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SUMMARY

How do neurons develop, control, and maintain their electrical signaling properties in spite of

ongoing protein turnover and perturbations to activity? From generic assumptions about the

molecular biology underlying channel expression, we derive a simple model and show how it

encodes an “activity set point” in single neurons. The model generates diverse self-regulating cell

types and relates correlations in conductance expression observed in vivo to underlying channel

expression rates. Synaptic as well as intrinsic conductances can be regulated to make a self-

assembling central pattern generator network; thus, network-level homeostasis can emerge from

cell-autonomous regulation rules. Finally, we demonstrate that the outcome of homeostatic

regulation depends on the complement of ion channels expressed in cells: in some cases, loss of

specific ion channels can be compensated; in others, the homeostatic mechanism itself causes

pathological loss of function.

INTRODUCTION

A mysterious yet essential property of the nervous system is its ability to self-organize

during development and maintain function in maturity despite ongoing perturbations to

activity and to the biochemical milieu upon which all cellular processes depend (Desai 2003;

Marder and Goaillard 2006; Marder and Prinz 2002; Mease et al., 2013; Moody 1998;

Moody and Bosma 2005; O’Donovan 1999; Spitzer et al., 2002; Turrigiano and Nelson

2004; van Ooyen 2011). Although we are beginning to understand the homeostatic

mechanisms that underlie this robustness, there are many substantial open questions. First,

conceptual and computational models of neuronal homeostasis assume a “set point” in
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activity that neurons and networks return to following perturbations (Davis 2006; LeMasson

et al., 1993; Liu et al., 1998; Turrigiano 2007). Where does this set point come from? How

can it be encoded biologically? Second, previous work has shown that phenomenological

feedback control rules can maintain specific activity patterns in model neurons by regulating

intrinsic and synaptic ion channel densities using intracellular Ca2+ as a monitor of cellular

excitability (Desai 2003; LeMasson et al., 1993; Liu et al., 1998), but it remains to be shown

how such rules can be implemented in a biologically plausible way that incorporates the

underlying mechanisms of channel expression (Davis 2006; O’Leary and Wyllie 2011).

Third, the nervous system is heterogeneous, with many distinct cell types that have specific

combinations of ion channels that lend them their unique electrical properties (Marder

2011). How is this diversity achieved while ensuring that global levels of activity are

maintained? Fourth, does homeostatic plasticity occur at the network level, or are nominally

cell-autonomous homeostatic mechanisms sufficient to confer network stability (Maffei and

Fontanini 2009)? Fifth, nervous systems do not always behave homeostatically; mutations in

ion channel genes are the basis of many diseases, and genetic knockout animals often have

measurable phenotypes. Is this a failure of regulatory mechanisms (Ramocki and Zoghbi

2008)? Or, is homeostatic regulation compatible with incomplete or aberrant compensation

in certain situations? We specifically address these questions using theory and

computational models.

Previous modeling and theory work has shown that feedback rules can sculpt and stabilize

activity in single neurons and networks (Abbott and LeMasson 1993; Golowasch et al.,

1999b; LeMasson et al., 1993; Liu et al., 1998; Soto-Treviño et al., 2001; Stemmler and

Koch 1999). These models helped to establish that intrinsic properties and synaptic strengths

can be subject to homeostatic regulation, but left questions of biological implementation,

such as the nature of set points, largely unanswered. In addition, models that were intended

to capture regulation of multiple intrinsic conductances either suppressed variability in

conductance densities (Abbott and LeMasson 1993; LeMasson et al., 1993; Soto-Treviño et

al., 2001) or produced such a high degree of variability that the model neurons were

sometimes unstable (Liu et al., 1998). Underlying this problem is the fact that the set of

conductance densities that produces a specific kind of activity comprises disparate solutions

with a complicated distribution (Prinz et al., 2003; Taylor et al., 2006, 2009). Thus, a

biologically plausible regulation rule needs to navigate this complex space so as to allow

variability but maintain certain relations between conductances. Here, we achieve this from

first principles, deriving a straightforward, biologically plausible model of gene regulation to

show how neurons can use a single physiological variable–intracellular Ca2+−to robustly

control their activity and develop specific electrophysiological properties that enable

function at the circuit level.

RESULTS

The first part of the Results (Figures 1, 2, and 3) is a technical derivation of an activity-

dependent regulation rule. The consequences and interpretation of this rule are covered in

the latter part of the Results (Figure 4 onward).
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Integral Control from a Simple Model of Ion Channel Expression

Experiments have shown that the processes responsible for regulating intrinsic neuronal

properties are slow relative to fluctuations in electrical activity (Desai et al., 1999; O’Leary

et al., 2010; Thoby-Brisson and Simmers 2000). These processes behave as a feedback

control mechanism that monitors average activity and adjusts membrane conductances to

achieve some kind of target activity. An important readout signal appears to be intracellular

[Ca2+], which correlates with electrical activity due to voltage-dependent Ca2+channels and

buffering mechanisms that average out fluctuations in time and space (Berridge 1998;

Wheeler et al., 2012). Moreover, long-term changes in [Ca2+] are found to regulate many

ion channel types (Barish 1998; Mermelstein et al., 2000; O’Leary et al., 2010; Turrigiano et

al., 1994; Wheeler et al., 2012).

