
In vivo 1H MRS study of potential associations between
glutathione, oxidative stress and anhedonia in major depressive
disorder

Kyle A.B. Lapidusa,*, Vilma Gabbaya,1, Xiangling Maob, Amy Johnsona, James W.
Murrougha, Sanjay J. Mathewc,d,1, and Dikoma C. Shungub,1

aIcahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029,
USA

bCornell Weill Medical Center, 420 East 70 Street, New York, NY 10021, USA

cMichael E. Debakey VA Medical Center, Houston, TX, USA

dBaylor College of Medicine, 2002 Holcombe Building, Houston, TX 77030, USA

Abstract

Inflammation and oxidative stress are important mechanisms that have been implicated in the

pathophysiology of major depressive disorder (MDD). Glutathione (GSH) is the most abundant

antioxidant in human tissue, and a key index of antioxidant capacity and, hence, of oxidative

stress. The aims of this investigation were to examine possible relationships between occipital

GSH and dimensional measures of depressive symptom severity, including anhedonia – the

reduced capacity to experience pleasure – and fatigue. We hypothesized that the magnitude of

anhedonia and fatigue will be negatively correlated with occipital GSH levels in subjects with

MDD and healthy controls (HC). Data for eleven adults with MDD and ten age- and sex-matched

HC subjects were included in this secondary analysis of data from a previously published study. In

vivo levels of GSH in a 3 cm × 3 cm × 2 cm voxel of occipital cortex were obtained by proton

magnetic resonance spectroscopy (1H MRS) on a 3T MR system, using the standard J-edited spin-

echo difference technique. Anhedonia was assessed by combining interest items from depression

and fatigue rating scales, and fatigue by use of the multidimensional fatigue inventory. Across the

full sample of participants, anhedonia severity and occipital GSH levels were negatively correlated

(r = −0.55, p = 0.01). No associations were found between fatigue severity and GSH in this

sample. These preliminary findings are potentially consistent with a pathophysiological role for

GSH and oxidative stress in anhedonia and MDD. Larger studies in anhedonic depressed patients

are indicated.
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1. Introduction

Major depressive disorder (MDD) is a significant cause of disability and public health

concern [4]. However, the neurobiology of the disorder remains poorly understood. A

limiting factor in neurobiological research has been the use of categorical diagnostic criteria

for MDD, which are based on a cluster of symptoms that are most likely derived from

distinct etiologies [2]. Thus, studying specific symptoms, assessed quantitatively or

dimensionally, may provide additional insight into pathophysiologies underlying MDD

[11,17]. Anhedonia, the reduced capacity to experience pleasure and a core symptom of

MDD, has features that make it ideal to be assessed and expressed as a quantitative or

dimensional phenotype [7,8,10,19].

Convergent evidence suggests that peripheral activation of the immune system is associated

with MDD [5,15,16]. We reported increased peripheral activation of the central

neuroimmunological kynurenine pathway (KP) with anhedonia in adolescents, assessed both

categorically and dimensionally [7]. We also reported positive associations between levels

of KP neurotoxin in blood and striatal total choline (tCho, a putative index of membrane

phospholipid peroxidation) in highly anhedonic adolescents [9]. These data support a role

for peripheral and CNS inflammatory processes in anhedonia.

Inflammation is a major pathophysiological mechanism that mediates oxidative/nitrosative

stress [3], which is increasingly implicated in severe psychiatric disorders. Glutathione

(GSH) is a major intracellular antioxidant and redox regulator that protects cells against

oxidative/nitrosative stress. Dysregulation of the GSH system has been hypothesized to

reduce glutamatergic activity at the glutamate NMDA receptor and attenuate neurotrophin

production, processes functionally linked to cognitive and affective symptoms in conditions

such as MDD. Using proton magnetic resonance spectroscopy (1H MRS), we recently

documented, for the first time, a 21% GSH decrease in the occipital lobe (OCC) in patients

with MDD compared with healthy control (HC) subjects [24]. The OCC, primarily the

precuneus, has been widely investigated in MRS studies of depression, based on technical

advantages, but may be more implicated in MDD than previously thought as a result of

multiple abnormalities, including GABA [22,23] and GSH [24] deficits and abnormal

cortical thinning [18] that have been reported in this region.

The primary objective of the present study was to conduct an extended retrospective analysis

of the above-mentioned data on occipital GSH levels in MDD [24] to assess whether there

are significant associations between brain GSH levels and anhedonia and fatigue severity in

MDD. We hypothesized that lower GSH will correlate with higher anhedonia severity in

patients with MDD, as well as with fatigue, which often affects motivation to participate in

enjoyable activities.
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2. Materials and methods

2.1. Subjects

This study was approved by the Institutional Review Boards of Mount Sinai Medical Center

and Weill Medical College of Cornell University. Prior to participation, study procedures

were explained and informed consent was obtained.

