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Abstract

The human immune system is comprised of cellular and molecular components designed to

coordinately prevent infection while avoiding potentially harmful inflammation and auto-

immunity. Immunity varies with age, reflecting unique age-dependent challenges including fetal

gestation, the neonatal phase and infancy. Herein, we review novel mechanistic insights into early

life immunity, with emphasis on emerging models of human immune ontogeny, which may inform

age-specific translational development of novel anti-infectives, immunomodulators and vaccines.
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Challenges in newborn and infant immunity

Most of the global mortality under the age of 5 is due to infection and is concentrated among

newborns and young infants who are particularly susceptible to microbes [1–4]. In this

context, a growing number of biomedical investigators and biomedical funding agencies

have focused on a more complete understanding of early life immunity. Such studies may

not only uncover important principles of immune ontogeny, but may inform development of

novel vaccines and anti-infective strategies. Newborns express a unique immune system

rendering them vulnerable to infection, in part due to distinct immune responses specifically

adapted for early postnatal life [1]. Although the early life immune system does enable

certain microbe-induced responses, its distinct nature, including reduced pro-

inflammatory/T helper 1 (Th1) cell-polarizing function, impairs responses to microbes and

most vaccines. Technological advances have facilitated modeling of immune ontogeny both

in vitro and in vivo providing fresh insights and opening new horizons in this area of

biomedical importance. Concurrently, several recent significant policy and funding
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initiatives have promoted characterization of neonatal and infant health. Among these

initiatives are the National Institute of Health funding program focused on The Infant

Immune System: Implications for Vaccines and Response to Infections [3] and the Bill &

Melinda Gates Foundation’s Decade of Vaccines initiative that focuses on reducing the

burden of infectious diseases for people in resource-limited settings [5, 6]. The importance

of taking into consideration the distinct nature of early life immunity is a key concept shared

by these and other funding agencies.

Key to understanding early life immunity is the concept of ontogeny- the development in an

individual of the immune system from fetal life though adulthood (Figure 1). Unique

features of human immunity in early life include age-dependent innate responses to danger-

or pathogen-associated molecular patterns (DAMPs and PAMPs, respectively) [2, 7] as well

as of adaptive immune responses to pathogens and vaccines [8, 9]. Upon challenge with

immune stimuli, children under the age of 2 months express an innate Th-2- and Th-17 cell

polarization, weak Th1-polarization, and low innate antiviral type 1 interferon (IFN)

responses [10]. Of note, the pattern of cytokine induction in early life corresponds to age-

dependent susceptibility to infection: (a) Impaired Th17 responses in preterm newborns

correspond to increased susceptibility to infections with extracellular pathogens such as E.

coli and Candida spp [10], and (b) impaired Th1 responses correspond to increased risk of

infection with intracellular pathogens such as Listeria monocytogenes, Mycobacterium

tuberculosis and herpes simplex virus. Relatively weak innate Th1-polarizing cytokine

production gradually matures during infancy. Moreover, given the limited exposure to

antigen (Ag) in early life, both the T cell and B cell lymphocyte compartments exhibit age-

dependent maturation, with low numbers of memory-effector T and B cells detectable after

birth into early infancy [11]. These distinct neonatal/newborn Th17- and early-life-infant

Th2- polarized responses, in combination with fewer memory-effector cells, potentially limit

the efficacy of early life immune responses against intracellular infections and diminish Th1

vaccine responses [2, 12]. Nevertheless, certain pathogenic organisms, adjuvants and self-

adjuvanted vaccines may induce inflammatory and/or Th1-polarizing responses in early life,

possibly by stimulating distinct and/or multiple innate immune receptors/pathways in an

additive or synergistic manner.

Modulation of the maternal immune system during fetal gestation and postnatal microbial

colonization may play fundamental roles in the induction, training, and function of the host

immune system, as has been recently reviewed [13–15]. Herein we review ontogeny of

infant immunity including the response to immunization, with a focus on neonatal

immunity. We summarize current and emerging methodologies to characterize early life

immune ontogeny, many of which are centered on in vitro studies of human cord or infant

peripheral blood, or blood-derived leukocytes, and in vivo studies of newborn mice, non-

human primates or adult humans. We consider the importance of often under-appreciated

soluble immunomodulatory factors in autologous plasma as well as cell-based immunity,

focusing on the ontogeny of immunosuppressive erythroid precursors, granulocyte/

neutrophil function, pattern recognition receptor (PRR)-based responses of antigen-

presenting cells (APCs) such as monocytes and dendritic cell (DCs) and of T and B cells.

Lastly, we will emphasize how the distinct nature of early life immune ontogeny may inform
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treatment of infections diseases and development of age-specific immunomodulators and

vaccines [3, 16].

