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ABSTRACT
Many acute and chronic conditions, such as acute kidney injury,
chronic kidney disease, heart failure, and liver disease, involve
mitochondrial dysfunction. Although we have provided evidence
that drug-induced stimulation of mitochondrial biogenesis (MB)
accelerates mitochondrial and cellular repair, leading to recovery
of organ function, only a limited number of chemicals have been
identified that induce MB. The goal of this study was to assess
the role of the 5-hydroxytryptamine 1F (5-HT1F) receptor in MB.
Immunoblot and quantitative polymerase chain reaction analy-
ses revealed 5-HT1F receptor expression in renal proximal tubule
cells (RPTC). A MB screening assay demonstrated that two
selective 5-HT1F receptor agonists, LY334370 (4-fluoro-N-[3-(1-
methyl-4-piperidinyl)-1H-indol-5-yl]benzamide) and LY344864
(N-[(3R)-3-(dimethylamino)-2,3,4,9-tetrahydro-1H-carbazol-6-
yl]-4-fluorobenzamide; 1–100 nM) increased carbonylcyanide-p-
trifluoromethoxyphenylhydrazone–uncoupled oxygen consumption
in RPTC, and validation studies confirmed both agonists increased

mitochondrial proteins [e.g., ATP synthase b, cytochrome
c oxidase 1 (Cox1), and NADH dehydrogenase (ubiquinone) 1b
subcomplex subunit 8 (NDUFB8)] in vitro. Small interfering
RNA knockdown of the 5-HT1F receptor blocked agonist-
induced MB. Furthermore, LY344864 increased peroxisome
proliferator–activated receptor coactivator 1-a, Cox1, andNDUFB8
transcript levels and mitochondrial DNA (mtDNA) copy number in
murine renal cortex, heart, and liver. Finally, LY344864 accelerated
recovery of renal function, as indicated by decreased blood urea
nitrogen and kidney injury molecule 1 and increased mtDNA copy
number following ischemia/reperfusion-induced acute kidney injury
(AKI). In summary, these studies reveal that the 5-HT1F receptor is
linked to MB, 5-HT1F receptor agonism promotes MB in vitro and
in vivo, and 5-HT1F receptor agonism promotes recovery from AKI
injury. Induction of MB through 5-HT1F receptor agonism rep-
resents a new target and approach to treat mitochondrial organ
dysfunction.

Introduction
Mitochondrial dysfunction is linked to diverse acute insults

such as surgery, trauma, ischemia/reperfusion (I/R), and drug
toxicity, as well as chronic conditions, such as metabolic

syndrome, diabetes, neurodegenerative diseases, and aging
(Robertson, 2004; Monsalve et al., 2007; Legrand et al.,
2008; Pessayre et al., 2012; Bayeva et al., 2013). Within the
body, the organs most affected by mitochondrial dysfunc-
tion include those with the highest energy demand that
primarily rely on mitochondrial aerobic respiration for ATP
generation (e.g., kidney, heart, and brain) (Beeson et al.,
2010). Decreased mitochondrial function may not only
cause cell death, but may also decrease cellular functions
and reduce the ability of a cell to respond to increased cel-
lular energy demand.
Induction of mitochondrial biogenesis (MB) has been shown

to alleviate mitochondrial dysfunction following injury in
several pathophysiological model systems (Funk et al., 2010;
Dam et al., 2013; Funk and Schnellmann, 2013; Whitaker
et al., 2013). Requiring coordination of both the nuclear
and mitochondrial genomes, MB is the synthesis of new
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mitochondria which is mediated by the master regulator
peroxisome proliferator–activated receptor coactivator 1-a
(PGC1a) (Scarpulla et al., 2012), and replaces defective or
deficient mitochondria and/or supplements existing mito-
chondria to increase respiratory capacity. MB is an integral
component of mitochondrial homeostasis that also includes
mitophagy, fission, and fusion.
We have proposed thatMB is a good drug target for diseases

