Skip to main content
. Author manuscript; available in PMC: 2014 Jul 24.
Published in final edited form as: Breast Cancer Res Treat. 2010 Dec 9;125(3):785–795. doi: 10.1007/s10549-010-1280-6

Table 2.

Class comparison test between IBC and Non-IBC in tumor subgroups

Significantly differentially expressed probe sets (n=18,940) with t-test
No. of patients (IBC/Non-IBC) ALL
ER+/HER2−
HER2+
ER−/HER2−
82 (25/57)
27 (5/22)
29 (12/17)
26 (8/18)
No. of Genes Global P value* No. of Genes Global P value* No. of Genes Global P value* No. of Genes Global P value*
Parametric p value
0.05 1214 0.209 927 0.372 2065 0.051 989 0.279
0.01 268 0.167 195 0.318 508 0.043 144 0.462
0.005 130 0.177 90 0.388 265 0.039 68 0.458
0.001 25 0.188 23 0.311 61 0.030 16 0.353
Efron-Tibshirani’s GSA test P-value* with prior defined gene sets
No. of patients (IBC/Non-IBC)
GeneList GeneSets
No. of genes ALL
ER+/HER2−
HER2+
ER−/HER2−
82 (25/57)
27 (5/22)
29 (12/17)
26 (8/18)
P -value Directions P -value Directions P -value Directions P -value Directions
Wnt gene set15 17 0.545 Non-IBC 0.375 IBC 0.415 Non-IBC 0.040 IBC
Laere genes13 36 0.395 IBC 0.315 Non-IBC 0.330 Non-IBC 0.195 IBC
Bieche genes4 54 0.245 IBC 0.015 IBC 0.180 Non-IBC 0.300 IBC
CD44 related signatures16 55 0.135 Non-IBC 0.140 Non-IBC 0.055 Non-IBC 0.415 Non-IBC
Bertucci genes14 71 0.230 Non-IBC 0.560 IBC 0.045 IBC 0.010 Non-IBC

IBC: Inflammatory Breast Cancer; ER: Estrogen Receptor.

*

Global p value shows the probability of getting at least the same number of genes significant on a t-test (at the specified p level) by chance if there are no real differences between IBC and Non-IBC.

The parametric p-value was derived from t-test.

The Efron and Tibshirani gene set analysis method that employs “maxmean” statistics (under 1000 permutations).