Study participants were the same as previously reported [24], excluding subjects lacking

sufficient data to assess anhedonia and fatigue severity, as elaborated below.

Participants with MDD were recruited via clinician referrals and media advertisements.

Prior to brain imaging, all subjects were psychotropic medication-free for at least 2 weeks (4

weeks for fluoxetine). These subjects were free of alcohol or substance abuse/dependence

for 6 months or more and had no lifetime history of psychosis, mania or hypomania,

pervasive developmental disorder or mental retardation, and had no current eating disorder.

HC subjects were recruited from media advertisements, did not meet the criteria for any past

or present psychiatric disorder, and were group-matched for sex and age with the MDD

group.

2.2. Inclusion and exclusion criteria

Participant eligibility included ages 18–65 years, negative urine toxicologies at baseline and

on day of scan; use of effective birth control methods; and, for females, negative day-of-

scan urine pregnancy test. In addition, patients were instructed to abstain from consuming

alcohol for at least 48 h before neuroimaging. Exclusion criteria for all subjects consisted of

any unstable medical or neurological illness or any factors precluding MRI exposure (e.g.,

pacemaker, metallic prosthesis, history of work with metal or shrapnel exposure).

2.3. Clinical assessments

All participants were assessed for psychiatric disorders, including MDD, using the

Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders,

4th edition and were evaluated by a board-certified psychiatrist [1]. Additional assessments,

performed within 1 week of the scan, included the 16-item Quick Inventory of Depressive

Symptomatology-Self Report (QIDS-SR16) [21] and the 20-item Multidimensional Fatigue

Inventory (MFI) [25].

Depression severity was assessed using the QIDS-SR16. To assess relationships between

anhedonia and overall depression severity, item 13 (“general interest”) was removed from

depression severity, because it was included in anhedonia assessment. Anhedonia scores

were computed by summing the responses on QIDS-SR16 (item 13: “general interest”) and

MFI (item 4: “feel like doing nice things”). Similar approaches have been used in other

investigations assessing anhedonia severity [12,19] and the scores were shown to correlate

with other anhedonia assessments (e.g. Snaith-Hamilton Pleasure Scale, SHAPS) [14].

Lastly, MFI was used as a dimensional measure of fatigue severity. Relationships between

fatigue and GSH were assessed with and without item 4.

Lapidus et al. Page 3

Neurosci Lett. Author manuscript; available in PMC 2015 May 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2.4. 1H MRS measurements of brain GSH

In vivo levels of GSH were obtained by 1H MRS from a 3 cm × 3 cm × 2 cm voxel,

positioned to contain primarily bilateral occipital cortex (OCC) gray matter posterior to the

lateral ventricle, at the level of a line defined by the genu and splenium of the corpus

callosum. Imaging was performed on a 3T MR system and an eight-channel phased-array

head coil, using the standard J-edited spin-echo difference technique [20,26] and spectral

data analysis methods that were fully described recently [24] (Fig. 1). In brief, a standard

point-resolved spectroscopy sequence was turned into a volume-selective J-editing

technique by inserting a pair of frequency-selective inversion RF pulses, flanked by spoiler

gradient pulses of opposite signs, before and after the second 180° RF pulse of the double

spin echo. The application of these “editing” RF pulses at the frequency (4.56 ppm) of the

GSH α-cysteinyl resonance on alternate scans, with TE/TR = 68/1500 ms, alternately inverts

the GSH β-cysteinyl resonance at 2.98 ppm by inhibiting and allowing its J modulation.

Subtracting the two resulting subspectra yields the GSH resonance at 2.98 ppm with

elimination of the overlapping creatine peak, which is not J modulated. The reported GSH

levels are expressed semi-quantitatively as GSH peak area ratios relative to the area of the

simultaneously acquired unsuppressed voxel water resonance (W).

2.5. Statistical data analysis

Demographic data was compared using t-tests and χ2 tests. All variables were normally

distributed (Ryan-Joiner), and we used Pearson correlation coefficients to characterize the

association of brain GSH levels with anhedonia and fatigue scores for the combined groups

and MDD subjects alone. Statistical significance was defined as two-sided p ≤ 0.05, while

trends toward significance were defined as p ≤ 0.1. General linear models were used to

perform corrections for potential confounds. As these secondary analyses were exploratory

and hypothesis-generating in nature, we did not apply statistical correction for multiple

comparisons.