Hence we developed a model of activity-dependent conductance regulation using

intracellular [Ca2+] as a feedback control signal. There are many ways to implement

feedback control of membrane conductances (Günay and Prinz 2010; LeMasson et al., 1993;

Liu et al., 1998; Olypher and Prinz 2010; Stemmler and Koch 1999). We wanted to focus on

a rule that captures essential biological principles and has experimentally testable properties.

Ion channels are proteins, and their expression depends on the level of channel mRNA in the

cell. A simple way of capturing this leads to a canonical model of regulation (also known as

the “central dogma” of molecular biology):

(1)

Here, m is the concentration of mRNA for channel protein g and αx and βx are synthesis and

degradation rates; dots denote time derivatives. The biochemical scheme underlying this

model is shown in Figure 1A. In spite of its simplicity, this model has proven useful for

understanding gene expression dynamics in systems biology (Alon 2007). Neurons possess a

rich repertoire of other regulatory mechanisms, including alternative splicing, alternative

promoter usage, RNA interference, regulated protein trafficking, and posttranslational

modifications to channel proteins. Therefore, the simplified scheme we use is a first

approximation that can be refined to take into account more intricate aspects of regulation

when and where sufficient experimental data are available.

Where does activity dependence enter this model? mRNA expression rates depend on

transcription factor activation. Many important transcription factors such as CREB are

known to be Ca2+ dependent or dependent on other Ca2+-sensing enzymes (Finkbeiner and

Greenberg 1998; Mermelstein et al., 2000; Mihalas et al., 2013; Wheeler et al., 2012).

Furthermore, transcriptional changes in ion channel genes occur in response to activity

perturbations (Kim et al., 2010) and may underlie homeostatic regulation of network activity

(Thoby-Brisson and Simmers 2000). We therefore assume that mRNA production depends

on some Ca2+-sensitive enzyme, or enzyme complex, T, whose production rate is Ca2+

dependent and whose rate of degradation is saturated (Drengstig et al., 2008). Incorporating

this into the model, we have
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(2)

We do not know in general how the forward rate, αT depends on [Ca2+]. The assumption

that the degradation rate of T is saturated means the equilibrium of the system occurs at a

unique value of [Ca2+]. Thus average [Ca2+] will be maintained at a specific “target” value,

Catgt, given by solving the steady-state, 〈Ṫ〉 = 0. We do not know in general how the

forward rate, αT depends on [Ca2+]. If this rate is determined by a single reaction involving

Ca2+ binding, then it will typically have a monotonic dependence in the form of a Hill

equation (Supplemental Experimental Procedures). Thus, for simplicity, we assume a linear

approximation, αT([Ca2 +]) = αT·[Ca2+]. In this case the target [Ca2+] is simply the ratio of

two rate constants: Catgt = βT/αT.

We can now show how mRNA and conductances are regulated to keep the system at Catgt.

Inspection of Equation 2 reveals that T explicitly integrates the difference between [Ca2+]

and Catgt overtime:

This integrated Ca2+ “error” signal is then fed into the synthesis term of the channel mRNA

(αmT, Equation 2). Similarly, m directly controls the expression rate of g via the term αgm.

Finally, g controls the membrane potential and Ca2+ dynamics. The scheme in Equation 2

therefore constitutes a feedback loop that maintains average [Ca2+] by continually

modifying the expression rates of channels in the membrane. This is illustrated in Figure 1B,

where the shaded area shows the accumulated error signal over time. If [Ca2+] is different

from the target, error will accumulate and drive changes in the expression of mRNA and

membrane conductances until the system reaches equilibrium at [Ca2+] = Catgt.

So far, we assumed that a global regulator (T) controls downstream precursors of membrane

conductances. What if these conductances are controlled by independent pathways that have

the same integrating mechanism acting on the same error signal? An immediate problem

arises if the set points for each controller are not tuned so that they all agree precisely. In

Figure 2A, an inward and outward conductance are under the control of a single Ca2+-

integrating regulator, T1, with target t1. Now suppose (Figure 2B) that each conductance is

controlled by separate regulators, T1, T2, with different targets, t1 ≠ t2. Two possibilities

exist: either one target will become satisfied, in which case error will accumulate without

bound in the other controller, or, as will be the case more generally, neither target will be

satisfied and both controllers will accumulate error without bound. This is shown in Figure

2B, where the two conductances upregulate without bound. In control theory, this
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accumulation of error is known as “windup.” In biological terms, windup would result in

unbounded (eventually saturating) production of mRNAs and channels and loss of

regulatory control. This could be avoided in this scenario if the reaction rates determining

the independent targets are precisely matched; however, precise tuning seems unlikely in

biological systems. We therefore conclude that for this model to work across a set of

conductances, a single master regulator pathway is preferable. In more complex schemes

with several distinct regulatory signals, it is possible to have separate targets for each signal

(Liu et al., 1998). However, windup can still occur if these multiple signals cannot be

satisfied simultaneously.

Specifying and Maintaining Cell Types with Multiple Regulated Conductances

The above analysis shows how activity in neurons can be maintained using a simple model

of gene regulation. Overall, the regulation scheme can be written in simplified form for a

neuron with multiple conductances, gi:

(3)

In this simplified form, the equations for Ṫ and m are lumped together (Experimental

Procedures), concentrations are scaled, and reaction rates are replaced by single time

constants. τg represents the characteristic time constant of channel expression and τi

represents the coupling of channel gene expression to [Ca2+]. We use this simplified system

in what follows.