with mitochondrial dysfunction (Funk et al., 2010). Un-
fortunately, very few nontoxic chemicals or drugs suitable
for pharmacological development have been identified that
promote MB. For example, resveratrol (Csiszar et al., 2009;
Mudo et al., 2012), catecholamines (Frier et al., 2012),
AMP-activated protein kinase activators, such as N1-(b-D-
ribofuranosyl)-5-aminoimidazole-4-carboxamide (AICAR)
(Kukidome et al., 2006), the thiazolidinedione class of antidi-
abetic drugs including rosiglitazone and pioglitazone (Pagel-
Langenickel et al., 2008; Pardo et al., 2011), pyrroloquinoline
quinine moieties of quinoproteins (Chowanadisai et al.,
2010), and the dietary supplement b-guanidinopropionic
acid (Williams et al., 2009) have been shown to upregulate
PGC1a. Mixed results have been obtained with the fibrate
drug bezafibrate, a pan–peroxisome proliferator–activated
receptor agonist (Wenz et al., 2008; Romanino et al., 2011;
Yatsuga and Suomalainen, 2012). A recent high-throughput
screen in murine primary skeletal muscle cells elucidated
several distinct classes of drugs promoting MB; however,
several of these, including glucocorticoids and inhibitors of
microtubules and protein synthesis, would not be suitable for
clinical administration due to toxicity and side effects (Arany
et al., 2008).
We previously identified isoflavones and isoflavone deriv-

atives as promoters of MB, characterized the minimal
pharmacophore, determined the mechanism of action, and
demonstrated that isoflavone treatment following oxidant
exposure accelerated recovery of mitochondrial and cellular
function (Rasbach and Schnellmann, 2008). Additionally, the
reported sirtuin 1 activator SRT-1720 (N-[2-[3-(piperazin-1-
ylmethyl)imidazo[2,1-b][1,3]thiazol-6-yl] phenyl]quinoxaline-
2-carboxamide) promoted MB and expedited recovery of
mitochondria following oxidant injury (Funk et al., 2010).
More recently, b2-adrenergic receptor agonists, such as
formoterol, were also identified as potent promoters of MB
in vitro and in vivo, and a pharmacophore was developed
(Wills et al., 2012; Peterson et al., 2013). Interestingly, not all
b2-adrenoceptor agonists were capable of inducing MB
(Peterson et al., 2013). Finally, specific inhibition of phospho-
diesterases 3 and 5 increased cGMP to produce MB in renal
proximal tubule cells (RPTC) and mice, and accelerated the
recovery of renal function following acute kidney injury
(Whitaker et al., 2013).
As part of our drug discovery program in MB, we explored

the agonism of 5-hydroxytryptamine (5-HT; serotonin) recep-
tors in MB. Agonism of the 5-HT2 receptor with DOI [1-(2,5-
dimethoxy-4-iodophenyl)-2-aminopropane; 1–10 mM] promoted
MB in vitro as evidenced by increased FCCP (carbonylcyanide-
p-trifluoromethoxyphenylhydrazone)-uncoupled respiration,
ATP, PGC1a promoter activity, and the mitochondrial proteins
ATP synthase b and NADH dehydrogenase (ubiquinone) 1b
subcomplex subunit 8 (NDUFB8) (Rasbach et al., 2010).
Additionally, DOI accelerated restoration of mitochondrial
function following oxidant injury (Rasbach et al., 2010).

Considering that micromolar concentrations of DOI were
needed to promote MB in vitro, and that micromolar concen-
trations of DOI also activate the 5-HT1F receptor, we examined
the role of the 5-HT1F receptor in MB.

Materials and Methods
In Vitro Studies. Renal proximal tubules were isolated from

kidneys of female New Zealand white rabbits (1.5–2 kg) using an iron
oxide perfusion method and cultured under improved conditions,
resulting in normal aerobic metabolism comparable to that found in
vivo (Nowak and Schnellmann, 1995). We have previously developed
a high-throughput screening assay which identifies compounds that
exhibit elevated FCCP-induced uncoupled oxygen consumption rates
(OCRs), indicative of increased mitochondrial capacity (Beeson et al.,
2010). OCRs were measured using a Seahorse Bioscience analyzer
(North Billerica, MA) before (basal) and after addition of 1 mM FCCP,
an ionophore that uncouples electron transport from ATP generation.
The selective 5-HT1F receptor agonists LY334370 (4-fluoro-N-[3-
(1-methyl-4-piperidinyl)-1H-indol-5-yl]benzamide) and LY344864
(N-[(3R)-3-(dimethylamino)-2,3,4,9-tetrahydro-1H-carbazol-6-yl]-4-
fluorobenzamide), and the nonselective 5-HT receptor agonist
a-methyl 5-HT were purchased from Tocris (Ellisville, MO).