3. Results

3.1. Demographic and clinical characteristics

Study subjects consisted of 11 adults with MDD (ages 21–52) and 10 HC (ages 20–29), who

did not differ with respect to gender, but did with respect to age. Clinical and demographic

information are provided in Table 1. All subjects with MDD were in a current major

depressive episode at time of scans.

3.2. Association between depression severity and anhedonia scores

In the MDD group, anhedonia and overall depression severity (QIDS-SR minus item #13)

were not significantly correlated (p > 0.1). Therefore, we did not control for depression

severity in subsequent analyses.

3.3. Association between occipital GSH and anhedonia scores

Levels of the reference unsuppressed voxel water signal did not differ between groups (p >

0.1), so we henceforth use GSH to mean GSH/W. Across the full sample, anhedonia severity
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was found to correlate inversely with OCC GSH levels (r = −0.55, p = 0.01, Fig. 2a), a

finding that remained unchanged after controlling for age (F = 7.3, p = 0.015). Controlling

for age, gender, and smoking status in a general linear model also did not alter this finding

(F = 7.49, p = 0.015) (Table 2). Within only the MDD sample, there was a trend-level

inverse correlation between anhedonia scores and OCC GSH levels (r = −0.53, p = 0.09,

Fig. 2b).

3.4. Association between occipital GSH and fatigue scores

No associations were found between fatigue severity and GSH either for the full sample (r =

−0.026, p = 0.910) or within the MDD group alone (r = −0.396, p = 0.228).

4. Discussion

The present study is, to our knowledge, the first to investigate the relationship between in

vivo brain GSH levels, anhedonia, and fatigue severity, in MDD. Consistent with our

hypothesis, this secondary analysis found that occipital GSH levels were inversely

correlated with anhedonia severity in the combined group of MDD and HC, and there was a

trend-level inverse correlation between the two measures within only the MDD group. The

results of this study did not support an association between brain GSH levels and fatigue

severity.

Our finding that decreased GSH is associated with increased anhedonia severity is consistent

with the postulated involvement of neuroinflammation and oxidative stress in MDD. There

exist clinical data linking inflammation to both oxidative stress and to anhedonia [6]. This

suggests that inflammation is the link between anhedonia and the observed occipital GSH

deficits. Mechanistically, we postulate that on one hand inflammation acts via a powerful

mediator, oxidative and nitrosative stress, depleting GSH levels by increasing consumption

of antioxidant reserves (Fig. 3) [3]. On the other hand, inflammation is known to be

involved in the activation of the immune system, particularly via the central

neuroimmunological kynurenine pathway that also increases oxidative stress, a process that

we previously showed to correlate with anhedonia in adolescents with MDD [7–9].

This study did not find an association between fatigue and GSH levels, although we found

such an association in patients with chronic fatigue syndrome (CFS). Since individuals

affected with CFS experience primarily physical fatigue, the failure of the present study to

find an association between GSH and “fatigue” in MDD, might reflect etiological

differences in physical and mental manifestations of fatigue [13]. Thus, fatigue in affective

illnesses such as MDD may be pathophysiologically different from fatigue in disorders such

as CFS [24], although further study is needed.

This study has a number of limitations. First, the modest sample size limited the statistical

power to find a stronger correlation between anhedonia and GSH within only the MDD

group. Second, the lack of discrete values for anhedonia beyond the cutoff point

representing the normal value led to a “floor effect” by truncating the range of anhedonia

scores for HC group. This indicates a clear benefit for developing and using an anhedonia

scale with a broader range. Moreover, our composite scale for anhedonia has not been
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compared with validated scales for assessing anhedonia. Lastly, the retrospective nature of

this analysis was limiting in that the data were fixed for only the OCC, precluding

examination or extrapolation to other regions that may be more relevant to MDD

pathophysiology.

5. Conclusion

In summary, the results of the present study support a role for GSH and, potentially,

oxidative stress and inflammation specifically in anhedonia in MDD, and further suggest the

need to incorporate both dimensional and categorical measures in biological research of

neuropsychiatric disorders.
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Abbreviations

1H MRS proton magnetic resonance spectroscopy

MDD major depressive disorder

GSH glutathione

HC healthy control

MR magnetic resonance

T tesla

KP kynurenine pathway

tCho total choline

CNS central nervous system

NMDA N-methyl-D-aspartate

MRI magnetic resonance imaging

QIDS-SR16 Quick Inventory of Depressive Symptomatology-Self Report
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MFI multidimensional fatigue inventory

OCC occipital cortex

W voxel water resonance

CFS chronic fatigue syndrome

SHAPS Snaith-Hamilton Pleasure Scale
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HIGHLIGHTS

• We performed in vivo 1H MRS in subjects with major depression and healthy

controls.