The model achieves target [Ca2+], but what combination of conductances will the neuron

express at this target? There are typically many ways to reach the same average activity

using different maximal conductances (Bhalla and Bower 1993; Golowasch et al., 2002;

Olypher and Calabrese 2007; Prinz et al., 2003; Sobie 2009; Swensen and Bean 2005;

Taylor et al., 2006, 2009). Recent mathematical work has made the relationships between

conductances and excitability clearer and more precise and can be understood in terms of

ratios of conductances that act on different timescales (Drion et al., 2012; Franci et al., 2012;

Franci et al., 2013). We see next that the integral control rule produces “nice” conductance

distributions with constant ratios that are qualitatively similar to those observed biologically

and can thus generate “cell types.”

Previous work (O’Leary et al., 2013) showed how regulation time constants determine

correlations in conductance expression at steady state. What is the relation between

conductance ratios and the regulation time constants τi in the present model? From the

simplified scheme (Equation 3), each mi converges to a value that depends on the time

integral of average [Ca2+], scaled by the inverse expression time constant τi. Thus, we can

estimate steady-state gi for positive time constants and small initial conductances:
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When taking ratios, the integrals cancel, so that:

(4)

In summary, different ratios of the τi ’s specify correlations between each conductance.

Correlations in conductance expression, in turn, promote defined electrophysiological

characteristics, because ratios of different kinds of voltage-gated conductances largely

determine single neuron dynamics (Drion et al., 2012; Franci et al., 2013; Hudson and Prinz

2010).

Figure 3 shows an example of a complex model neuron with seven voltage-dependent

conductances, all regulated by the integral control rule. The time evolution of the membrane

conductances for multiple, randomly initialized runs of the model is shown (Figure 3A) with

the membrane potential of an example neuron at four different time points. Each model

starts in a nonexcitable nascent state (left-most trace, Figure 3A), which is ensured by

choosing the random initial distribution of conductances to be small relative to the leak

conductance that is itself randomly distributed (Experimental Procedures). The steady-state

behavior of the model neuron is stereotyped and develops a rhythmic bursting activity

(right-most trace, Figure 3A). In spite of varying initial conditions, the models at steady state

all have similar membrane potential activity, as can be seen in the example traces of six

model neurons that developed from different initial conditions (Figure 3B).

Figure 3C (lower panel) shows steady-state conductance distributions and intrinsic

properties of 20 independent runs of the model. The conductance densities vary several-fold

over the population, but all of the neurons have a similar bursting phenotype. Both the

conductances and the firing properties show clear pairwise correlations that are reminiscent

of experimental data in identified crustacean as well as mammalian neurons (Amendola et

al., 2012; Liss et al., 2001; Schulz et al., 2007; Tobin et al., 2009). In contrast to previous

modeling work that used a less biologically realistic regulation rule (Liu et al., 1998;

O’Leary et al., 2013), the conductance correlations are approximately linear. Second, the use

of a single activity sensor in the present model differs from this previous work, which used

three sensors with different timescales to promote bursting behavior. While we do not rule

out the possibility that more than one activity sensor is used biologically, the current model

shows that this is not necessary.

Generating Cell Types

The simple relationship between regulation time constants and conductance ratios in the

model means we can determine arbitrary correlations between conductances and thus

construct self-regulating cells with specific intrinsic properties using only a single activity

sensor. These intrinsic properties can encompass any excitability type, provided we have a

sufficiently rich set of available conductances (i.e., a sufficiently rich “genome” in the
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model). Figure 4 shows five distinct neuron types that are achieved using the same

underlying model and random initial conditions but with appropriately chosen sets of

regulation time constants and [Ca2+] targets. We can thus specify cells that establish and

maintain specific input-output relations, as quantified by the Type I/II FI curves in the first

two examples. Type I excitability is characterized by the existence of arbitrarily low firing

frequencies at spiking threshold (Figure 4A, example 1); in contrast, Type II excitability

does not support firing below a fixed nonzero rate (example 2, Figure 4A) (Rinzel and

Ermentrout, 1989). Notably, in spite of having different firing properties, both of these

models have the same [Ca2+] target. Similarly, we can specify cells that respond reliably to

input, as exemplified by an excitable rebound bursting cell that generates action potentials

coupled to slow membrane potential oscillations in response to both depolarizing and

hyperpolarizing current (example 3, Figure 4A). Finally, we can specify cells that are active

in either a tonic spiking mode or bursting mode (examples 4 and 5, Figure 4A). Each of

these cell types has a unique correlation structure in its steady-state conductance distribution

(Figure 4B) following multiple runs from the same initial conditions. Furthermore, the

straight line calculated from the ratio of expression time constants in Equation 4 predicts the

pairwise conductance distributions in each case (Figure 4B).

The conductance distributions produced by the model may explain cell-specific linear

correlations that are found biologically. Figure 4C reproduces data from Schulz et al. (2007)

in which the expression levels of multiple ion channel genes were measured in single

stomatogastric ganglion (STG) neurons using quantitative PCR. This revealed linear

correlations in the expression that are specific the cell type (Figure 4C). The model predicts

that the slopes of the correlations in the data should equal the (time-averaged) expression

rates of the respective mRNAs in each plot.

There are two important biological assumptions in this instantiation of the model. First, the

leak conductance, which can be thought of as an aggregate of multiple conductances, is

static but varies between cells. This serves as a model of conductances that are not regulated

by the integral control rule and that may vary across a population of neurons. Second, we

have assumed that expression rates are fixed. Biologically, this corresponds to steady values

in average promoter activity, binding affinities of signaling enzymes, translation rates,

protein trafficking, and degradation rates. While this may be a reasonable assumption at any

given stage in nervous system development, it is entirely plausible that these relationships

change over time. Neurons may thus cycle through several physiological “types” as they

develop, and this process will be highly specific to the species and brain area in question.

