK earlier than 15 min before a meal 
does not result in meal size reduction [20]. 

There are several known bioactive forms of CCK, 
such as CCK-8, CCK-22, CCK-33 and CCK-58, which dif-
fer in the number of amino acids. Cholecystokinin-33 is 
the prevailing form found in plasma and the intestines 
[24]. Cholecystokinin is widely distributed in the CNS, 
including the hypothalamus, where it is most abundant-
ly present in the dorsomedial nucleus and the median 
eminence of the hypothalamus [25].

Two types of CCK receptors, CCKA and CCKB, are 
known [26, 27]. CCKA (also known as CCK1) seems to 
play a more important role in food intake regulation. 
Administering selective antagonists for this receptor in 
experimental animals abolishes the inhibitory effects of 
intraperitoneal CCK-8 infusion [28]. Rats, lacking CCKA 
expression (Otsuka Long Evans Tokushima Fatty Rats), 
present with high food intake, obesity and hypergly-
caemia [29]. However, studies in knockout mice do not 
confirm long-term effects on body weight [30]. CCKA 
receptors are expressed in the pancreas, afferent and 
efferent neurons of the vagus nerve, the nucleus of the 
solitary tract (NTS), the area postrema and the hypotha-
lamic dorsomedial nucleus, which are the key regions 
regulating food intake [26].

The influence of exogenous CCK on the reduction 
of food intake is hormone-dose dependent, both in rats 
[20] and in humans [31].

Gastric or abdominal vagotomy abolishes the effect 
of satiety induced by CCK-8 administered peripherally, 
indicating that vagus nerve CCKA receptors may play 
a crucial role in food intake regulation [32]. Peripheral 
CCK administration decreases food intake by reducing 
meal duration as well as the quantity of the ingested 
food [31]. It was shown that CCK administered in high 
doses causes nausea and taste aversion [33–35]. How-
ever, the anorectic effect of low doses and malaise in 
experimental animals are not correlated [36]. Centrally 
administrated CCK also decreases food intake, and the 
effect is potentiated by concomitant administration of 

leptin. CCK, along with leptin, is likely to play an import-
ant role in long-term weight regulation [37].

Studies on the use of CCK in obesity treatment show- 
ed that intermittent infusions of CCK for 6 days reduc-
es ingested meal size by at least 44%; however, it in-
creases meal frequency by 162% or more, but with no 
effect on body weight [38]. Furthermore, it was shown 
that a 2-week continuous intraperitoneal CCK infusion 
resulted in the rapid development of tolerance, and 
thus a lack of effect on food intake or body weight 
[39].

Studies show that in lean individuals the increase 
in postprandial CCK levels is high and fast, which may 
result in earlier occurrence of satiety, while in obese 
individuals, postprandial CCK levels remain increased 
for longer [40]. Postprandial CCK levels may also be sex- 
and meal composition-dependent. Higher CCK levels are 
observed after high-fat meal ingestion. The increase of 
CCK levels is higher in females [41].

Peptide YY
Peptide YY is a 36-amino-acid protein with NPY and 

pancreatic hormone-like structure, produced in the gas-
trointestinal L-cells, mainly in the colon and rectum. Its 
name derives from two tyrosine molecules (Y) at the 
initial and terminal portion of the peptide. The PYY3-36 
fragment, which is an active form, is mainly detected in 
peripheral circulation [42, 43].

The physiological role of PYY is associated with the 
meal “termination” signal; PYY levels are low after over-
night fasting, at their highest in the 2nd h after meal ini-
tiation and gradually decreas within 6 h from reaching 
their highest value. Peptide YY acts mainly via the Y2R 
receptor in neurons producing NPY in the hypothalamic 
arcuate nucleus [42, 44].

Peptide YY shows “satiety peptide” properties. Previ-
ous studies reveal low PYY levels in obese patients [45]. 
Peripheral administration of PYY to humans results in 
a 30% or higher reduction in the calorific value of a meal 
consumed 2 h after PYY infusion and a 33% reduction 
in the quantity of consumed food over 24 h [44, 45]. 
Postprandial PYY peak further depends on meal calorie 
value and food composition (Figure 3) [46].

