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Background. Allicin, themajor component of freshly crushed garlic, is one of themost biologically active compounds of garlic; it has
been reported to induce apoptosis in cancer cells; however, the mechanism by which allicin exerts its apoptotic effects is not fully
understood. The aim of the present study was to further elucidate the apoptotic pathways induced by allicin in the human ovarian
cancer cell line SKOV3.Methods. Cell proliferation and apoptosis weremeasured by cell-counting assay and flow cytometry analysis.
Activation of the signaling pathwaywas screened by human phospho-kinase array analysis, and the activated pathway and its related
proteinswere further confirmed bywestern blot analysis.Results. Allicin induced SKOV3 cell apoptosis and JNKphosphorylation in
a time- and dose-dependent manner, but these were significantly blocked by SP600125 (an inhibitor of JNK). The findings suggest
that JNK phosphorylation is related to the action of allicin on SKOV3 cells. Furthermore, JNK activation induced Bcl-2 family
activation, triggered mitochondria-mediated signaling pathways, and led to the translocation of a considerable amount of Bax and
cytochrome c release. Conclusions. JNK activation and mitochondrial Bax translocation are involved in allicin-induced apoptosis
in SKOV3 cells. Our data input new insights to the literature of allicin-induced apoptosis.

1. Introduction

Ovarian cancer is a leading cause of cancer-related death in
western countries, and its incidence in Asia is increasing. At
present, cytoreductive surgery and chemotherapy were con-
sidered to be the conventional treatments of ovarian cancer.
However, the success rate of surgery is only 35∼50% and
the multiple drug resistance (MDR) caused by chemotherapy
results in the 5-year-survival rate of advanced ovarian cancer
patients in only 20∼30%. Therefore, although ovarian cancer
is a well-studied cancer, progress in its prevention or cure is
still needed.

Garlic (Allium sativum) has long been used as food
and remedy in oriental countries. Researches have shown

that garlic possesses a variety of biological activities, includ-
ing antiatherosclerotic, antihypertensive, antimicrobial, anti-
cancer, immunomodulatory, radioprotective, and potential
antiaging effects [1, 2]. Allicin, the major component of
freshly crushed garlic, is one of the most biologically active
compounds of garlic [3] and is formed from alliin via the
action of alliinase [4, 5]. Allicin has obvious inhibitory effects
on different kinds of tumor cells such as gastric cancer, colon
cancer, liver cancer, and lung cancer and has been put into
clinical treatment as an aid cancer drug.

Activation of apoptosis signaling pathways may be
responsible for treatment of malignant diseases. Two apop-
totic pathways that converge on caspase-3, with one involving
caspase-8 and the other involving the mitochondrial release
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of cytochrome 𝑐 as well as the activation of caspase-9,
have been described [6, 7]. Mitochondrial apoptosis sig-
naling is initiated by changes in mitochondrial membrane
integrity. Soluble apoptosis signaling molecules, such as
cytochrome 𝑐, localized in themitochondrial intermembrane
space are released into the cytosol upon apoptosis induction
[8]. Released cytochrome 𝑐 associates with Apaf-1 [9, 10]
and activates procaspase-9 in a multimeric complex, the
apoptosome [11–13]. Active caspase-9 in turn processes the
downstream effector caspases 3, 6, and 7 [14]. Thus, the
release of cytochrome 𝑐 into the cytosol represents a pivotal
step of apoptosis signaling and analysis of mitochondrial
cytochrome 𝑐 release might therefore identify apoptosis in
mitochondrial signaling [15]. Studies have demonstrated that
some Bcl-2 family members (e.g., Bax, Bcl-xL, Mcl-1, Bcl-2,
and Bid) located in the mitochondrial membrane can alter
the permeability of the membrane and trigger the activation
of caspases [16], thereby, leading to apoptotic cell death.
Allicin has been reported to induce apoptosis in human
epithelial carcinoma cells through the mitochondrial release
of apoptosis induce factor (AIF) and protein kinase A was
found to play an important role in caspase-independent
apoptotic pathways [17].

The proapoptotic effects of allicin against cancer cells
were provided by in vitro studies [18]; however, the mech-
anism by which allicin exerts its apoptotic effects especially
on ovarian cancer is not fully understood. The present study
offers new evidence showing that activation of JNK and
mitochondrial translocation of Bax are involved in allicin-
induced apoptosis in human ovarian cancer SKOV3 cells.

2. Materials and Methods

2.1. Materials. Allicin was purchased from Shanghai Harvest
Pharmaceutical Co., Ltd. (Shanghai, China). The purity of
allicin used in the experiments was ≥90%, as determined by
HPLC.Mouse anti-Hsp60monoclonal antibody and anti-Bax
monoclonal antibody 2D2 were purchased from Santa Cruz
Biotechnology, Inc (USA). Antibodies against cytochrome
𝑐 and the JNK inhibitor SP600125 were obtained from
Beyotime Institute of Biotechnology, whereas antibodies
against𝛽-actin, phospho-JNK, and JNKwere purchased from
Cell Signaling Technology. Human Phospho-Kinase Array
(catalog number ARY003) was obtained from R&D Systems
Co. Ltd. (USA). RPMI-1640 medium and fetal bovine serum
were purchased from GIBCO (USA).