We have not explicitly attempted to model these transient stages as our goal is more general;

they can however be incorporated by switching the rates in the regulatory rule–an idea we

examine in the final part of this work.

Expression Rates versus Activity Targets as Determinants of Electrophysiological
Properties

We have shown that different sets of regulation rates/time constants determine cell types and

that distinct cell types can have the same [Ca2+] target in principle. What happens when the

[Ca2+] target is scaled within a cell type? While the regulation time constants determine the
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direction in which the cell moves in conductance space, the target determines how far it

travels along a trajectory before reaching equilibrium. Thus, targets can determine the

location of the conductance distribution as well as scaling activity. Figure 5 shows the

steady-state activity of three example neuron types as target [Ca2+] is scaled. Below the

traces are plots showing the regulation time constants for each cell type. Typically, as the

target is raised, spiking activity elevates because this corresponds to greater average Ca2+

influx, as can be seen in the first two examples. In some cases, moving the target can also

cause a qualitative change in activity as seen in the third example, which transitions from

bursting to spiking as [Ca2+] target is increased. Thus, the combined contributions of ion

channel expression dynamics can be dissociated from activity set points in neurons, but both

have a role in determining physiological properties.

A Self-Assembling Motor Circuit

If we can reliably specify cell types using this model, it should be possible to construct a

self-assembling, homeostatically regulated network whose activity depends on specific

properties of the component cells (Golowasch et al., 1999b). The pyloric central pattern

generating network of the crustacean STG consists of three distinct cell type modules: a

pacemaker complex and two follower cell types that fire in successive phases. Activity in

this network consists of a triphasic pattern of firing starting with the AB/PD complex,

followed by the LP cell and then PY (Marder and Bucher 2007). The synaptic connectivity

is known (Figure 6A) and consists of slow inhibitory cholinergic synapses as well as fast

inhibitory glutamatergic synapses (Marder and Eisen 1984). We reasoned that by finding

steady-state conductances and synaptic strengths that produced a triphasic pattern, we could

then find regulation time constants for intrinsic conductances and synapses that would

dynamically specify and maintain a characteristic network activity pattern.

After randomly searching conductance values to find combinations that produced bursting

pacemaker cell types, we hand tuned an unregulated network to produce a qualitatively

realistic triphasic rhythm. We then converted maximal conductances and synaptic

conductances in the hand-tuned network to expression time constants using Equation 4. We

next searched around this initial set of time constants using a log-normal distribution to find

those that reliably produced triphasic networks from random initial conditions

(Experimental Procedures).

The network always starts in a nonfunctional state (Figure 6B, top). The membrane potential

activity of the cells after the network has reached steady state (Figure 6B, second from top)

shows a regular triphasic rhythm. Furthermore, the network activity is robust to

perturbations at steady state, as exemplified by recovery from the addition of a

hyperpolarizing leak conductance (0.02 µS, Erev = −80 mV) that silences the PD/AB

pacemaker cell (Figure 6B, third and fourth panels from top). Over multiple runs (n = 507)

of this model, 99.6% produced stable triphasic rhythms. Of these, 93.5% recovered after the

perturbation (which abolished rhythms in 99.2% of networks). Figure 6C shows the

evolution of intrinsic and synaptic conductances in the example network of Figure 6B.

Notably, the synaptic and intrinsic conductances in all cells respond to the perturbation in

the PD/AB cell.
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Activity-Dependent Regulation Can Be Compensatory or Pathological

Under what conditions does activity-dependent regulation compensate for mutation or

pharmacological blockade? The conductances in the model neurons, as in biological

neurons, overlap in some of their properties. Thus, if certain conductances are lost, others

can be upregulated or downregulated to compensate. Figure 7A shows the steady-state

behavior of a self-regulating bursting pacemaker neuron. Upon deletion of the Ih

conductance, the models become silent, leading to a decrease in average [Ca2+]. Following

deletion, the integral control rule restores bursting activity by altering conductance

expression to achieve target [Ca2+]. Similar outcomes are possible when the deletion has

variable effects owing to variability in the cells produced by the model. Figure 7B shows the

effect of deleting a slow Ca2+ conductance in two different examples (that have converged

to different maximal conductances) of the same cell type. In one example, the model

increased in frequency; in the other, the model became silent. Again, average [Ca2+]

encodes this increase or decrease in activity, and the resulting conductance regulation

restores bursting.

Can compensation lead to loss of function? The model assumes that neurons sense a gross

physiological variable, [Ca2+], which cannot always distinguish specific activity patterns.

Previous work identified this as a potential problem for regulation (Liu et al., 1998), but as

we have shown here, it is nonetheless possible to use [Ca2+]to generate and maintain

specific electrical properties using differential ion channel expression rates. However, this

model will fail to preserve neuronal properties if the relationship between

electrophysiological properties and [Ca2+] activity changes drastically. Such a change

occurs in the example neuron in Figure 7C. Deletion of the transient Ca2+ conductance,

gCaT, silences the neuron, but following compensation to target [Ca2+], the neuron no longer

bursts and instead fires tonically. In this case, the deletion of gCaT resulted in changes in

Ca2+ dynamics so that target [Ca2+] occurs for a fundamentally different pattern of

membrane potential activity.