Pancreatic polypeptide 
The pancreatic polypeptide (PP) is a peptide secret-

ed by PP cells in the islets of Langerhans and, in smaller 
amounts, by colon and rectum cells. It acts through the 
Y receptors, particularly Y4 and Y5 [47, 48]. Pancreatic 
polypeptide does not pass through the blood-brain bar-
rier, but it affects the CNS via Y receptor activation in 
the area postrema of the brain stem with high expres-
sion of the Y5 receptor (where the “tight” blood-brain 
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barrier is absent) [49]. Although food intake stimulation 
using Y5 receptor agonists was lower in Y5–/– knockout 
mice [50], it remained unaltered in a nonsense model of 
limited Y5 signalization [51].

Fasting PP levels are low, but their postprandial lev-
els increase and are correlated with meal calorie value. 
Pancreatic polypeptide was also observed to reduce 
gastric emptying [52]. Studies in animals show that the 
pancreatic polypeptide’s effects on food intake regu-
lation depend on the activated receptor location, and 
may be different depending on the site of hormone ad-
ministration. Peripheral PP administration reduces food 
intake by 11% [53] or even by 22% (the effect lasts up 
to 24 h) [54], whereas direct CNS receptor stimulation 
(intraventricular PP administration) increases food in-
take in experimental animals [55]. Peripheral PP admin-
istration in genetically obese (ob/ob) mice, which do not 
secrete leptin and lack PP cells in the pancreas, reduces 
food intake and body weight [56].

Oxyntomodulin
The name ‘oxyntomodulin’ (OXM) derives from its 

function to modulate the gastric oxyntic glands pro-
ducing HCl. Oxyntomodulin is secreted by the L-cells, 
depending on the calorie value of the ingested meal, in 
parallel with GLP-1 production, and has an influence on 
the GLP-1 receptor in the hypothalamic arcuate nucle-
us [57, 58]. Oxyntomodulin, which has a 50-fold lower 
affinity for receptor GLP-1R, compared with GLP-1 [59], 
also shows effects independent of the receptor stimula-
tion (an OXM-specific receptor has not been identified 
so far). As with GLP-1, OXM is also inactivated by the 
DPP-IV enzyme [60].

Oxyntomodulin shows an incretin effect as well as 
β-cell protective properties [61]. Studies have revealed 
that in healthy individuals oxyntomodulin reduced ap-
petite and the amount of ingested food by 19.3% [62], 
and in obese individuals it reduced body weight by  
2.3 kg in 4 weeks [63] and increased energy expendi-
ture by 9.4% (as opposed to most weight loss treat-
ments) [64]. It has been shown that the appetite sup-
pressing effects of OXM are partly due to the inhibition 
of ghrelin secretion (a decrease in secretion by 44% af-
ter IV infusion of OXM) [62]. A reduction in food intake 
(42.7%) in obese individuals following oxyntomodulin 
and PYY (3-36) administration was also observed, indi-
cating an additive effect of both hormones [65].

Gastrointestinal hormones affecting 
the secretion of insulin (incretin)

The incretin effect involves meal-induced stimula-
tion of insulin secretion. The effect was observed when 
insulin secretion increased more after oral glucose 
administration than after the intravenous infusion of 
an equivalent glucose dose, while maintaining stable 
plasma glucose levels [66]. Incretins are gastrointestinal 
hormones increasing postprandial insulin secretion by 
β-cells in the islets of Langerhans. Incretin hormones 
include:
1) glucagon-like peptide-1 (GLP-1),
2) �glucose-dependent insulinotropic polypeptide (GIP); 

previous name: gastric inhibitory polypeptide.

Glucagon-like peptide-1
Glucagon-like peptide-1 (GLP-1) is encoded by 

a gene producing preproglucagon – a 160 amino acid 
fragment post-translationally generating the following 
peptides: GLP-1, GLP-2, glucagon, glicentin and OXM, 
depending on the site of expression, i.e. pancreatic 
α-cells, intestinal L-cells or the central nervous system 
[67, 68] (Figure 4).