Emerging models to study immune ontogeny

Study of human early life immunity is challenging due to the transient nature of this phase

of life, inherent logistical obstacles posed by the smaller size of newborns and infants (and

therefore typically smaller amounts of biosamples that can be obtained), and the distinct

societal place of children. Limitations in primary sample collection (i.e. volumes and sizes)

from both human and other animal sources have led researchers to explore new methods,

approaches and models. A variety of animal models are available for the study of immune

ontogeny and vaccine development [17]. Due to the extensive immunological toolkits and

reagents available in combination with the relatively short gestational period (~20 days),

neonatal mice are often employed (see Table 1). For similar reasons, mice are also leveraged

to study fetal and preterm immune ontogeny [18]. However, these in utero models often

require specific skills and facilities, and there is understandably limited accessibility to

anatomically distinct immune compartments. Murine and rat models also are limited by

species-specific features of the innate immune system, which is hypervariable between

species [19, 20]. For example: a) mice express divergent Toll-like receptors (TLRs) that can

respond differently than human cells to certain TLR agonists (TLRAs) and b) murine

polymorphonuclear leukocytes (PMNs) do not express defensin peptides which are abundant

components of human PMN [21]. Study of pigs and non-human primates (for example, the

Indian Rhesus macaque -Macaca mulatta) may overcome some of these issues, more closely

modeling human immune responses and allow ready accessibility of immune compartments.

For example, it is feasible to obtain relatively large volumes of non-human primate placental

cord and newborn and infant peripheral whole blood for in vitro stimulation assays [22].

However, research using these animals is costly, as they require highly specialized housing,

care, and personnel training (see Table 1).

In vitro study of human neonatal immune responses has often employed placenta-derived

cord blood [23]. Standardized 96-well methods for whole cord blood assays have been

developed, incorporating flow cytometry and multiplexing cytokine assays [24]. Since

human whole blood assays are practical and relatively inexpensive, they enable longitudinal

studies of geographically diverse populations [25, 26] in resource-poor environments [27,

28]. Such longitudinal studies have characterized the ontogeny of interleukin 12 (IL-12)-

producing capacity to bacterial components throughout childhood [29], which is diminished

early in life. Conversely, TLR9-mediated cytokine responses to CpG oligonucleotide

stimulation of cord blood cells induces significantly greater IL-6, CXCL8 (formerly IL-8),

IL-1β and the anti-inflammatory cytokine IL-10 compared to peripheral blood from 3

month-old infants [30]. Collection of relatively low (< 10 mL) volumes of human neonatal

and infant peripheral blood allows in vitro immune evaluation, as demonstrated in clinical

vaccination trials [31–34].

In addition to whole blood assays, mononuclear cell (MC) cultures are also a popular

approach to in vitro immune evaluation [33, 35]. Such assays have highlighted numerous

ontological immune differences. For example, lipopolysaccharide (LPS; a TLR4 agonist)-
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induced MC production of Tumor Necrosis Factor (TNF), C-X-C motif chemokine 10

(CXCL10) and IL-12p70 by MCs reaches adult levels between 6–9 months of life [30]. Of

note, early life MC poly-functionality- i.e. the ability of a single cell to produce multiple

cytokines simultaneously- is diminished [35]. Human neonatal monocyte-derived dendritic

cell (MoDC) assays have also been developed [36, 37], which enable evaluation of age-

specific adjuvant and adjuvanted-vaccine activation of DCs, which are key to vaccine

responses (see Table 1).

In addition to ontological differences in cellular function, increasing attention has turned to

age-specific soluble factors that modulate immune responses. Although traditionally human

leukocytes have been cultured in xenologous (e.g., fetal bovine) and/or heat-treated serum, a

growing literature indicates that these conditions may not accurately model human responses

[38]. Accordingly, an increasing number of studies have employed autologous plasma [22,

39], a rich source of multiple soluble factors that modulate immune responses in an age-

specific manner [38] (Box 1). Efforts to more accurately predict human immune function in

vitro will continue to incorporate the newest available technologies. For example, the study

of MC fractions within three-dimensional matrix-assisted microphysiologic tissue

constructs, that facilitate the autonomous differentiation of DC subsets may more accurately

model DC development in vivo [40]. These new methodologies have accelerated

characterization of the ontogeny of multiple leukocyte populations including neutrophils,

monocytes, DCs and Natural killer (NK) cells.

Box 1

Ontogeny of plasma-mediated immune regulation and inflammasome-
mediated innate immune responses

Plasma-mediated immune regulation

Plasma, the fluid phase of blood, modulates pro-inflammatory danger signals that initiate

host defense during infection. In addition to the high expression of basal anti-

inflammatory cytokines (IL-4, IL-10 IL-13, TGF-β) in cord blood vs. adult plasma,

various immuno-suppressive plasma factors are expressed at higher concentrations early

in human life [38]. These plasma-derived factors, including proteins, lipids, purines, and

sugars, may help maintain in utero feto-maternal tolerance; allow for microbial

colonization after birth and serve anti-inflammatory/pro-resolving functions during

infection [2]. Relative to adult plasma, neonatal plasma, especially that from preterm

infants, demonstrates a gestational age-dependent inadequacy in multiple antimicrobial

proteins and peptides (APPs), including bactericidal/permeability increasing protein

(BPI) and the cathelicidin LL37 [47]. Indeed, replenishing APPs is an attractive novel

approach to prevent and/or treat neonatal sepsis [119].