In a different tonic spiking model, deletion of one of the two Ca2+ currents has distinct

effects. In Figure 7D, deletion of the slow Ca2+ conductance, gCaS, slightly alters the spiking

frequency, and this is compensated by regulation. However, deletion of gCaT (Figure 7E)

results in faster spiking, and compensation to the [Ca2+] target instead renders the cell silent.

Switching Regulation Rates Can Preserve Specific Properties

The sets of regulation time constants we have studied so far are all fixed and positive. This

achieves growth from random initial conditions but does not necessarily preserve all

intrinsic properties when perturbations are compensated. Models with fixed positive

regulation time constants predict that all conductances will upregulate or downregulate in

the same direction in response to a perturbation. This is known to be false once neurons have

more mature and stable properties (Desai et al., 1999; O’Leary et al., 2010), which suggests

that a regulation rule suitable for growth may switch to one that is more appropriate for

maintaining function in maturity.
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We have previously shown (O’Leary et al., 2013) that self-regulating models are robust to

changes in sign as well as magnitude of the conductance regulation rates. A negative

regulation time constant/rate means the conductance is upregulated or downre-gulated in the

opposite direction to those with positive rates as activity moves above or below target. We

therefore examined whether regulation time constants could be switched in sign and

magnitude to preserve a specific intrinsic property once a cell type has reached steady state.

We began with a set of regulation time constants that encodes a bursting pacemaker cell

(Figure 8A) with a characteristic burst period (mean ±SD = 123.1 ± 1.7 ms, n = 100 runs).

Following perturbation with a hyperpolarizing leak conductance (0.02 µS, Erev = −80 mV),

bursting activity recovered, but burst period increased by 47% (181.2 ±1.5 ms, n = 100

runs). We then searched sets of regulation time constants to find a set that could compensate

burst period more accurately. After numerically searching 38,400 sets of time constants, we

found a set that maintained burst period within 5% of the unperturbed value (128.8 ± 3.9 ms,

n = 100 runs) during the perturbation. An example run is shown in Figure 8B. Notably, three

of the time constants are negative (those regulating gCaT, gKA, and gKd) in the best “mature”

set, and these parameters do not produce bursting cells if used exclusively from the initial

conditions (data not shown). In summary, regulation time constants that promote

development of specific physiological properties can be switched to mature time constants

that preserve those properties better in response to specific kinds of perturbation.

DISCUSSION

The proteins and other molecules that are found in neurons (or any other type of cell) are

turned over continually and at any point in time exhibit variability in their quantity and

structural relationships from cell to cell. In spite of this, and in spite of additional external

perturbations, neurons must develop and maintain specific physiological properties.

Otherwise the nervous system would be unable to learn, remember, process sensory

information, produce movements, or perhaps function at all.

Ion channels underlie all electrical activity in the brain, and the relationship between ion

channel expression and resulting activity is complex. We know from realistic biophysical

models that sets of conductance parameters–which, in biological terms, represent the

expression levels and enzymatic states of ion channels–can be wildly disparate and

nevertheless give rise to highly specific physiological properties that are essential for a

functioning nervous system (Bhalla and Bower 1993; Golowasch et al., 2002; Marder and

Goaillard 2006; Prinz et al., 2003, 2004; Taylor et al., 2009). Small changes in some

conductances can lead to catastrophic changes in excitability, while others can change

several-fold without any noticeable effect. This does not mean that the underlying

parameters in biological systems are as disparate as they can be in principle; rather, it

conveys the necessity of navigating this wider parameter space in a robust way (Drion et al.,

2012; Franci et al., 2013; Goldman et al., 2001; Hudson and Prinz 2010; Olypher and

Calabrese 2007; Zhao and Golowasch 2012).

Experiments show that neurons use activity-dependent feedback to regulate membrane

conductances and receptors (Amendola et al., 2012; Baines et al., 2001; Brickley et al.,

2001; Desai et al., 1999; Golowasch et al., 1999a; Mee et al., 2004; O’Leary et al., 2010;
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Turrigiano et al., 1994, 1995). This allows ongoing perturbations or phenotypic variability in

a cell population to be dynamically compensated. We showed how a regulatory scheme that

captures the major events underlying ion channel expression gives riseto a simple, flexible,

and robust model of activity-dependent conductance regulation. The model we derived

differs from previous models (Abbott and LeMasson 1993; Golowasch et al., 1999b;

LeMasson et al., 1993; Stemmler and Koch 1999) in several important ways that shed light

on the biology of activity-dependent regulation. First, the origin of the activity set point is

derived from biochemical principles in a way that depends on rates of enzymatic reactions.

Second, the regulation mechanism is consistent with known biology. Third, the model shows

biologically plausible levels of variability in the final conductance distributions without the

conductances diverging or occasionally growing without bound. Fourth, the same model can

be used to produce distinct cell types and only requires a single Ca2+ sensor to do so.

Biological neurons almost certainly possess more complex regulatory machinery than we

have captured. However, this work shows how much can be done with minimal assumptions

that are consistent with known biology. We thus view this model as a first approximation

that can be refined rather than completely rewritten as experimental observations dictate.

Model Interpretation

A technical message of this work is that a canonical model of channel expression can be

interpreted as a well-known control law: the integral controller. Integral control has been

suggested as a mechanism of neuronal homeostasis based on the available molecular

machinery for integrating Ca2+ signals in neurons (Davis 2006; O’Leary and Wyllie, 2011).

