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SUMMARY

Previous work has hinted that prospective and retrospective coding modes exist in hippocampus.

Prospective coding is believed to reflect memory retrieval processes, whereas retrospective coding

is thought to be important for memory encoding. Here, we show in rats that separate prospective

and retrospective modes exist in hippocampal subfield CA1 and that slow and fast gamma

rhythms differentially coordinate place cells during the two modes. Slow gamma power and

phase-locking of spikes increased during prospective coding; fast gamma power and phase-

locking increased during retrospective coding. Additionally, slow gamma spikes occurred earlier

in place fields than fast gamma spikes, and cell ensembles retrieved upcoming positions during

slow gamma and encoded past positions during fast gamma. These results imply that alternating

slow and fast gamma states allow the hippocampus to switch between prospective and

retrospective modes, possibly to prevent interference between memory retrieval and encoding.

INTRODUCTION

Place cells are neurons in the hippocampus that fire selectively in specific locations in space

that are called ‘place fields’ (O’Keefe and Dostrovsky, 1971; O’Keefe, 1976). Place cells do

not code spatial location uniformly on all traversals through their place fields. Spikes from

individual place cells are often ‘misaligned’ with respect to their average place field (Muller

and Kubie, 1989; Battaglia et al., 2004). Place field shifts in the direction opposite to the
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animal’s direction of motion have been termed ‘prospective’ firing events, and forward

shifts in the same direction as the rat’s motion have been termed ‘retrospective’ firing events

(Battaglia et al., 2004). Analogous prospective and retrospective firing properties have been

observed in grid cells in the medial entorhinal cortex (MEC) (De Almeida et al., 2012). In

grid cells, prospective and retrospective coding events have been shown to be coordinated

across simultaneously active cells, suggesting that these events reflect different information

processing modes in the entorhinal network. The prospective mode may reflect retrieval of

stored information, whereas the retrospective mode may serve as a short-term memory

buffer that facilitates memory encoding (De Almeida et al., 2012). Considering that

prospective and retrospective firing occurs in individual place cells (Muller and Kubie,

1989; Battaglia et al., 2004), it is possible that prospective and retrospective network modes

also exist in the hippocampus. In support of this idea, ensembles of place cells represent

upcoming positions at some times (Gupta et al., 2012) and represent recent positions at other

times (Barbieri et al., 2005; Gupta et al., 2012). If such modes exist in the hippocampal

network, a mechanism must exist to ensure that simultaneously active cells carry out the

same type of coding at the same time.

One possibility is that gamma rhythms provide a mechanism for coordinating

simultaneously active cells during prospective and retrospective coding. Gamma rhythms

are thought to coordinate neuronal ensembles by synchronizing the activity of cells that code

related information (Bragin et al., 1995; Harris et al., 2003; Fries, 2009; Colgin and Moser,

2010). Additionally, gamma rhythms split into distinct fast and slow subtypes that

differentially route separate streams of information (Colgin et al., 2009). Fast gamma

couples the hippocampus with inputs from medial entorhinal cortex (MEC), which convey

information about current spatial location (Brun et al., 2002; Fyhn et al., 2004; Hafting et al.,

2005) that is necessary for new memory encoding (Brun et al., 2008). Slow gamma rhythms

link hippocampal subfield CA1 to inputs from CA3 that appear to play a role in memory

retrieval (Brun et al., 2002; Sutherland et al., 1983; Steffenach et al., 2002). Additionally,

slow and fast gamma emerge on different phases of the theta rhythms with which they co-

occur (Colgin et al., 2009), and encoding and retrieval processes operate most effectively

when separated on different phases of theta (Hasselmo et al., 2002).

If fast gamma rhythms regulate the hippocampal network during spatial memory encoding,

then fast gamma would be expected to coordinate cell ensembles during retrospective

coding. If slow gamma rhythms reflect a memory retrieval mode, then slow gamma would

be expected to coordinate cell ensembles during prospective coding. We tested these

hypotheses by recording the activity of ensembles of place cells in the hippocampus of rats

running on a linear track. We found that CA1 place cells preferentially represent recent

locations during fast gamma rhythms and upcoming locations during slow gamma rhythms.