2.2. Cell Culture and Treatment. The human ovarian cell line
SKOV3was obtained from the China Center for Type Culture
Collection (Wuhan, China).The cells were routinely cultured
in RPMI-1640 medium supplemented with 10% fetal bovine
serum in a humidified atmosphere with 5% CO

2
incubation

at 37∘C. Treatments were performed with different amounts
of allicin, ranging from 0 to 100 𝜇g/mL. Unless otherwise
specified, the concentration of allicin selected for all the
experiments was 25𝜇g/mL; an equal amount of phosphate

buffered saline or dimethyl sulfoxide was added to cells as
control.

2.3. Cell Proliferation and Apoptosis Assay. SKOV3 cells (2 ×
104) were seeded in each well of 96-well plates and incubated
at various concentrations of allicin for different periods.
After treatment, the proliferative potential of the cells was
analyzed using Cell Counting Kit-8 (Dojindo, Kumamoto,
Japan) according to the manufacturer’s protocol. For apop-
tosis assay, the SKOV3 cells were grown to approximately
75% confluence in 6-well plates and then treated with
or without allicin (25𝜇g/mL, 48 h) and/or JNK inhibitors
(20𝜇M, 30min). After treatment, the cells were collected,
washed, and resuspended in 200 𝜇L of binding buffer at 2 ×
105 cells/mL. The samples were subsequently incubated with
2.5 𝜇L of Annexin V-FITC and 5 𝜇L of propidium iodide in
the dark for 15min at room temperature and then analyzed
by flow cytometry (Miltenyi, Germany).

2.4. Phospho-Kinase Proteome Profiling and Western Blot
Analysis. The cells were seeded at a density of 1 × 107 cells per
60 cm2 dish, cultured for 24 h, treated using indicated con-
centrations of allicin for 48 h, and processed using Human
Phospho-Kinase Array Kit (Proteome Profiler; R&DSystems,
Minneapolis, USA) following the manufacturer’s instruc-
tions. Phospho-kinase array data were developed on X-ray
films following exposure to chemiluminescent reagents. The
results were confirmed by western blot analysis, as previously
described [19].

2.5. Detection of Bax Translocation and Cytochrome 𝑐 Release
inMitochondria. Crudemitochondrial and cytosolic extracts
were prepared from SKOV3 cells with indicated treatments,
as described by Parone et al. [20]. Bax and cytochrome 𝑐 in
the cytosol and mitochondria were detected by western blot
analysis.

2.6. Statistical Analysis. Data were obtained from three
independent experiments and expressed as mean ± SD.
Differences were analyzed using Student’s 𝑡-test or one-way
ANOVA, as appropriate.𝑃 < 0.05was considered statistically
significant.

3. Results

3.1. Allicin Inhibits SKOV3 Cell Proliferation and Induces
Apoptosis. The antiproliferative effect of allicin on SKOV3
cells was examined by exposing the cells to different con-
centrations of allicin for 24, 48, and 72 h. Cell growth was
inhibited in a dose- and time-dependent manner (Figure 1).
In the presence of 25 𝜇g/mL of allicin, SKOV3 cells exhibited
approximately 60% inhibition of proliferation after treatment
for 48 h. As such, this concentration and the treatment time
were used in the following experiments. Flow cytometry
analysis showed that allicin induced apoptosis significantly,
which was also significantly blocked by pretreatment with
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Figure 1: Inhibitory effect of allicin on SKOV3 cell proliferation.
SKOV3 cells were treated with various doses of allicin for 24, 48, and
72 h. Cell proliferation was determined using cell-counting assay
and expressed as the percentage of the absorbance value obtained
without allicin.

SP600125 (Figure 2); however, SP600125 alone could not
inhibit apoptosis.

3.2. Activation of the Signaling Pathway by Allicin in SKOV3
Cells. Human phospho-kinase array assays were performed
to discover which signaling pathways are involved in allicin-
induced SKOV3 cell apoptosis. The AKT and JNK path-
ways were activated (see supplementary data in Supplemen-
tary Material available online at http://dx.doi.org/10.1155/
2014/378684). As activation of the JNK pathway is a novel
finding in this setting, we focused on it in the following exper-
iments. Phospho-JNK increased in a dose-dependentmanner
(Figure 3(a)), and peak phosphorylation was detected at
15min—when the cells were treated with 25 𝜇g/mL of allicin
(Figure 3(b)). Furthermore, SP600125 could partially inhibit
JNK phosphorylation as activated by allicin (Figure 3(c)),
revealing that allicin-induced apoptosis is related to the JNK
MAPK signaling pathway in SKOV3 cells.