We showed in this work how activity-dependent transcription can be an instantiation of

integral control. The essential component of integral control is a variable whose rate of

change depends on error. In the model presented here, error is deviation in [Ca2+] from a

specific value, resulting in a change in the equilibrium of a putative regulator enzyme. The

rate of change of ion channel mRNA is proportional to this error; consequently, ion channel

mRNA concentration can be interpreted as the “accumulated error signal.” Biologically, the

regulator enzyme could be a Ca2+-dependent transcription factor complex, or a Ca2+-binding

enzyme upstream of a set of transcription factors. The biological counterpart of the [Ca2+]

signal we consider is therefore a somatic or nuclear [Ca2+].

The form of the model placed a strong constraint on its implementation. If multiple, parallel

integral control pathways using the same error signal exist within a cell, the targets for each

pathway need to agree, otherwise the continual (and deleterious) accumulation of the

molecules that encode error (such as mRNAs) will occur. While in principle it is possible

that multiple parallel controllers are tuned so that their set points are equal, in biological

reality, slight deviations are unavoidable. Thus for this model to work as a means of jointly

regulating conductances in a neuron, a “master regulator” may be required. However, this

does not rule out the possibility that other controllers using different error signals may

coexist, provided there are conductance combinations that can simultaneously satisfy all

controllers. For example, some currents could have targets specified by [Ca2+] transients or

concentrations of other biological molecules provided these signals are sufficiently

independent.
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Integral control exists as a regulatory mechanism in simple organisms such as bacteria,

where it permits sensitivity to environmental chemical cues and robust chemotaxis (Alon et

al., 1999; Yi et al., 2000). It is thus a plausible and testable hypothesis that neurons have

developed integral control pathways to regulate membrane conductances. Integral control

implies perfect compensation in the control variable (average [Ca2+] in our case).

Conversely, in systems that can be locally linearly approximated, perfect compensation

implies integral control (Yi et al., 2000). Therefore, an experimental test of one assumption

of this model is whether a relevant physiological variable such as average [Ca2+] is perfectly

compensated over a range of perturbations. It is important that the perturbations do not

exceed the capacity of the system to compensate, so a carefully controlled range of

perturbations may be required along with precise monitoring of [Ca2+] to do this test.

The biochemical framework also allows a straightforward interpretation of an “activity

target.” The nature of this target has been a source of speculation and even controversy since

homeostatic regulation was first proposed (Maffei and Fontanini 2009; Marder and Prinz

2002).Weshowed that target [Ca2+] can be encoded by the rates of the underlying molecular

mechanisms. Because these rates ultimately depend on chemical properties of enzymes, such

as substrate binding affinity, the target can be reliably defined in a given cell or cell type.

How literally should one interpret this model? The mechanisms involved in regulating

neuronal conductances are the focus of ongoing research and have many intricate

components that we have omitted. Transcriptional control is involved in ion channel

regulation (Weston and Baines 2007), and transcript editing, alternative splicing, and RNA

interference can occur at the early stages of the process (Lin et al., 2012; Seeburg and

Hartner 2003; Wang 2013). Similarly, at the stage when functional channels are expressed in

the plasma membrane, phosphorylation and auxiliary subunit interactions can alter the

biophysical properties of channels (Lipscombe et al., 2013). We did not attempt to model the

effects of all such processes; instead we focus on the major events underlying channel

expression that are encapsulated in the canonical model of gene expression: channel genes

are activated, channel mRNA is transcribed, and channel protein is produced from mRNA.

This simplification can be thought of as averaging out the contribution of more intricate

processes, or as forming a backbone onto which the additional processes can be added. The

task of refining the model will not be trivial; while we would expect the canonical model to

hold across species and cell types, it would be surprising if more detailed models generalize

without incorporating data that are specific to each experimental preparation.

Model Predictions

This work makes three general predictions. First, it predicts linear correlated variability in

ion channel expression and that the slopes of the pairwise correlations between two ion

channel expression measures should correspond to the ratio of their expression rates. For

example, if one were to measure the average mRNA expression rates of two ion channels

that are known to show a positive linear correlation in single-cell quantitative PCR

measurements, then the ratio of the expression rates should equal the measured correlation

slope (for example, the K+ channel genes shaw and shab in LP cells of the crab STG–see

Figure 4B and 4C). Measuring mRNA expression dynamics is challenging and has not, to
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our knowledge, been performed in single neurons, although tools that may permit such

measurements are being developed. On the other hand, single-cell quantification of steady-

state ion channel gene expression does indeed show cell-type-specific correlations that are

close to linear (Liss et al., 2001; Schulz et al., 2006, 2007; Temporal et al., 2012; Tobin et

al., 2009).

Second, the model predicts that neurons do not necessarily perfectly compensate their

electrical properties when perturbed, or when an ion channel type is knocked out, even if

average [Ca2+] (or the relevant activity signal) is perfectly compensated over long

timescales. This is illustrated in Figure 7, where we see that average [Ca2+] is always

compensated, while the physiological behavior of the neuron can be compensated, partially

compensated, or can even show pathological changes in behavior caused by the regulatory

mechanism. In nonpathological cases, the model works because the regulation signal,

[Ca2+], distinguishes different regions of conductance space. However, this sensing

mechanism is dependent on certain combinations of conductances being present together.