For 5-HT1F receptor knockdown, RPTC were treated with scram-
bled small interfering RNA (siRNA) (siGENOMEnontargeting siRNA
#5; Dharmacon RNAi Technologies, Lafayette, CO) or siRNA designed
against the 5-HT1F receptor using RNAiFect transfection reagent
(Qiagen, Valencia, CA). siRNA knockdown was accomplished using
a 1:1 mixture of siRNA recognizing the following sequences: siRNA-1,
59-CCT TCA GCA TTG TGT ATA T-39 and siRNA-2, 59- CCA CAT
TGT TTC CAC TAT T-39. Following a 72-hour exposure, cells were
scraped and analyzed for changes in protein levels.

In Vivo Studies. Nonfasted naïve 8- to 10-week-old male C57BL/
6NCr mice (National Cancer Institute, Frederick, MD) weighing
25–30 g received an intraperitoneal injection of 250 ml of vehicle (0.9%
saline) or test compound every 8 hours for a total of three doses in
a 24-hour period (1 mg/kg � 3) or one dose of test compound (2 or 10
mg/kg). At the time of euthanasia, organs were harvested, snap-frozen
in liquid nitrogen, and stored at 280°C. For the I/R model of acute
kidney injury (AKI), mice were subjected to bilateral renal pedicle
ligation as described previously (Zhuang et al., 2009; Jesinkey et al.,
2014). In brief, renal artery and vein were isolated and blood flow was
occluded with a vascular clamp for 18 minutes. Mice were maintained
at 37°C throughout the procedure using a homeothermic heating
system. Sham surgery mice received all manipulations with the
exception of clamping of the renal pedicles. Mice were treated
once daily beginning at 24 hours after reperfusion with saline
vehicle or LY344864 (2 mg/kg). Blood was collected from mice via
retro-orbital bleed at 24 and 144 hours after surgery. Blood urea
nitrogen (BUN) levels were measured using a QuantiChrom Urea
Assay Kit (BioAssay Systems, Hayward, CA) according to the
manufacturer’s protocol. Mice were euthanized at 144 hours after the
procedure, at which time kidneys were harvested for molecular
analyses. Animal protocol was approved by and procedures completed
in compliance with Institutional Use and Care of Animals Committee
guidelines.

Nucleic Acid Isolation and Quantitative Polymerase Chain
Reaction. RPTC were scraped in TRIzol (Life Technologies, Grand
Island, NY), and RNA was isolated using a phenol-based centrifuga-
tion method. DNA was isolated using a DNeasy Blood and Tissue Kit
(Qiagen). cDNA was reverse transcribed from 2 mg RNA using
a RevertAid First Strand cDNA Synthesis kit (Thermo Fisher
Scientific, Waltham, MA), diluted 1:5, and 5 ml added to a real-time
Maxima SYBR green quantitative polymerase chain reaction master
mix containing 6-carboxy-X-rhodamine (Thermo Fisher Scientific).
The following primers were used: actin forward 59-GGG ATG TTT
GCT CCAACCAA-39, actin reverse 59-GCG CTT TTG ACT CAAGGA
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TTT AA-39; apolipoprotein B (ApoB) forward 59-CGT GGG CTC CAG
CAT TCT-39, ApoB reverse 59-TCA CCA GTC ATT TCT GCC TTT
G-39; ATP synthase b forward 59-GAG ACC AAG AAG GTC AAG
ATG-39, ATP synthase b reverse 59-GAA GGG ATT CGG CCC AAT
AAT GCA G 39; cytochrome c oxidase 1 (Cox1) forward 59-TAA TGT
AAT CGT CAC CGC ACA-39, Cox1 reverse 59-ATG TGA GGA GCC
CCA ATT ATC-39; D loop forward 59-CCCAAG CAT ATA AGC TAG
TA-39, D loop reverse 59-ATA TAA GTC ATA TTT TGG GAA CTA
C-39; NDUFB8 forward 59-ACC CAA TCC AAC CGC CTT CA-39,
NDUFB8 reverse 59-CTA GGA CCC CAG AGG AAC GC 39; PGC1a
forward 59-AGG AAA TCC GAG CTG AGC TGA ACA-39, and PGC1a
reverse 59-GCA AGA AGG CGA CAC ATC GAA CAA-39. Changes in
gene expression were calculated based on the d-d threshold cycle
method. Mitochondrial DNA (mtDNA) copy number was calculated
based on comparison of mitochondrial D loop to nuclear ApoB.