Age-dependent expression of plasma purine metabolizing enzymes may influence

inflammatory responses. Adenosine-5′-triphosphate (ATP) is a danger signal that

enhances inflammatory responses, including inflammasome activation in neonatal DCs

[22]. Sequential de-phosphorylation of ATP generates adenosine that has anti-

inflammatory/pro-resolving properties [120]. Of note, newborns have high concentrations

of the enzymes that generate adenosine, such as CD73 and alkaline phosphatase, and
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have relatively lower concentrations of adenosine deaminase (ADA1), an enzyme that

deaminates adenosine thereby rending it immunologically inert, resulting in a higher

basal concentration of plasma adenosine at birth [51]. Therefore, higher adenosine

generation in newborn blood may promote an anti-inflammatory immunological status.

Additional immunomodulatory soluble plasma factors remain to be identified, including

two distinct factors that suppress TLR4-mediated IL-12p70 production or induce IL-10

or production [121, 122]. This phenotype is maintained up to 1 month of age. Overall, the

distinct composition and immunomodulatory effects of plasma highlight the importance

of conducting in vitro assays in autologous plasma conditions as opposed to xenologous

(e.g., fetal bovine serum) or heat-treated conditions which may result in divergent and

possibly unphysiologic immune responses. Such microphysiologic modeling may enable

identification of agents that are more likely to be active in vivo. For example, certain

stimuli such as TLR8 agonists are relatively refractory to adenosine inhibition [22, 123],

and may be promising candidates as potential neonatal and infant vaccine adjuvants.

Inflammasome-mediated innate immune responses

Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a cytosolic

PRR family that respond to a range of PAMPs and DAMPs by triggering caspase-

dependent IL-1β/IL-18 production [124, 125]. Multiple studies have characterized human

TLR- and NLR-agonist stimulated cytokine production by monocytes in neonatal and

infant whole blood [126]. Prematurity has been associated with reduced IL-1β production

in LPS-treated cord blood [127] and defective mononuclear cell production of IL-18

[128]. In contrast, among term newborns, TLR-and NLR-mediated neonatal whole blood

IL-1β production is greater than that in adult peripheral blood [28, 35] and slowly

decreases to adult levels over the first years of life [27]. Accordingly, IL-1 receptor

antagonist concentrations are elevated in neonates then decline to adult levels within days

[129]. TLR7/8- [35] and NOD-mediated [130] IL-1β production by neonatal

mononuclear cells in vitro are generally comparable with older individuals, while

TLR2/1- or TLR4-mediated IL-1β production only becomes equivalent after 12 months

of age [73, 84].

Inflammasome-mediated responses to the adjuvant alum are also age-dependent. A study

of infants in Papua New Guinea demonstrated that combined alum and LPS-induced

IL-1β production in whole blood significantly declined with age (~ 6–18 months) [25]. In

the same study, combined alum and LPS-induced IL-1β was also significantly higher in

CBMCs vs. PBMCs. Higher IL-1β production in neonatal whole blood may provide an

additional level of redundancy for MyD88-dependent signaling via the IL-1R1 complex

[131]. In contrast to greater monocyte-derived IL-1 production, neonatal MoDCs

demonstrate diminished caspase-1 activation and IL-1β production to (LPS + ATP)-

induced inflammasome activation, that can be overcome by stimulation with TLR7

and/or TLR8-activating imidazoquinolines [22].
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Distinct ontogeny instructs immune function

Our understanding of early life mammalian immunology has undergone significant

advancement over the past two decades. The following section highlights some recent

discoveries characterizing cellular and soluble aspects of early life immune ontogeny.

Neutrophils: quantitative and qualitative differences

Neutrophils, the most abundant of the polymorphonuclear leukocytes, are one of the first

cellular lines of host defense, eliminating pathogens by multiple microbicidal mechanisms

[41]. Preterm and term newborns demonstrate both quantitative and qualitative differences

in neutrophil function as compared to older individuals [2]. Early rodent studies

demonstrated that, under stress or activation conditions, neonatal neutrophils demonstrate

slower mobilization after bacterial challenge in vivo, due to reduced neutrophil storage

pools, and quiescent neutrophil progenitor cell populations in the bone marrow [42]. High

neonatal production of IL-6, a Th2-polarizing cytokine with anti-inflammatory properties,

including reduction of neutrophil recruitment [43], may also play a role. Moreover, under

activated or stress conditions, neonatal neutrophils demonstrate functional differences

including impaired recruitment [44], phagocytic activity [45], reduced killing mechanisms

such as expression and/or release of antimicrobial proteins and peptides (APPs) and reactive

oxygen species (ROS) [46, 47], and impaired formation of DNA-based neutrophil

extracellular traps (NETs) that serve as scaffolds for APPs that kill microbes and neutralize

their toxins [48, 49]. In general, to the extent that they have been evaluated, functional

differences, such as diminished neutrophil rolling and adhesion, are even more severe in the

preterm [50]. Interestingly, extracellular plasma concentrations of adenosine, an endogenous

purine metabolite that inhibits multiple inflammatory pathways including neutrophil-

endothelial adhesion, is elevated in newborns, potentially contributing to these distinct

neutrophil responses in early life (see Box 1) [51].