Figure 4. Post-translational products of proglu-
cagon: A – proglucagon; B – products of alterna-
tive splicing in pancreas; C – products of alter-
native splicing in intestine and brain (by Kieffer  
et al. Endocr Rev 1999) [69]

A NH– GPRP Glucagon IP-1 GLP-1 IP-2 GLP-2 –COOH

B GPRP Glucagon IP-1 GLP-1 IP-2 GLP-2

C GPRP Oxyntomodulin GLP-1 IP-2 GLP-2

Figure 3. Changes in plasma PYY3-36 concentra-
tion after ingestion meals with varying content 
of protein/fat/carbohydrate (by El Khoury et al. 
Eur J Nutr 2010) [46]
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Glucagon-like peptide-1 is mainly synthesized by 
L-cells in the duodenum, small and large intestine, and 
less by the pancreas and the hypothalamus. Its secre-
tion in the gastrointestinal tract is influenced by glu-
cose and fatty acids after food ingestion or as a result 
of vagus nerve stimulation. In peripheral circulation, 
GLP-1 has a very short half-life (T1/2 = 1–2 min) due to 
degradation of the active form (7-36) into inactive form 
(9-36) after disconnection of 2 terminal amino acids by 
dipeptidyl peptidase-4 (DPP-4) [70, 71].

The GLP-1 main mechanisms of action involve 
stimulating insulin secretion by β-cells in the islets of 
Langerhans and inhibiting glucagon secretion by α-cells 
(Figure 5). Increased insulin secretion is the result of 
its increased synthesis. Substantial evidence exists to 
prove that the native GLP-1 increases β-cell mass and 
inhibits their apoptosis [72]. Glucagon-like peptide-1, 
via the GLP-1 receptor in the central nervous system, 
shows also central effects, suppressing appetite and 
reducing the rate of food absorption into the blood by 
lowering the rate of gastric emptying [72–74]. Gluca-
gon-like peptide-1 secretion depends on meal compo-
sition, and higher concentrations are observed after 
high-fat meals [75] (Figure 5).

Glucose-dependent insulinotropic
polypeptide
Glucose-dependent insulinotropic polypeptide (GIP) 

is a 42 amino acid peptide secreted by K cells in the 
mucosa of the duodenum, jejunum and the proximal 
portion of the ileum. Both GIP and GLP-1 show incre-
tin activity – stimulating food intake mediated insulin 
secretion by β-cells in the islets of Langerhans [72, 76]. 
Postprandial GIP levels depend on the basic nutrient 
content of a meal. Higher values are observed after 
the ingestion of carbohydrates, compared with pro-
teins [77].

Glucose-dependent insulinotropic polypeptide re-
ceptors are found not only in β-cells in the islets of 
Langerhans, but also in the adipose tissue, the cen-
tral nervous system, the heart, the adrenal cortex and 
on the vascular endothelium. Additionally, GIP stimu-
lates D-cells in the pancreatic islets to secrete soma-
tostatins [72, 78, 79] and glucagon [80]. Both GIP and 
GLP-1 are rapidly (T1/2 ≈ 2 min) degraded by dipeptidyl 
peptidase-4 [71]. Resistance to GIP is observed in dia-
betic patients, which may be caused by a defect at the 
receptor level [81, 82].

Figure 5. The main effects of GLP-1 actions (based on Baggio, Drucker, Gastroenterology 2007) [72]
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Conclusions
Recent studies indicate an important role of gastro-

intestinal hormones in appetite and satiety regulation. 
Evidence exists to prove that brain-gut axis disorders 
result in excessive energy accumulation and develop-
ment of overweight and obesity. Peptides released from 
the gastrointestinal tract affect the activity of the hypo-
thalamus and brain stem, both involved in food intake 
regulation and food habit modulation. Applying the 
knowledge of the brain-gut axis mechanism of action 
and implementing the data on physiological bases of 
food intake regulation in clinical practice may allow for 
more effective management of the obesity epidemic.
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