Protein Isolation andWestern Blotting. Freshly isolated renal
proximal tubules or RPTC (cultured until confluent, about 6 days)
were rinsed with ice-cold phosphate-buffered saline, pelleted, and
subjected to membrane fractionation (Subcellular Protein Fraction-
ation Kit; Pierce Biotechnology, Rockford, IL). For nonfractionated
samples, RPTC were scraped in radioimmunoprecipitation assay
buffer containing protease inhibitors and phosphatase inhibitors
(Sigma-Aldrich, St. Louis, MO). Following sonication, protein was
quantified using a bicinchoninic acid assay, subjected to SDS-PAGE,
transferred onto nitrocellulose membranes, and incubated with
primary and secondary antibodies [glyceraldehyde-3-phosphate
dehydrogenase from Fitzgerald (Acton, MA); Cox1 and NDUFB8
from Invitrogen (Frederick, MD); kidney injury molecule 1 (KIM-1)
from R&D Systems Inc. (Minneapolis, MN); ATP synthase b,
5-HT1F receptor, and rabbit and mouse secondary antibodies from
Abcam (Cambridge, MA)]. Images were acquired with AlphaEase
software (Protein Simple, Santa Clara, CA) and processed using
ImageJ (NIH, Bethesda, MD) software.

Statistics. One-way analysis of variance (ANOVA) or Student’s
t test was used, as appropriate, to analyze data for significance
(P , 0.05). Significance in ANOVA was scrutinized for multiple
comparisons using the Fisher least significant difference post-hoc
test. When normality failed, a one-way ANOVA on Rank-sum was
performed.

Results
The 5-HT1F Receptor Is Present in RPTC and 5-HT1F

Receptor Agonism Leads to an Increase in FCCP-
Uncoupled OCR. To verify the expression of the 5-HT1F

receptor in our model system, RNA and protein were isolated
from renal proximal tubules and RPTC. The 5-HT1F receptor
mRNA (362 bp) was observed in RPTC (Fig. 1A), and the
5-HT1F receptor protein (44 kDa) was present in freshly
isolated renal tubules, tubule membrane fraction, RPTC, and
RPTC membrane fraction (Fig. 1B).
Previous studies have shown that LY334370 and LY344864

are specific agonists exhibiting high affinity for the 5-HT1F

receptor (Ramadan et al., 2003; http://www.iuphar-db.org/index.
jsp). LY334370 and LY344864 increased FCCP-uncoupled OCR,
a screening assay readout for MB (Beeson et al., 2010), 1.2- to
1.4-fold and 1.2- to 1.5-fold, respectively, between 1 and 100 nM,
but not at lower (0.1, 0.3 nM) or higher (1, 10 mM) concentrations
compared with control cells treated with vehicle (,0.5% dime-
thylsulfoxide) in RPTC after a 24-hour exposure (Fig. 1C).
Comparatively, the nonselective 5-HT receptor agonist a-methyl
5-HT increased FCCP-OCR 1.2- to 1.3-fold relative to control
cells in RPTC at 24 hours. These results demonstrate that the
5-HT1F receptor is present inRPTC, and that the 5-HT1F receptor
agonists LY334370 and LY344864 increase FCCP-uncoupled
OCR.

5-HT1F Receptor Agonists Increase Mitochondrial
Proteins in RPTC. MB increases the quantity of electron
transport chain proteins and copies of mtDNA, requiring co-
ordination of both the nuclear and mitochondrial genomes.
Three representative oxidative phosphorylation (OXPHOS)
proteins were measured to confirmMB: ATP synthase b (ATP
Synth), a portion of the F0-F1 ATP synthase enzyme (nuclear-
encoded); Cox1, a constituent of complex IV (mitochondrial-
encoded); and NDUFB8, a nuclear-encoded component of
complex 1. The 5-HT1F receptor agonist LY334370 increased
OXPHOS protein expression 1.4- to 1.6-fold at 1–100 nM in
RPTC at 24 hours (Fig. 2A). Likewise, LY344864 (1–100 nM)
similarly increased OXPHOS protein expression 1.4- to 2.1-
fold in RPTC at 24 hours (Fig. 2B). Thus, the 5-HT1F receptor
agonists LY334370 and LY344864 increased the levels of ATP
Synth, Cox1, and NDUFB8 proteins at concentrations that
also increased uncoupled respiration, consistent with MB.
siRNA Knockdown of the 5-HT1F Receptor Blocks