Ontogeny of immunosuppressive mechanisms

NK cells are large granular lymphocytes that play a central role in the control of viral

infections [52] and are functionally characterized by cytolytic functions and IFN-γ

production. Of note, age-related changes in mature NK cell populations have been noted

from childhood through old age [53]. Early in life, NK cell responses such as degranulation

and release of lytic factors are reduced as compared to older individuals [54], increasing

infant susceptibility to viral infection. These distinct aspects on early life NK cell function

had previously been attributed to intrinsic deficiencies in the commitment of precursor NK

cells to a fully differentiated mature form. More recently, extrinsic factors have been

implicated in that maturation of neonatal NK cells progressed faster in cluster of

differentiation (CD)11cdnR mice, whose NK cells lack transforming growth factor-β (TGF-

β) receptor signaling, resulting in the formation of a mature NK cell pool early in life [55].

Consistent with these findings, TGF-β inhibits adult NK-cell proliferation and function by

efficiently suppressing the transcriptional control factors T-bet and GATA-3, while also

promoting differentiation of T regulatory (Treg) cells that robustly produce TGF- β [56].

Human fetal NK cells derived from aborted fetal tissues are highly susceptible to TGF-β-

mediated suppression [57]. When cultured with TGF-β for 48 hours, fetal and neonatal NK
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cells, but not adult cells, demonstrated hypo-responsive degranulation and reduced anti-

CD20 induced antibody (Ab)-dependent cell-mediated cytotoxicity against target cells. Thus

while the source(s) of TGF-β remain to be identified, these finding suggest that TGF-β

contributes to NK cell immaturity and increased susceptibility to infection in early life [55].

Such results highlight the need for additional age-focused studies to understand the

mechanisms of how NK cell lineage development and that of other innate lymphoid cells

proceeds through early life, and how in turn these differences may affect responses to

pathogens [58].

Most recently, immunosuppressive CD71+ erythroid precursor cells (nucleated red blood

cells) have been shown to compromise neonatal host defense against infection. Upon

adoptive transfer into adult mice, CD71+ erythroid cells derived from the spleens of neonatal

mice are immunosuppressive, via the action of the enzyme arginase-2 [59]. Ablation of

CD71+ erythroid cells in neonatal mice, or natural postnatal age-related decline in their

numbers, correlated closely with the loss of suppression, enhanced stimulus-induced TNF

production by phagocytes and APCs, and increased resistance to perinatal pathogens such as

Listeria monocytogenes and Escherichia coli [59]. Human cord blood cells were noted to

contain an equally enriched proportion of CD71+ cells, the Ab-mediated depletion of which

increased heat-killed L. monocytogenes-induced mononuclear cell IL-6 production [59].

Given that reduced gestational age correlates with higher frequency of nucleated red blood

cells in cord blood [60], the immunosuppressive effect of CD71+ erythroid precursors may

be more broadly linked to gestational age-dependent neonatal susceptibility to infection.

Thus, CD71+ cells may play an important role in the temporal dampening of inflammation

induced by early life colonization with commensal microorganisms after parturition.

Distinct APC ontogeny may impact early life responses to pathogens and vaccines

APCs are critical for induction of adaptive immunity and tolerance [61, 62]. Ontological

related differences within each subset may limit effective immune responses. Cord blood

MCs demonstrate markedly reduced LPS-induced TNF production as compared to adult

blood MCs [63]. In addition to plasma factors (Box 1), reduced LPS-induced TNF

production by neonatal MCs has recently been attributed to functionally lower TLR4

expression on activated or patrolling CD14+ CD16 (FcγRIII)+ monocytes, whose numbers

are lower at birth [64]. A key feature of the distinct APC cytokine responses in early life is

that the production of cytokines is polarized (e.g. high production of anti-inflammatory IL-6

and IL-10). Similarly, human and murine neonatal macrophage production of

immunosuppressive IL-27, a heterodimeric cytokine of the IL-12 family, peaks during

infancy [65]. Both human cord blood- and neonatal murine-derived splenic macrophages

express IL-27 genes and proteins at elevated levels compared to adult counterparts.