• This data was used to examine oxidative stress and glutathione (GSH).

• We analyzed anhedonia and fatigue severity in these subjects.

• Anhedonia is negatively correlated with brain GSH levels.
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Fig. 1.
(A) Sagittal and (B) axial views of the voxel of interest (VOI) in the occipital cortex. The

light shaded area depicts the precuneus [P], a large fraction of which can be seen to be

contained within the VOI from which GSH was measured. (C) In vivo 1H MRS acquisition

of GSH, showing: (a) and (b) subspectra that are subtracted to obtain the cleanly “edited”

GSH spectrum in (c); (d) frequency-domain model-fitting of only the edited GSH peak in (c)

to derive its peak, which is directly proportional to the concentration of the antioxidant in

the VOI; (e) residual of the difference between (c) the measured and (d) the fitted GSH

spectral peak shows the “goodness of fit”. NAA, N-acetyl-L-aspartate; tCr, total creatine;

tCho, total choline.
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Fig. 2.
Scatter plots indicating inverse correlations between occipital cortex GSH levels and

anhedonia scores. (A) All subjects, r = −0.552, p = 0.01 and (B) MDD subjects r = −0.533, p

= 0.09.
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Fig. 3.
Model of inflammation-induced oxidative stress and role of GSH in anhedonia.

Inflammation acts to increase OS, leading to the production of reactive oxygen species

(ROS), which can cause cellular damage and death. One principal mechanism for

management of these and other toxins is via the principal antioxidant in human tissue, GSH.

Glutathione eliminates peroxides by cycling from reduced (GSH) to oxidized (GSSG) state

via glutathione peroxidase (GPx), and reduced GSH is regenerated by glutathione reductase

(GSH-R) in a reaction that concurrently oxidizes nicotinamide adenine dinucleotide

phosphate from its reduced (NADPH) to oxidized (NADp+) form. Inflammation exerts both

central and peripheral effects, and GSH reduction in brain regions including striatum and

occipital cortex (OCC) leads to glutamate and dopamine dysregulation. These abnormalities

affect the reward circuitry, leading to anhedonia.
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Table 1

Clinical and demographic characteristics of subjects with MDD and healthy volunteers (means ± SD are

presented).

Characteristic Healthy volunteers (n = 10) Major depressive disorder (n = 11) p-Value

Age in years 25.7 ± 2.6 34.6 ± 9.5 0.012

Female (%) 5/10 (50) 6/11 (54) 0.835

Caucasian (%) 6/10 (60) 5/11 (45) 0.504

Hispanic (%) 2/10 (20) 2/11 (18) 0.916

Smoker (%) 1/10 (10) 3/11 (27) 0.304

Married (%) 1/10 (10) 1/11 (9) n/a

Body mass index (kg/m2) 23.6 ± 2.8 23.7 ± 4.3* 0.95

Illness duration in years n/a 9.2 ± 6.2 n/a

Years of education 15.3 ± 3.5 17.2 ± 4.1 0.270

QIDS-SR16 3.3 ± 4.7 16.8 ± 4.7 <0.001

Anhedonia score 1.5 ± 1.2 5.6 ± 1.4 <0.001

QIDS-SR16 – Quick Inventory of Depressive Symptomatology Self Report 16 Item; Anhedonia Score = QIDS-SR item #13 + MFI item #4.

*
n = 10.
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Table 2

Correlation analyses between GSH and anhedonia or fatigue, with and without corrections for age, gender, and

smoking status.

Anhedonia vs. GSH
MDD and HC (n = 21)

Anhedonia vs. GSH
MDD only (n = 11)

Fatigue vs. GSH MDD
and HC (n = 21)

Fatigue vs. GSH MDD
only (n = 11)

Uncorrected (r = −0.552, p = 0.01) (r = −0.533, p = 0.09) (r = −0.026, p = 0.91) (r = −0.396, p = 0.228)

Controlled for age (F = 7.3, p = 0.015) (F = 2.47, p = 0.154) (F = 0.06, p = 0.813) (F = 1.0, p = 0.348)

Controlled for age, gender, and
smoking

(F = 7.49, p = 0.015) (F = 0.63, p = 0.456) (F = 0.14, p = 0.711) (F = 0.77, p = 0.414)

GSH, glutatione; MDD, major depressive disorder; HC, healthy control; vs., versus.
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