MB in RPTC. To confirm that the MB actions of LY334370
and LY344864 were mediated through the 5-HT1F receptor,
siRNA transfection was used to knockdown 5-HT1F receptor
protein expression. Transfection of RPTC with siRNA targeted
against the 5-HT1F receptor decreased 5-HT1F receptor protein
38% after 72 hours compared with scramble-treated RPTC
(Fig. 3A). Interestingly, 5-HT1F receptor knockdown alone led
to a significant diminution in ATP Synth, Cox1, and NDUFB8
protein levels (Fig. 3B). Knockdown of the 5-HT1F receptor
protein blocked LY334370- and LY344864-induced upregula-
tion of Cox1 and NDUFB8 proteins (Fig. 3C). These data
reveal that the 5-HT1F receptor may regulate MB under
basal conditions, and that post-transcriptional silencing
of the 5-HT1F receptor blocked the agonist-stimulated MB
response.

Fig. 1. Htr1f is expressed in RPTC (A), and the 5-HT1F receptor protein is
expressed in freshly isolated renal proximal tubules (T), tubule mem-
branes (TM), RPTC, and RPTC membranes (RM) (B). (C) Various con-
centrations of a-methyl 5-HT (am5-HT), a nonselective 5-HT receptor
agonist, and selective 5-HT1F receptor agonists LY334370 and LY344864
stimulate FCCP-OCR in RPTC at 24 hours. Data are X + S.E.M., n $ 3.
*Significantly different from vehicle (P , 0.05). GAPDH, glyceraldehyde
3-phosphate dehydrogenase; M, marker.
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5-HT1F Receptor Agonism Increases OXPHOS Gene
Expression and Mitochondrial DNA Copy Number in
Renal Cortex. A published study showed that rat brain
cortex levels of LY344864 remained constant for 6 hours,
whereas plasma levels declined over time following an in-
travenous dose of 1 mg/kg LY344864 (Phebus et al., 1997).
Thus, an in vivo time course experiment (1, 8, 24 hours) was
performed to determine gene expression and mtDNA copy
number changes in the renal cortex induced by vehicle (0.9%
saline) or LY344864 (2 mg/kg i.p.) (Fig. 4A). PGC1a and Cox1
mRNA were significantly increased at 1 and 8 hours, but not
at 24 hours. NDUFB8 gene expression was unchanged after
1 hour, but was upregulated 8–24 hours. Although mtDNA
copy number was unchanged at 1–8 hours, it was increased at

24 hours. These results indicate promotion of MB through
agonism of the 5-HT1F receptor in vivo.
Subsequent to the initial time course experiment, multiple

dosing regimens were assessed. Mice were injected intraper-
itoneally with vehicle (0.9% saline), 1 mg/kg LY344864 every
8 hours for a total of 3 doses in a 24-hour period (1 mg/kg � 3),
one bolus dose of 2 mg/kg LY344864, or one bolus dose of
10 mg/kg LY344864, and sacrificed at 24 hours (Fig. 4B).
Gene expression of PGC1a and Cox1 in the renal cortex was
significantly upregulated at 24 hours after 1 mg/kg � 3,
unchanged with 2 mg/kg, and decreased after 10 mg/kg
LY344864 compared with vehicle. NDUFB8 mRNA was
increased with 1 mg/kg � 3 and 2 mg/kg but not 10 mg/kg
LY344864 at 24 hours. Finally, mtDNA copy number was

Fig. 2. 5-HT1F receptor agonists increase
mitochondrial proteins inRPTCat 24 hours.
Representative immunoblots and quan-
tification of concentration response for
LY334370 (A) and LY344864 (B). Data are
X + S.E.M., n $ 5. *Significantly different
from vehicle (P , 0.05). GAPDH, glyceral-
dehyde 3-phosphate dehydrogenase.

Fig. 3. Knockdown of 5-HT1F receptor
protein in RPTC by siRNA transfection
at 72 hours (A) Representative immu-
noblot and quantification of 5-HT1F
receptor protein knockdown. (B) Mito-
chondrial protein levels after 5-HT1F
receptor knockdown. (C) Decreased
5-HT1F receptor levels block LY334370-
and LY344864-induced MB. RPTC were
treated with scramble or siRNA for 72
hours and treated with LY334370 or
LY344864 for 24 hours. Data are X +
S.E.M., n $ 3. *Significantly different
from scrambled or 5-HT1F receptor agonist
treatment (P , 0.05). GAPDH, glyceral-
dehyde 3-phosphate dehydrogenase.
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unchanged after 1 mg/kg � 3 and was increased after 2 mg/kg
and 10 mg/kg LY344864 at 24 hours in the renal cortex. These
data reveal that agonism of 5-HT1F receptor promotes MB in
vivo in the kidney.
The 5-HT1F Receptor Is Present in Murine Cardiac