These findings provide the first evidence that fast and slow gamma rhythms reflect different

spatial memory processing modes in the hippocampal network.

RESULTS

To investigate whether spatial coding differs during slow and fast gamma rhythms, we

recorded neuronal ensembles from the dorsal hippocampus in a group of 5 rats that ran
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stereotyped paths on a linear track. We first characterized spatial coding in 692 CA1 place

cells. We followed a theoretical framework that has been proposed previously (Battaglia et

al., 2004; De Almeida et al., 2012). In this framework, prospective coding is defined to

occur when a place cell’s firing peak is in the first half of the place field, and retrospective

coding is defined to occur when the cell mainly fires in the second half of the field (Figure

1A). We observed prospective and retrospective coding modes significantly more often in

the experimental data than in surrogate data in which spikes were randomly shuffled across

runs (χ2(1) = 56.826, p < 0.0001; Figure 1B), indicating that coding modes were not merely

a random process. Classification of prospective and retrospective coding modes was not

affected by inhomogeneous spatial sampling across place fields that overlap with the ends of

the track because such fields were excluded from analyses (see Experimental Procedures).

Retrospective and prospective coding events did not reflect position tracking errors because

no differences in tracked areas from raw video recordings were observed between

prospective, retrospective, and ambiguous events (Figure S1A). Previous findings have

shown that place cells code locations ahead of an animal’s actual location when the animal

is leaving a reward site and represent locations behind the actual location when the animal is

approaching a reward site (Gupta et al., 2012). Consistent with these previous results, we

found that prospective coding events tended to occur when rats were leaving a reward

location (i.e., the ends of the track), whereas retrospective coding events tended to occur as

rats approached a reward location (Figure S1B).

We next investigated whether the occurrence of prospective and retrospective coding modes

was correlated across different cells, as has been shown for grid cells in MEC (De Almeida

et al., 2012). We found that pairs of cells were likely to exhibit the same type of coding

when the time interval between traversals through the cells’ place field centers was

relatively short. When two cells fired within time windows less than 800 ms, cell pairs

exhibited the same type of coding significantly more often than they exhibited different

types of coding (Figure 1C; χ2(1)= 15.5, p = 0.0001 for t = 0–200 ms; χ2(1) = 10.3, p =

0.001 for t = 200–400 ms; χ2(1) = 22.8, p = 0.0001 for t = 400–600 ms; χ2(1) = 6.3, p = 0.01

for t = 600–800 ms). This indicates that the majority of cells that are active at the same time

engage in the same type of coding, either prospective or retrospective, and that prospective

and retrospective coding modes are coordinated across the CA1 network. The time scale of

this coordination is similar to the time scale of switching between slow and fast gamma

states in the hippocampus (Colgin et al., 2009). Moreover, local field potentials (LFPs)

should reflect activity in the majority of neurons that show coordinated coding more than

activity in the minority of neurons that do not show coordinated coding. Therefore, we set

out to examine the hypothesis that slow and fast gamma rhythms coordinate place cells

during prospective and retrospective coding at the level of single units and cell ensembles.

Prospective and retrospective coding in single units during slow and fast gamma

To investigate whether slow and fast gamma rhythms coordinate single unit firing during

prospective and retrospective coding, we first quantified the power of slow and fast gamma

rhythms in CA1 stratum pyramidale during prospective and retrospective events in

individual cells (Figures 2A and 2B). We found that slow and fast gamma power were

differentially enhanced depending on the type of coding that was occurring (interaction
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between gamma type and coding type: two-way repeated measures ANOVA, F(1, 3642) =

20.0, P = 0.0001). Slow gamma power was significantly higher during prospective coding

modes than retrospective coding modes (t(3642) = 2.1, p = 0.04). In contrast, fast gamma

power was significantly higher during retrospective coding events (prospective vs

retrospective: t(3642) = 3.5, p = 0.0004). These differential effects of prospective and

retrospective coding on slow and fast gamma power are consistent with the hypothesis that

slow and fast gamma coordinate cells during prospective and retrospective coding,

respectively. Interestingly, a significant main effect of gamma type was also found

(F(1,3642) = 1477.1, p = 0.0001), indicating that fast gamma power increases during

retrospective coding were significantly greater than slow gamma power increases during

prospective coding. This may suggest that many place cells become synchronized by fast

gamma during retrospective coding, while perhaps a more limited number of place cells get

recruited by slow gamma during prospective coding.