3.3. JNK Activation by Allicin Results in Bax Translocation
and Cytochrome 𝑐 Release in Mitochondria. The Bax (2D2)
and cytochrome 𝑐 levels in the mitochondrial and cytosolic
fractionswere examined to further elucidatewhether the JNK
pathway is involved in downstreammolecular events of apop-
tosis. As shown in Figure 4(a), the mitochondrial Bax level
decreased in a time-dependent manner but simultaneously
increased in the cytosolic fraction.Theopposite was observed
for the cytochrome 𝑐 level. Interestingly, SP600125 markedly
blocked cytochrome 𝑐 release from mitochondria in SKOV3
cells exposed to allicin (Figure 4(b)). Allicin-induced JNK

clearly leads directly to an increase in cytochrome 𝑐 con-
tent.These biochemical changes confirm that allicin-induced
apoptosis is mediated by JNK activation.

4. Discussion

Apoptosis, programmed cell death process, is an important
way to remove aging, damage, and mutation of cells. Along
with the in-depth study of apoptosis and its mechanisms,
researchers come to realize that inducing tumor cell apop-
tosis is an effective way for the treatment of the tumor
[21]. Therefore, exploring new therapy of regulating the
cellular mechanisms and inducing apoptosis to treat tumors
is becoming one of the hotspot researches in the field of
oncology.

Apoptosis is a tightly regulated process controlled by
several signaling pathways, such as the caspase and mito-
chondrial pathways [22]. The Bcl-2 family of proteins, either
proapoptotic (Bax) or antiapoptotic (Bcl-2) proteins, plays
an important role in apoptosis that leads to the release
of cytochrome 𝑐 from mitochondria [23]. Similarly, mito-
chondria are known to play a central role in mediating
“intrinsic death signals” and could therefore serve as a novel
target for chemotherapy. Cytochrome 𝑐 is a mitochondrial
protein whose release into the cytosol is regulated by Bcl-
2 family members [24]. Once it is released into the cytosol,
cytochrome 𝑐 interacts with procaspase-9, after which it
switches on caspase-3 or caspase-7, leading to apoptosis [25].

Recent research has shown that MAPK proteins are
importantmediators of apoptosis induced by stressful stimuli
[26]. JNK and p38 MAPK are collectively termed “stress-
activated protein kinases” because they are activated by
various stress-related stimuli and chemotherapy drugs [27].
The JNK signaling pathway has been reported to affect
members of the Bcl-2 family. For example, JNK not only can
inactivate antiapoptotic Bcl-2 proteins but also can activate
the mitochondrial translocation of Bax [28].

In the present study, allicin activated the AKT, P53, and
JNK (c-Jun) pathway in SKOV3 cells by human phospho-
kinase array analysis; however, the signals were developed
weakly, for the control signal was extremely strong (supple-
mentary data). Since the JNK pathway was novel finding in
this setting, we focused on the JNK pathway in this study and
the JNK activation pattern was further confirmed by western
blot. JNKactivation subsequently inducedmitochondrial Bax
translocation and the release of cytochrome 𝑐 from mito-
chondria into the cytosol. SP600125 could markedly block
these actions. In addition, the expression of Bcl-xL slightly
decreased following treatment with allicin (data not shown).
These results indicate that caspase-independent pathways
are involved in allicin-induced apoptosis. In conclusion, our
data provide new evidence that allicin can activate the JNK
pathway, which leads to mitochondrial Bax translocation and
mitochondrial release of cytochrome 𝑐, thus inducing SKOV3
cell apoptosis.
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Figure 2: Flow cytometry analysis of allicin and/or SP600125 in SKOV3 cell apoptosis. SKOV3 cells were pretreated with 20𝜇M SP600125
for 30min before incubation with 25𝜇g/mL of allicin, and apoptotic cells were measured by cytometry after 48 h. Data (mean ± SD) are
representative of three experiments. (a) is a representative figure and (b) is a statistical graph. Asterisks indicate statistically significant
difference (∗∗𝑃 < 0.01).
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Figure 3: Effect of allicin and/or SP600125 on the phosphorylation of JNK in SKOV3 cells. (a) Treatment with various concentrations of allicin
for 15min. (b) Treatment with 25𝜇g/mL of allicin at indicated times. (c) Pretreatment with 20 𝜇M SP600125 for 30min before incubation
with 25 𝜇g/mL of allicin for 15min; JNK phosphorylation was measured by western blot analysis after 48 h.
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Figure 4: Western blot analysis showing cytochrome 𝑐 and Bax levels in response to allicin. (a) SKOV3 cells were treated with 25𝜇g/mL of
allicin for 12 h. Subsequently, cytosolic andmitochondrial fractions were prepared and western blot analysis was carried out (20𝜇g of protein)
as described in Materials and Methods. (b) Pretreatment with or without the JNK inhibitor SP600125 for 30min, followed by treatment with
allicin for 12 h to analyze Bax and cytochrome 𝑐. Data are representative of three independent experiments showing a similar pattern of
expression. 𝛽-Actin and Hps60 were used as internal control.
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