and Hepatic Tissues and 5-HT1F Receptor Agonism
Increases OXPHOS Expression and Mitochondrial
DNA Copy Number. To determine whether 5-HT1F receptor
–mediated MB was selective for the kidney or also stimulated
MB in other tissues, OXPHOS gene expression and mtDNA
copy number were evaluated in the heart and the liver. 5-HT1F

receptor mRNA (362 bp) was observed in both cardiac and
hepatic tissues (Fig. 5A). In the heart, LY344864 (2 mg/kg)
increased PGC1a mRNA at 1–8 hours but not at 24 hours
(Fig. 5B). Cox1 gene expression was unchanged at 1 hour,
but was upregulated at 8–24 hours. NDUFB8 mRNA was
increased at 8 hours but not at 1 or 24 hours. Although un-
changed at 1–8 hours, mtDNA copy number increased with
LY344864 treatment at 24 hours in the heart. In the liver,
PGC1a, Cox1, and NDUFB8 gene expression was significantly
upregulated at 8–24 hours but not at 1 hour (Fig. 5C). Hepatic
tissue mtDNA copy number was unchanged at 1–8 hours but
was significantly increased at 24 hours. Taken together, these
data indicate that LY344864 promotes MB through upregula-
tion of PGC1a and other OXPHOS genes culminating in an
increase in mtDNA copy number in extrarenal heart and liver
tissues within 24 hours.
LY344864 Increases Mitochondrial DNA Copy Number

and Promotes Recovery from Ischemia/Reperfusion-
Induced Acute Kidney Injury. Stimulation of MB has
been previously reported to accelerate the recovery of renal

structure and function after AKI (Whitaker et al., 2013;
Jesinkey et al., 2014). We examined the ability of LY344864
to stimulate MB and promote renal recovery in an I/R-
induced AKI model. Mice were subjected to bilateral renal
ischemia and treated daily with saline vehicle or LY344864
(2 mg/kg) over the course of 144 hours following surgery. All
I/R-AKI mice had equal initial injury (BUN levels of 93 6
15 mg/dl at 24 hours), but vehicle-treated mice failed to
recover normal renal function as demonstrated by persis-
tently elevated BUN levels (75 6 6 mg/dl) (Fig. 6A). Mice
treated with LY344864 showed accelerated recovery of
renal function as evidenced by a decrease in BUN levels
from initiation of treatment at 24 hours (99 6 11 mg/dl) to
near-control levels at the completion of treatment at 144
hours (45 6 7 mg/dl).
To assess renal tubular recovery, renal cortical KIM-1 levels

were measured by immunoblot analysis (Fig. 6B). KIM-1
levels were upregulated in mice 144 hours after I/R injury
compared with mice receiving no surgery or sham surgery.
However, mice treated with LY344864 exhibited reduced
KIM-1 protein expression in the renal cortex compared with
vehicle-treated mice, demonstrating an accelerated recovery
of the proximal tubular epithelium. Finally, the observed
recovery of renal function was associated with recovery of
mtDNA copy number. Renal cortical mtDNA copy number
was 42% of sham surgery control levels at 144 hours after
surgery in vehicle-treated I/R mice, and treatment with
LY344864 promoted the recovery of the mtDNA copy number
to 75% of sham surgery control levels (Fig. 6C). These data
provide strong evidence that 5-HT1F receptor agonism is
a viable strategy to stimulate recovery of renal function in the

Fig. 4. Gene expression of PGC1a, Cox1,
NDUFB8, and mitochondrial copy num-
ber after selective 5-HT1F receptor agonist
LY344864 (2 mg/kg) in the kidney cor-
tex at 1, 8, and 24 hours (A) and after
selective 5-HT1F receptor agonist LY344864
at 1 mg/kg every 8 hours (1 mg/kg � 3),
2 mg/kg, and 10 mg/kg in the kidney
cortex at 24 hours (B). Data are X + S.E.M.,
n $ 3. *Significantly different from vehicle
(P , 0.05).

Fig. 5. (A) Htr1f is expressed in murine
heart (HT) and liver (LV). Gene expression
of PGC1a, Cox1, NDUFB8, and mtDNA
copy number after 5-HT1F receptor agonist
LY344864 (2 mg/kg) in heart (B) and liver
(C) at 1, 8, and24hours.Data areX+S.E.M.,
n$ 3. *Significantly different from vehicle
(P , 0.05). M, marker.
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setting of AKI, and that recovery is correlated with a restora-
tion of mtDNA copy number and function.