For example, if the ratio of delayed-rectifier K+ to fast Na+ conductances is within a certain

(possibly large) range, then (ignoring other conductances and assuming a source of Ca2+

influx) low average [Ca2+] will correspond to silent cells, while high average [Ca2+] will

only be achievable if the cell is firing tonically. Removal of one or more conductances can

drastically alter the relationship between firing properties and [Ca2+], causing aberrant

compensation. On the other hand, if the conductances overlap in their properties with other

conductances, then removal may have only a subtle effect, or a substantial acute effect that

can be compensated by the regulation mechanism.

This disconnect between nominally homeostatic behavior in one variable and

nonhomeostatic behavior in the larger system has been suggested previously (O’Leary and

Wyllie 2011) and illustrates the need for a careful definition of what homeo-stasis means.

The safest definition is that homeostasis is an emergent phenomenon and occurs because the

components in biological systems (such as ion channels) are often regulated using feedback.

In general, the feedback signals can be a subset of those available and may act on a subset of

the systems parameters (i.e., the system may be underactuated). Thus, neurons can exhibit

firing rate set points (Hengen et al., 2013) or even maintenance of a coordinated motor

pattern (Figure 6), but this does not necessarily mean the system directly measures and

maintains these specific properties. This point is perhaps underappreciated but important

because it is difficult to assess experimentally which are the controlled features of a

homeostatic process.

The third broad prediction of this work is that changes in the regulatory rule itself may be

part of nervous system development. The sets of regulation rates that define cell types in the

model bring each cell to a steady state from random initial conditions with low conductance

densities. This is a reasonable model of the early stage of differentiation from a nonneuronal

cell with a nonexcitable (or weakly excitable) membrane (Moody and Bosma 2005; Spitzer

et al., 2002). To reach mature levels of conductance expression, all conductances need to

increase initially. This coordinated increase is inherent in the model of cell types (Figure 4)

and predicts that the appearance of each ion channel type above some detection threshold

will show a cell-type-specific ordering, in agreement with experimental observations in
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developing nervous systems (Baccaglini and Spitzer 1977; Moody and Bosma 2005; Spitzer

1991).

However, other experiments in nominally mature systems have shown that conductances can

change their expression in opposite directions in response to perturbations in activity (Desai

et al., 1999; O’Leary et al., 2010). Furthermore, while one rule may be sufficient for

establishing a broad phenotype, changes to the rule could fine-tune conductances so the cell

can preserve specific properties more effectively. We explored this idea speculatively in

Figure 8, where we showed that tighter control of specific properties entails a switch in the

regulation rates. Moving to a biological interpretation, this idea incorporates the observation

that molecular switching events alter the expression rates of different genes (including ion

channels) early in development and that some developmental changes have strictly

sequential critical periods.

Network Homeostasis from Cell-Autonomous Regulation

Although the regulation model is local to each cell (i.e., it is “cell-autonomous”), the

network model in Figure 6 shows coordinated responses across the network following

perturbation of only one cell. Thus, when self-regulating cells are part of an interacting

network, it is no longer sensible to label compensatory mechanisms as “cell-autonomous” or

“non-cell-autonomous” by solely observing responses to perturbations.

The relative ease with which we constructed a self-regulating network is reassuring when we

consider how biological nervous systems solve the analogous task. When systematically

searched, the parameter space that produces a triphasic CPG in a similar model is found to

be complex (Prinz et al., 2004). Biological systems thus need robust solutions to this

problem (Morohashi et al., 2002; Stelling et al., 2004). Finding functional parameters in a

complex space and reliably assembling a circuit is relatively straightforward with a well-

behaved, biologically realistic feedback control mechanism. A key feature of this ease is

modularity: in isolation, cell types can grow and self-regulate. Self-regulation ensures that

when cells are combined in networks, the resulting perturbations due to network activity are

compensated. The process of combining modular components would be impossibly fragile

without some form of feedback control within the cells themselves or, as it is commonly

known, homeostatic plasticity.

EXPERIMENTAL PROCEDURES

Single-compartment Hodgkin-Huxley models were used for all neuron models. The

membrane potential, V, of a cell containing N conductances and membrane capacitance, C,

is given by:

g̅i is maximal conductance, pi and qi are the number of “gates” in each conductance, and Ei

is the reversal potential. m and h are the activation and inactivation variables. All models
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have unit capacitance (1 nF); maximal conductance values in the manuscript are therefore

equivalent to conductances densities in units of µS/nF. The kinetic equations describing the

seven voltage-gated conductances are taken from experimentally measured currents in

isolated crab STG neurons, as described previously (Liu et al., 1998).

Numerical integration (exponential Euler) used a fixed timestep of 0.1 ms. Maximal

conductances in all models were regulated using the integral control equations:

To avoid negative conductances, variables were bounded at 0; however, this condition was

not required for the models presented. The parameters for neuron types were found by first

identifying steady-state conductance densities that gave desired behavior from a random

search of conductance space (2 × 106 models). The resulting conductance ratios were then

scaled to give regulation time constants that were modified by hand where necessary to tune

behavior. All parameters and initial conditions for all models are provided in Table S1

(available online). Additional simulation details and an example biochemical scheme that

implements integral control are in Supplemental Experimental Procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Integral Control from the Canonical Model of Gene Expression
(A) A simple biochemical scheme for activity-dependent ion channel expression. Channel

mRNAs are produced at a rate αm that depends on a Ca2+-activated factor, T, and degraded

at rate βm Functional channel proteins are produced at a rate αg from mRNAs and degraded

at a rate βg.