‘Ambiguous’ runs are runs in which approximately equal numbers of spikes occurred in the

first and second halves of the place field. Such runs could reflect a switch from prospective

to retrospective coding as the rat passed through the field. We thus analyzed whether slow

and fast gamma power changed between the first and second halves of place fields during

ambiguous runs. We found that slow gamma power was significantly greater in the first half

of place fields than in the second half (2-tailed paired t-test: t(4417) = 2.65, p = 0.01; Figure

S2A). However, no difference in fast gamma power was observed between the first and

second halves of place fields (t(4417) = −0.34, p = 0.7). These findings imply that slow

gamma in ambiguous runs may be slightly stronger during the early component of a cell’s

place field compared to the later component. However, fast gamma occurs evenly in both

the initial and late parts of a place field when spikes occur across the entire field.

CA1 gamma rhythms reflect rhythmic inhibitory potentials in pyramidal neurons produced

by rhythmic firing of GABA-ergic interneurons (Soltesz and Deschenes, 1993; Penttonen et

al., 1998). We investigated whether putative interneurons exhibited slow gamma rhythmic

firing during prospective coding and fast gamma rhythmic firing during retrospective

coding. We analyzed slow and fast gamma phase-locking in 201 putative interneurons in

CA1 that were recorded simultaneously with CA1 place cells. We found that the degree of

gamma phase-locking seen in interneurons during prospective and retrospective coding

events was different for slow and fast gamma rhythms (Figure 2C; interaction between

gamma type and coding type: two-way repeated measures ANOVA, F(1, 502) = 12.2, P =

0.001). Interneurons were significantly more phase-locked to slow gamma rhythms during

prospective coding (prospective vs retrospective: t(502) = 2.0, p = 0.05) and fast gamma

rhythms during retrospective coding (prospective vs retrospective: t(502) = 1.9, p = 0.05;

Figure S2B). Analogous results were not obtained for individual place cells. Because of the

low firing rate of place cells compared to interneurons, the low number of spikes remaining

after selection of spikes during periods of prospective or retrospective coding likely

prevented effective detection of phase-locking. Moreover, previous work indicated that

spikes occurring during slow and fast gamma periods must first be selected in order to

reliably detect slow and fast gamma phase-locking in place cells (Colgin et al., 2009). This

is because slow and fast gamma rhythms are not stationary across time (i.e., not

continuously present), and thus many phase estimates are meaningless if slow and fast
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gamma are not pre-selected (Colgin et al., 2009). Pre-selection of slow and fast gamma

spikes was not possible in this analysis because spikes were selected for each place field

traversal (i.e., for prospective and retrospective coding events), not according to the

presence of slow or fast gamma.

The above results raise the possibility that spatial representations in place cells differ during

slow and fast gamma states. We investigated this possibility by comparing place fields

during slow and fast gamma. We found that the center of mass for place fields during slow

gamma was shifted 1.2 ± 9.4 cm before the overall place field center (i.e., the center of mass

of the place field constructed from all spikes). The center of mass for fast gamma-associated

place fields was shifted 0.3 ± 5.5 cm after the overall place field center (fast gamma center

of mass after slow gamma center of mass: t(368) = 1.9, p = 0.05; Figures 3 and S3). The

backward shift observed during slow gamma is reminiscent of the backward shift that CA1

place fields develop within the first few track laps each day (Mehta et al., 1997; Mehta et al.,

2000; Lee et al., 2004). Consistent with this earlier research, few prospective coding events

were observed during the first minute on the track each day (Figure 4A). However, the

probability of observing slow gamma was high during this same time period (Figure 4B),

which was surprising considering that increases in slow gamma power were associated with

prospective coding when all laps across all recording sessions were analyzed (Figure 2B; see

Discussion).