Discussion
Historically, the 5-HT1F receptor has been reported to be

a neuronal receptor in the central nervous system mediating
pain and lacking vasoactive properties, which has led to the
development of 5-HT1F receptor agonists for the treatment of
migraines (Mitsikostas and Tfelt-Hansen, 2012). However,
despite the potential role of 5-HT1F receptor in migraine
pathogenesis, other physiologic functions for 5-HT1F receptors
have yet to be established.
In a high-throughput MB screening assay incorporating

FCCP-OCR and the Seahorse Bioscience analyzer (Beeson
et al., 2010), the selective 5-HT1F receptor agonists LY334370
and LY344864 potently induced uncoupled oxygen consump-
tion in RPTC. Validation assays revealed increased levels of
bothmitochondrial-encoded (Cox1) and nuclear-encoded (ATP
Synth and NDUFB8) proteins with 5-HT1F receptor agonist

treatment, consistent with MB. Since 5-HT1F receptor
antagonists have not been reported, siRNA was used to
knockdown 5-HT1F receptors. Amodest 38% knockdown of the
5-HT1F receptor not only blocked the MB effects of LY334370
and LY344864, but also significantly decreased basal levels of
mitochondrial proteins in the kidney up to 50%. Time- and
dose-dependent changes in OXPHOS genes and mitochon-
drial copy number were found in vivo in the kidney, heart, and
liver in response to 5-HT1F receptor agonism. This is the first
study to report that 5-HT1F receptors are associated with
mitochondrial function, including MB, and that agonists to
this receptor promote MB in multiple tissues.
Both LY334370 and LY344864 have been reported to

be selective and efficacious agonists at the 5-HT1F receptor,
with reported pKd values of 8.7 and 8.2 for LY334370 and
LY344864, respectively (Ramadan et al., 2003; http://www.
iuphar-db.org/index.jsp). LY334370 also has affinity for the
5-HT1A receptor (7.8 pKd), whereas LY344864 binds with 100-
fold greater affinity at the 5-HT1F receptor than other 5-HT1

receptors. Although LY334370 showed no overt adverse
effects in our studies, preclinical toxicology studies led to
identification of the liver as a potential target of injury in
beagle dogs when administered for longer than 1 month
(Ramadan et al., 2003). However, no toxicity was shown in rats,
and there was no increase in liver enzymes when administered
to humans through phase II clinical trials (Ramadan et al.,
2003). There are no reports that LY344864 is toxic. Therefore,
although both agonists performed equally in vitro, only
LY344864 was used for in vivo studies in this report.
5-HT receptors are grouped into seven families of either

ligand-gated ion channels (5-HT3 receptors) or class A
(rhodopsin-like) guanine nucleotide-binding protein (G
protein)–coupled receptors (5-HT1,2,4-7 receptors), which are
further divided into multiple subtypes. The majority of the
5-HT receptors are located in the central nervous system,
platelets, and the gastrointestinal tract, where they mediate
diverse physiologic processes, including anxiety, sleep, and
appetite (Nichols and Nichols, 2008). The 5-HT1F receptor
shares 42–57% amino acid identity with the other 5-HT1

receptors (Barnes and Sharp, 1999), although its localization
to various sites within the brain (e.g., cortex, hippocampus,
and cerebellum) as well as outside of the central nervous
system, including reproductive tissues (uterus, testes), mes-
entery tissue, retina/whole eye, small intestine, kidney, liver,
and heart (Lovenberg et al., 1993; Bouchelet et al., 2000; Su
et al., 2004; Lucaites et al., 2005; Xu et al., 2007), suggests
that agonism of the 5-HT1F receptor has the potential to
promote MB across a wide range of tissues. The exact sig-
naling mechanism mediating MB through 5-HT1F receptor
agonism in RPTC still needs to be determined.
PGC1a mediates MB through activation of transcription

factors such as the nuclear respiratory factors 1 and 2 and the
estrogen-related receptors in the nuclear genome; the nuclear
respiratory factors trigger the nuclear-encoded mitochondrial
transcription factor A, which drives the mitochondrial gene
transcription and genome replication, whereas the estrogen-
related receptors and other transcription factors activate
transcription of nearly a thousand mitochondrial genes of
nuclear origin (Ventura-Clapier et al., 2008). In the renal
cortex, 5-HT1F receptor agonism led to a rapid induction of
PGC1a (e.g., 1 hour), promoting MB and resulting in an
increase in mtDNA copy number within 24 hours. Timely