(B) The scheme in (A) is equivalent to an integral controller. Error (deviation from [Ca2+]

target, [Ca2+]tgt) is accumulated in the mRNA (m) concentration (shaded region), which

causes a change in ion channel expression (g).
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Figure 2. A Potential Problem with Multiple Regulators
A model cell with one inward and one outward leak conductance implements integral

control to maintain a target [Ca2+] (Supplemental Experimental Procedures). Time is

normalized to conductance expression rate, τg.

(A) A single master regulator, T1, produces a stable model.

(B) Two separate regulators T1 and T2 with nonequal targets lead to an unbounded (arrows)

increases in conductance.
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Figure 3. Regulation in a Complex Biophysical Cell Model
(A) Time evolution of a self-regulating neuron implementing integral control for its seven

voltage-dependent conductances (fast sodium, gNa; slow Ca2+gCaS; transient Ca2+gCaT; A-

type/transient potassium, gKA; Ca2+-dependent potassium, gKCa; delayed-rectifier potassium,

gKd; hyperpolarization-activated mixed-cation, gH). A total of 20 independent runs are

shown with mean in bold; axes are log-log; timeis normalized to τg. (Top) Voltage traces for

an example neuron at the stages indicated.

(B) Examples of steady-state behavior of the bursting pacemaker from six independent runs.
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(C) Scatter plots of conductance distributions (bottom left) and intrinsic properties (top

right) at steady state of the 20 neurons from the independent runs in (A). Intrinsic properties

are as follows: intraburst spike frequency (freq), burst duty cycle (dut cyc), slow-wave

amplitude (amp), spike height (spike), and burst period (per).
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Figure 4. Specifying Different Cell Types with the Same Model
(A) Example cell types produced from the same set of seven voltage-dependent

conductances. (Left-hand plots) Log-log plots of conductance evolution over time. Each

example has a different set of regulation time constants for the conductances (Experimental

Procedures). Total duration for all simulations is 10×τg. (Right-hand plots) Membrane

potential traces with current injection traces shown below. FI (frequency versus current

amplitude) plots are shown for the type I/II neurons (1 and 2). Current injection amplitudes

for each example are as follows: 100, 200, and 500 pA for 1 and 2; −200, −100, 100, and
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200 pA for 3; −500 pA for 4 and 5. Time base for all membrane potential traces (from

duration of current pulse): 500 ms.

(B) Scatter plots of steady-state conductances in each cell type (1–5) shown in (A) after 20

independent runs. Straight lines are calculated from the ratio of regulation time constants for

each pair of conductances in each cell type; see Equation 4.

(C) Experimental data reproduced from Schulz et al. (2007) showing cell-type-specific

correlations in ion channel gene expression. Quantitative PCR was performed on ion

channel mRNAs obtained from single identified cells in the crab STG (cell types shown are

GM, IC, LG, LP, and PD).
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Figure 5. Changing Targets within Cell Types
Each column shows 500 ms segments of steady-state membrane potential activity in a

different self-regulating model at steady state with the [Ca2+] target (= 4 µM) scaled. The

regulation time constants for each conductance are shown below, normalized to τg.
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Figure 6. A Self-Assembling, Self-Regulating Central Pattern Generating Network
(A) Connectivity diagram of the model CPG, based on the synaptic connectivity of the

pyloric network in the crustacean STG (PD/AB, pyloric dilator/ anterior burster; LP, lateral

pyloric cell; PY, pyloric cell). The PD/AB pacemaker kernel is modeled as a single cell. All

synapses are inhibitory and graded; glutamate (Glu) synapses are instantaneous,

acetylcholine (ACh) synapses are slow (activation time constant = 50 ms).

(B) (Top) Example membrane potential traces for random initial conductances. (Second

from top) Example steady-state behavior of the model. The triphasic order (PD, LP, PY) is

highlighted with shaded boxes. (Third from top) Perturbation of network activity by addition

of hyperpolarizing (reversal potential = −80 mV) conductance to PD. (Bottom) steady-state

recovery of the network with hyperpolarizing conductance still present. All traces = 1 s.

(C) Example time evolution of intrinsic and synaptic conductances in a self-regulating

pyloric network model for a single run. Onset of the PD/AB perturbation is indicated by the

vertical line. Insets show detail of the conductance dynamics on a linear timescale.
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Figure 7. Outcome of Homeostatic Compensation after Channel Deletion Depends on Cell and
Channel Type
Membrane potential activity for a self-regulating bursting ([A]–[C]) and tonic ([D] and [E])

pacemaker models in which specific conductances are deleted. The first column (“wild-

type”) shows model behavior at steady state with all conductances present. Acute deletion of

the indicated conductance produces the behavior shown in the middle column (“acute KO”).

Following conductance deletion, each model is allowed to reach steady state (third column,

“compensated KO”).
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Figure 8. Switching Regulation Rates in the Same Cell Can Preserve Specific Properties
(A) Conductance regulation in a bursting pacemaker neuron. Membrane potential traces

(500 ms duration) are shown at steady state, at the onset of a perturbation (hyperpolarizing

leak), and at steady state following perturbation. Arrowheads above the rightmost trace

indicate burst onset times of the unperturbed neuron, aligned to the first burst.

(B) Evolution of the same model as (A), but with regulation rule switched prior to the onset

of the perturbation. Regulation time constants following the switch were chosen to preserve

burst duration (see Experimental Procedures). Arrowheads as in (A). Membrane potential

trace durations: 500 ms.
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