Neutralization of IL-27 with soluble IL-27 receptor enhances neonatal macrophage IFN-γ

responses to the attenuated pediatric tuberculosis vaccine Bacillus Calmette–Guérin (BCG)

in vitro [65]. Such approaches could potential improve vaccine responses early in life, given

the fact BCG-attributable increases in IFN-γ post-vaccination correlates with better with

levels of protection induced by immunization.
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As part of their function as professional APCs, DCs can integrate information from both self

(e.g., danger-associated molecular patterns) and foreign stimuli (e.g., components of

pathogens or vaccines) and orchestrate these signals into appropriately regulated adaptive

immune responses [66]. Both qualitative and quantitative differences in DC maturation and

functionality with age have been demonstrated [67]. As the investigation of human fetal and

neonatal circulating- and tissue resident- DC cellular development is intrinsically difficult,

murine studies dominate the published literature in this field. DCs are present in the

lymphoid organs of newborn mice, although in low numbers. Conventional CD11c+ DCs

can be detected in the thymus of embryonic mice as early as day 17 of gestation, with adult-

like levels of CD8α+ DCs not acquired until 2-weeks post birth [68]. The composition of

DC populations in the spleen of young mice differs significantly from those in adult mice.

DCs are among the first leukocytes to colonize the spleen, [69], detectable at of day 1

newborn mice [68]. Changes in splenic DC composition occur in distinct waves of

colonization with murine CD4-CD8α-CD205+ DCs and plasmacytoid DCs (pDCs, a main

source of anti-viral type-I IFNs) present at birth [69], CD4−CD8α+CD205+ DC developing

next (~7 days) then CD4+CD8α−CD205− and CD4−CD8α−CD205− DCs (~3 wks). Murine

CD4+ DCs become the prevalent subset by ~3 weeks of age, reaching adult levels at ~5

weeks [68]. Conventional DC of young mice (< 5 wks) are also functionally less mature

than their adult counterparts, exhibiting reduced stimulus-induced cytokine production

(IL-12p70, IFN-γ) and lower Ag-processing/presentation ability [68].

Human term neonate cord blood contains total numbers of pDCs comparable to adult

peripheral blood [35], but with variation in phenotype and subset composition. These

differences have seemingly few consequences on pDC-directed antiviral responses (e.g. the

ability to produce IFN-γ upon TLRA challenge) in term infants [70], but are significantly

relevant for preterm neonates, who are especially susceptible to viral and other intracellular

infections [71]. Newborn cord blood has fewer conventional DCs (cDCs; MHCII+, CD11c+,

CD14−/low, CD123−) than adult peripheral blood [35, 72], followed by a steady increase in

the cDC population over the first 2 years of life [73]. Term neonatal cDCs, [35, 74] and in

vitro-differentiated neonatal MoDC are generally less responsive to TLR stimulation [22,

37]. Specifically, neonatal cDCs demonstrate impairments in TLR-mediated IL-12p70

production [75, 76], while both cDCs and pDCs demonstrate reduced TLR-mediated

polyfunctionality (i.e. have a lower ability to produce multiple cytokines per cell) [35]. In

addition, newborn MoDCs displayed impaired (LPS + Adenosine-5′-triphosphate (ATP))-

induced caspase-1-mediated IL-1βproduction [22] (Box 1). Neonatal cDCs are also highly

susceptible to extrinsic factors such as regulatory B cell suppression [77]. However, among

TLR agonist, those that activate TLR8 demonstrate greater efficacy in inducing maturation

of neonatal DC maturation. For example, small synthetic imidazoquinolines, antiviral

compounds with structural homology to the purine adenosine, can induce adult-like

responses [22, 39] in an adenosine/cyclic AMP-refractory manner (Box 1). TLR7/8-

activating imidazoquinolines also induce adult-level inflammasome activation in human

newborn MoDCs without requiring exogenous ATP. Robust activation of human neonatal

DCs can may also be achieved using agonists that activate multiple TLRs that may act

synergistically to increase production of inflammatory cytokines [37].
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The distinct functional features of neonatal DC function appear to persist into infancy, as

seen with the ontogeny of IL-12p70-synthetic capacity throughout the childhood years.

IL-12p70 production by peripheral blood mononuclear cells in response to either LPS or

heat-killed Staphylococcus aureus was reduced at birth and was still below adult levels in

both 5- and 12-year-old children [29]. Because IL-12p70 was predominantly derived from

circulating HLA-DR+ cells, the slow maturation of IL-12p70-synthetic capacity in the

childhood years can be attributed to reduced numbers and/or functionality of DCs [29, 78].

TLR-mediated up-regulation of DC co-stimulatory molecules such as CD80 and HLA-DR

reached adult levels within the first 3 months of life for myeloid DCs (mDCs) stimulated

with LPS and at 6–9 months of life for monocytes and pDCs stimulated with the TLR9

agonist CpG [30]. Environmental factors may also influence the ontogeny of DC maturation

and functional responses. DCs from neonates born into traditional environmental conditions,

including a high microbial burden, such as Papua New Guinea, are functionally more

quiescent (i.e. reduced abilities for antigen uptake/processing and induction of T-cell

proliferation in vitro) compared with DCs from children born into more modern

environments (Australia) [79, 80]. Overall, the distinct ontogeny of DC hematopoiesis and

functionality may reduce protective adaptive immunity to pathogens and contribute to

reduced vaccine responses early in life [8].

