Table 2.
Significantly differentially expressed probe sets (n=18,940) with t-test
| ||||||||
---|---|---|---|---|---|---|---|---|
No. of patients (IBC/Non-IBC) | ALL
|
ER+/HER2−
|
HER2+
|
ER−/HER2−
|
||||
82 (25/57)
|
27 (5/22)
|
29 (12/17)
|
26 (8/18)
|
|||||
No. of Genes | Global P value* | No. of Genes | Global P value* | No. of Genes | Global P value* | No. of Genes | Global P value* | |
Parametric p value† | ||||||||
0.05 | 1214 | 0.209 | 927 | 0.372 | 2065 | 0.051 | 989 | 0.279 |
0.01 | 268 | 0.167 | 195 | 0.318 | 508 | 0.043 | 144 | 0.462 |
0.005 | 130 | 0.177 | 90 | 0.388 | 265 | 0.039 | 68 | 0.458 |
0.001 | 25 | 0.188 | 23 | 0.311 | 61 | 0.030 | 16 | 0.353 |
Efron-Tibshirani’s GSA test P-value* with prior defined gene sets
| |||||||||
---|---|---|---|---|---|---|---|---|---|
No. of patients (IBC/Non-IBC) GeneList GeneSets |
No. of genes | ALL
|
ER+/HER2−
|
HER2+
|
ER−/HER2−
|
||||
82 (25/57)
|
27 (5/22)
|
29 (12/17)
|
26 (8/18)
|
||||||
P -value‡ | Directions | P -value‡ | Directions | P -value‡ | Directions | P -value‡ | Directions | ||
Wnt gene set15 | 17 | 0.545 | Non-IBC | 0.375 | IBC | 0.415 | Non-IBC | 0.040 | IBC |
Laere genes13 | 36 | 0.395 | IBC | 0.315 | Non-IBC | 0.330 | Non-IBC | 0.195 | IBC |
Bieche genes4 | 54 | 0.245 | IBC | 0.015 | IBC | 0.180 | Non-IBC | 0.300 | IBC |
CD44 related signatures16 | 55 | 0.135 | Non-IBC | 0.140 | Non-IBC | 0.055 | Non-IBC | 0.415 | Non-IBC |
Bertucci genes14 | 71 | 0.230 | Non-IBC | 0.560 | IBC | 0.045 | IBC | 0.010 | Non-IBC |
IBC: Inflammatory Breast Cancer; ER: Estrogen Receptor.
Global p value shows the probability of getting at least the same number of genes significant on a t-test (at the specified p level) by chance if there are no real differences between IBC and Non-IBC.
The parametric p-value was derived from t-test.
The Efron and Tibshirani gene set analysis method that employs “maxmean” statistics (under 1000 permutations).