Fig. 6. Blood urea nitrogen (24 and 144 hours) (A), renal cortical KIM-1
(144 hours) (B), and renal mtDNA copy number (144 hours) (C) in amurine
I/R-AKI model. Data are X + S.E.M., n $ 4. *P , 0.05 versus sham; #P ,
0.05 versus I/R + vehicle.
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responsiveness of PGC1a levels has also been reported after
exercise and experimentally induced sepsis, confirming the
importance of bioenergetics in response to environmental
stimuli (Mathai et al., 2008; Sweeney et al., 2010). Addition
of 5-HT1F receptor agonist (1 mg/kg � 3) led to an increase
in PGC1a, Cox1, and NDUFB8 transcript levels, but not
a change in mtDNA copy number at 24 hours; these increased
gene expression levels are most likely due to a more recent
exposure to agonist (8 hours prior to sacrifice) and an
incomplete MB program that perhaps takes longer than 24
hours to complete. A single dose of 2 mg/kg agonist led to
a complete MB program in 24 hours as evidenced by early
increases in PGC1a and OXPHOS expression followed by an
increase in mtDNA copy number at 24 hours. Dosing at
a higher concentration (10 mg/kg) also led to a complete MB
program with increased mtDNA copy number at 24 hours;
however, downregulation of MB gene expression (PGC1a,
Cox1) at 24 hours presumes an earlier robust upregulation of
the MB program with subsequent negative feedback inhi-
bition occurring at 24 hours. Thus, activation of PGC1a
precedes increases in gene expression of target OXPHOS
genes, ultimately culminating in greater quantities of mtDNA
and increased mtDNA copy number at the end of the MB
program.
5-HT1F receptor agonism also led to MB in extrarenal

tissues. Within the liver, there was a robust induction of
PGC1a and OXPHOS gene expression at 8–24 hours with an
increase in mtDNA copy number at 24 hours. Promotion of
MB was even more pronounced in the heart as 5-HT1F

receptor agonism led to a 7-fold increase in mtDNA copy
number at 24 hours. Differences in the amplitude of the MB
response among tissues indicate greater specificity of agonist
at the tissue or greater 5-HT1F receptor density/expression.
We have proposed that drugs inducing MB have the

potential to improve therapeutic outcomes in the treatment
of acute and chronic diseases in which mitochondrial dys-
function occurs (Funk et al., 2010). Mitochondrial dysfunction
is commonly observed in acute organ injury of the kidney,
heart, and liver (Di Lisa et al., 2007; Havasi and Borkan,
2011; Jaeschke et al., 2012). Recovery of renal structure and
function following AKI has been reported to be accelerated
through stimulation of MB by agonism of the b2-adrenergic
receptor or by inhibition of cGMP-selective phosphodies-
terases (Whitaker et al., 2013; Jesinkey et al., 2014).
Likewise, stimulation of MB via agonism of the 5-HT1F

receptor with LY344864 herein was similarly able to promote
accelerated renal recovery in an I/R-induced AKI model.
Thus, accelerated recovery of AKI, and possibly other acute or
chronic diseases with mitochondrial dysfunction, can be
induced through stimulation of MB through different up-
stream targets (e.g., 5-HT1F receptor agonism, b2-adrenergic
receptor agonism, phosphodiesterase inhibition), which is
therapeutically beneficial due to differential patient diseases
and responses. In addition to renal AKI, mitochondrial
dysfunction is also involved in numerous neurodegenerative
diseases, including Alzheimer’s disease, Huntington disease,
Parkinson’s disease, and other non-neurologic pathologies,
such as obesity and type 2 diabetes (Hojlund et al., 2008; Lezi
and Swerdlow, 2012). Upregulation of PGC1a has success-
fully been shown to increase OXPHOS and ameliorate several
in vivo models of diseases, including age-related pathogenesis
of Alzheimer’s disease, Huntington disease, and Parkinson’s

disease (Wenz, 2009; Mudo et al., 2012; Tsunemi et al., 2012;
Tsunemi and La Spada, 2012). Collectively, the ability of
5-HT1F receptor agonism tomitigate pathologic mitochondrial
damage through upregulation of PGC1a and promotion of MB
should be explored as a potential therapeutic strategy to ame-
liorate many diseases featuring mitochondrial dysfunction in
a variety of tissues.
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