Ontogeny of Adaptive Immunity

Since infants have limited exposure to Ags in utero to prime adaptive immunity, they are

heavily dependent on innate immunity for protection against infections. Suboptimal neonatal

memory responses contribute to the substantial challenges to effective disease prevention

[81] and impede global efforts to achieve early immunization to many infectious diseases [7,

82]. This has been attributed, in part, to the immaturity of DCs in the neonatal and infant

periods, as outlined above. Functional differences include: (i) reduced capacity for MHC

Class II Ag presentation and subsequent stimulation of Ag-specific T-cell memory [72], (ii)

the predisposition for neonatal human DCs to prime the generation of non-polarized CD4 T-

cell effectors [36], (iii) the ability of neonatal DCs to induce a tolerogenic state by

preventing the differentiation of naive T-helper cells towards Th1, irrespective of their

subtype [83] and (iv) distinct inflammatory responses might spur alternative/detrimental T-

cell development [84, 85]. MicroRNA-mediated control of neonatal naive CD4+ T Cell

activation may also contribute to polarization bias [86].

Distinct age-specific functional lymphocyte programs may also be modulated by early-life

developmental, nutritional and environmental factors [79, 87] and hematopoiesis [88] (Box

2). Newborns and infants have relatively fewer effector memory-T cells and effector

memory-B cells [11], with large numbers of Tregs present in fetal lymph nodes, and high

frequencies of recent thymic emigrant protein tyrosine kinase-7 (PTK7)+ thymus-derived

CD4+ T-cells in peripheral tissues [89]. As the source of hematopoiesis switches to the

newborn bone marrow, the ratio of effector T cell/Treg becomes more adult-like [90]. Early

life B cell responses in humans and mice demonstrate limitations of primary Ab responses to

vaccines and infections [91]. These B cell limitations in early life are ascribed to extrinsic

factors, such as limited plasma cell differentiation, germinal center responses and lower DC

activation signals as well as intrinsic factors such as reduced strength of B cell receptor
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signaling in naive neonatal B cells. Overall, these studies suggest that extrinsic

immunosuppressive factors and intrinsic functional features of key leukocyte populations

and signaling pathways combine to instruct distinct early life innate immune ontogeny

functions. These factors have significant impact on the distinct, and often reduced, adaptive

immune responses to pathogens and vaccines in early life.

Box 2

Ontogeny of T (helper) cell populations in early life

Newborns and infants have relatively fewer effector memory-T cells (CD45RA−,

CD45RO+) and effector memory-B cells (CD27+) [11, 132]. Additionally, neonatal

CD4+ T cells are epigenetically biased towards Th2 cytokine production and demonstrate

higher susceptibility to apoptosis of Th1 cells due to increased expression of IL-4Rα/

IL-13Rα1 hetero-receptors [8]. Infants have relatively high frequencies of protein

tyrosine kinase 7+ (PTK7+) recent thymic emigrant (RTE) antigenically naive CD4+ T-

cells in secondary lymphoid organs [89], which upon completion of intrathymic

maturation emigrate from the thymus to the periphery. PTK7+ RTEs have limited

functional Th1 polarization activity, including reduced anti-CD3/anti-CD28-induced

proliferation, IL-2-and IFN-γ-production, possibly contributing to infant susceptibility to

intracellular pathogens [133].

Fetal hematopoiesis may generate distinct populations of T cells that temporally coexist.

During gestation, both maternal [134, 135] and fetal [90] adaptive immune responses are

biased towards Ag-specific immune tolerance. Large numbers of CD4+, CD25+, Foxp3+

Regulatory T cells (Tregs) are preferentially present in fetal lymph nodes, originating

from 1) fetal liver hematopoietic stem and progenitor cells and 2) migratory maternal

Tregs crossing the placenta, possibly residing in secondary lymphoid organs for years

after birth. Maternal Foxp3+ CD4+ T-cells with fetal-Ag specificity accumulate (>100-

fold through parturition), persist at elevated levels after delivery and sustain beneficial

regulatory tolerance through antigen-specific ‘memory’ Tregs [135]. These recently

appreciated features suggest a “layered immune system”, with specific functional biases

at different stages of immune development [104, 136]. As the source of hematopoiesis

transitions to the infant bone marrow, the resulting infant effector T cell/regulatory T cell

ratio becomes more adult-like [90]. Consistent with this theory, the cytokine milieu also

plays an important role in determining precursor cell differentiation. In newborns,

impaired production of pro-inflammatory cytokines allows for the dominance of the

FOXP3 transcription factor over the Th17-polarizing RORγT [137], but Th17

differentiation capacity also develops as CD161+ naive CD4+ IL-17-producing T Cells

emerge from the postnatal thymus, in response to IL-1β and IL-23 [138, 139], cytokines

highly expressed early infancy [10, 140]. Furthermore, as Th17 and Treg cells have

reciprocal development pathways, perturbation of the Th17 lymphocyte development

may influence development of subpopulations of Tregs [141] as well as early onset atopy

[142].
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Development of novel age-specific immunomodulators and vaccines

Immunization aims to induce a protective immune response against infection or disease [9].

However, decreased magnitude of immunogenicity and reduced persistence of functional

Abs is a major concern for early life immunization strategies. Approaches to this challenge

include design of multi-dose immunization schedules, greater length of time between

vaccine doses and/or administration of doses later in infancy, all of which increase

immunogenicity of pediatric vaccines [92]. Subunit vaccines consisting of purified microbial

products often lack the necessary adjuvant activity to induce and optimally shape an immune

response. In this context, inclusion of alum adjuvants has been key to the efficacy of these

subunit vaccine formulations. Although Alum has some efficacy as an adjuvant, alum-

adjuvanted vaccines often require multiple doses for protection that is often not achieved

until after 24 months of age given current immunization schedules. Accordingly, increased

appreciation of immune ontogeny may inform development of rationally designed age-

specific vaccine formulations, which may include adjuvants that more effectively enhance

immune responses in early life [9]. For example, there has been some success with

mucosally-targeted human pediatric vaccines. The live attenuated influenza nasal-spray

vaccine may be more effective than intramuscularly injected trivalent-inactivated vaccine

influenza vaccines in children aged 6–71 months [93].

A number of adjuvanted, including live (self)-adjuvanted vaccines induce relatively robust

responses in neonates. For example, immunization of neonatal mice with a Sindbis virus

replicon-based DNA vaccine encoding measles virus glycoproteins induced adult-like

neutralizing Abs and cell-mediated immunity, even in the presence of maternal Abs [94]. A

plasmid expressing IL-2 [95, 96] or cationic liposome adjuvants [97] enhanced protection

with this measles virus DNA vaccine in infant non-human primates. Adult-like

multifunctional anti-mycobacterial T cell responses can be induced through neonatal

immunization with either an anti-microbial peptide/immunostimulatory

oligodeoxynocleotide based- or liposome-based mycobacterial vaccine, which induced

adjuvant-dependent DC activation [98, 99]. Heterologous prime-boost vaccination strategies

may also be advantageous in early life. Intranasal priming of newborn mice with S. typhi

Ty21a expressing anthrax protective Ag (PA) followed by intramuscularly PA-boosting,

induced greather B and T cell-mediated immunity compared to intramuscularly

administration alone [100, 101]. Optimally, the most desirably approaches would be single

dose immunization strategies that would instruct life long protection to subsequent

challenges. For example, immunization of neonatal mice with a live-replicating attenuated

strain of Listeria monocytogenes protects immediately and for life regardless of age at

vaccination [102]. 6 day old mice immunized with a single dose of attenuated L.

monocytogenes induced vaccine-peptide-specific IFN-γ-producing T cells and protected

mice by day 7 post-vaccination and for 2 years thereafter when challenged with a virulent L.

monocytogenes strain. Robust innate immune activation inherent to the use of a live vaccine

may contribute to the rapid kinetics and longevity of protective responses. Of note, the

inhibitory milieu and T cell-intrinsic factors that limit the expansion of neonatal follicular T

helper (Tfh) cell populations, and subsequently reduced germinal center B cell responses,
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may be circumvented by vaccine adjuvantation with TLRAs that support Tfh cell

differentiation [103].

Concluding remarks

The past decade has seen a substantial increase in our understanding of early life neonatal

and infant immune ontogeny [3]. In vitro experiments characterizing the functions of

neonatal and infant leukocytes have become increasingly sophisticated with respect to

physiologic modeling (e.g., inclusion and characterization of autologous plasma) as well as

measurement of multiple immunologic biomarkers (e.g., polychromatic flow cytometry,

multi-analyte cytokine analyses, etc). In vivo experiments have concurrently become more

commonly employed in an effort to verify in vitro observations. The human adaptive

immune system may develop in distinct layers with specific functions at different stages of

development [104], with age-specific mechanisms regulated by the major human APC

subsets [73]. Remarkably, innate immunity may also share traits of adaptive immunity

[105], but in a broader manner than classical immunological memory (Box 3). Since

neonates and infants are more dependent on their innate immune system for protection

against infections early in life [106], these observations may be particularly relevant for

translational studies in this population. Indeed, there is rationale to incorporate into future

studies, investigations into how primary challenge with infectious agents early in life may

lead to cross-protection to antigenically-unrelated pathogens [107]. Future characterization

of immunomodulatory plasma factors [38, 51] will also provide further insight into the

ontogeny of innate immune development and may identify novel targets for the prevention

and treatment of neonatal infection.

Box 3

Innate immune memory may confer heterologous immunity

Features of human innate immunity may share characteristics of adaptive immunity

[105], exhibiting an immunological memory after stimulation by infection or

immunization. This “trained immunity” was initially observed in plants and invertebrate

animals [143], and has more recently been demonstrated in mice [123] and humans

[144]. Innate memory-based heterologous immunity in mammals is broader than classical

immunological memory, is dependent on innate immune cells (i.e. NK cells, APCs) and

may function through enhanced expression of PRRs and heightened protective

inflammatory responses. Trained innate immunity may mediate the ability of stimuli such

as infection [107], TLR agonists [123] and/or self-adjuvanted live vaccines (e.g., BCG)

[144–146] to enhance host defense against a broad range of unrelated pathogens

independent of T/B cell adaptive responses. Much remains to be learned about the scope,

mechanisms and characteristics of innate immune memory and heterologous immunity,

concepts with intriguing implications for optimization of immunization schedules and

future vaccine development.

Distinct early life immune ontogeny has intriguing implications for current and future

pediatric vaccine development [7]. Indeed, pediatric vaccine adjuvants such as alum and
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TLR agonists have age-dependent immune activity [25]. Of note, both the nature of a given

adjuvanted vaccine and the timing of its administration may polarize innate immune

cytokine production in later life to unrelated stimuli. For example, a birth dose of alum-

adjuvanted pneumococcal conjugate vaccine resulted in altered TLR-mediated cytokine

responses at 9 months of age [31]. Therefore, future development of novel age-specific

vaccine formulations and delivery systems is likely warranted [108]. Given that ~11% of the

global population is born preterm [109], the high burden of preterm infection [110], and that

preterms demonstrate distinct immunity [111] which is incompletely characterized, there is a

particular need to accurately model preterm immune responses to adjuvants and vaccines.

The study of infant immunity in the developing world, where the greatest burden of

infectious death occurs, presents its own unique challenges [112, 113]. Innate immune

ontogeny may vary between geographically diverse populations [25, 27, 28] due to

environmental factors [114], infant nutritional statues [115], maternal nutritional statues

[116], birth season [117] and in utero exposure [118] to pathogen-associated Ags. Given the

complexity of relevant factors, studies that correlate in vitro and in vivo responses will be

crucial for refining our in vitro models and accelerating development of safe and effective

pediatric vaccines [7]. Caution will also be required when interpreting results characterizing

innate and adaptive immune responses of circulating human blood cells as these may not be

indicative of local responses at other anatomic sites relevant to vaccinology such as mucosal

surfaces and muscle (Box 4).

Box 4

Topics for future research

• Development of micro-physiologic in-vitro systems to more accurately model

age-specific human immune responses and immune ontogeny, particularly at

sites of immune perturbation/immunization, such as mucosa, muscle tissue and

blood.

• Characterize molecular mechanisms that regulate immune ontogeny.

• Characterize linear vs. layered models of immune ontogeny, including potential

role of newly generated lymphocyte populations.

• Define ontogeny of antigen-presenting cell function.

• Assess whether targeted and selective modulation of immune ontogeny may

represent a novel approach to developing age-specific anti-infectives.

• Determine whether immune ontogeny may inform development of novel safe

and effective age-specific adjuvants and adjuvanted vaccines to be given in

early life.

• Characterize the role of epigenetic mechanisms in susceptibility to infection and

risk of developing atopic disorders.

• Assess the scope and mechanisms underlying trained innate immunity (innate

memory) and its potential relevance to vaccine-induced heterologous immunity

in early life.
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• Assess the effect of vaccines on the ontogeny of immune polarization.

• Assess the impact of modulation of maternal immune system, microbiome,

environment, nutrition and region of birth/infancy on immune ontogeny.

Immunity is not static but rather changes with age. Increased awareness and characterization

of age-dependent changes of innate immune ontogeny, including definition of the

underlying cellular and molecular mechanisms, will be of substantial clinical importance for

development of novel age-specific anti-infectives, vaccine design and treatment of atopic

disease. The continuing high global burden of infections in the very young and consequent

need for additional safe and effective early life anti-infectives and vaccines provide a

compelling rationale and motivation for on-going basic and translational studies in the area

of neonatal and infant immune ontogeny.
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Highlights

• There is a continuing high global burden of infections in the very young.

• Immunity is not static; it changes with age, with many unique features in early

life.

• Newborns and young infants have distinct immune ontogeny and responses to

microbes.

• Emerging in vitro assays may more accurately model age-specific human

immune ontogeny.

• Development of novel age-specific vaccine formulations and delivery systems is

likely warranted.
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Figure 1. Ontogeny of Early Life Immunomodulation
Preterm (<37 weeks gestational age, GA) and full-term newborns (37–41 weeks GA).

Abbreviations: ADA (adenosine deaminase); Breg (Regulatory B Cell); NK (Natural Killer);

Tfh (T follicular helper cells); TGF-β (Transforming growth factor beta); Tregs (Regulatory

T Cells)
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