Theta phase precession during periods of slow and fast gamma

The above results indicate that place cells tend to code upcoming places during slow gamma

and recent places during fast gamma. Place cell spikes occur on earlier and earlier phases of

theta as a rat progresses through a cell’s place field in a phenomenon termed ‘theta phase

precession’ (O’Keefe and Recce, 1993; Skaggs et al., 1996). Theta phase precession has

been proposed to represent a prospective network mode involving the cued retrieval of

upcoming places (Tsodyks et al., 1996; Jensen and Lisman, 1996; Jensen and Lisman, 2005;

Lisman and Redish, 2009), as well as a mechanism for compressing spatial sequences into a

temporal structure that is ideal for memory encoding (Skaggs et al., 1996). We examined the

relationship between theta phase and position for spikes emitted during periods of slow and

fast gamma and combined the data across all place cells and all animals (Figure 5). As

expected, normal theta phase precession was observed when all spikes were included

(Figure 5A). Remarkably, we found that slow gamma spikes did not tend to occur across the

full range of theta phases and positions within the place field but instead tended to be

restricted to late theta phases and early portions of the place field (Figure 5B). On the other

hand, spikes emitted during fast gamma periods occurred across all positions and displayed

theta phase precession (Figure 5C). Theta phase distributions during slow gamma periods

and fast gamma periods were significantly different when all phases were considered

(Watson-Williams test, F(1,80725) = 123.7, p = 0.0001) and when data were randomly

downsampled such that each cell had an equal number of phase estimates during slow and

fast gamma periods (Watson-Williams test, F(1,35563) = 59.9, p = 0.0001). Moreover, the

correlation between phase and position differed depending on whether slow or fast gamma

was present (F(2,2004) = 15.6, p = 0.0001) and was significantly higher for periods of fast

gamma compared to periods of slow gamma (t(1192) = 3.2, p = 0.002). These differences
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again remained significant when data were randomly downsampled such that each cell had

an equal number of theta phase estimates for slow and fast gamma (F(2,948) = 13.0, p =

0.0001; correlation between phase and position greater for fast gamma compared to slow

gamma: t(474) = 3.4, p = 0.001). These effects did not appear to be due to discrepancies in

theta phase estimation resulting from theta power and frequency differences between track

positions associated with slow and fast gamma (Figure S4).

Controlling for other factors, such as running speed

Were differences in spatial coding during slow and fast gamma simply a side effect of the

relationship between running speed and gamma frequency (Ahmed and Mehta, 2012)? This

is unlikely for several reasons. Running speeds on the linear track follow a stereotypical

pattern in well-trained rats: rats begin each lap slowly, reach maximal speed in the middle of

the track, and then slow down again before reaching the other end (Figure S4B). If slow and

fast gamma effects merely reflected changes in running speed, we would expect to observe

slow gamma at the ends of the track and fast gamma in the center of the track. In contrast,

we found that both slow and fast gamma tended to occur near the ends and in the middle of

the track (Figure S4B). Additionally, we accounted for running speed using a general linear

model with gamma power as a repeated factor and running speed as a covariate. Accounting

for the interaction between gamma type and running speed, and accounting for running

speed, we found that the interaction between gamma type and coding type remained

significant (F(1,3641) = 24.891, p < 0.0001). Lastly, we matched prospective and

retrospective coding events according to running speed and found that the slow and fast

gamma effects persisted. Specifically, a significant interaction between coding type and

gamma type was again observed (F(1, 3446) = 25.508, P < 0.0001). Post-hoc testing showed

that slow gamma during prospective coding exhibited greater power than during

retrospective coding (t(1723) = −2.00, p = .05), and fast gamma exhibited higher power for

retrospective coding compared to prospective coding (t(1723) = 4.34, p < 0.0001). Our

results were also not explained by differences due to track location because effects remained

significant when the location of each coding event was included as a covariate (gamma type

by coding type interaction: F(1,3641) = 22.88, P < .0001) and when data were randomly

downsampled such that each location exhibited equivalent amounts of each coding type

(F(1,2536) = 11.88, P < .001).

Spatial coding at the ensemble level during slow and fast gamma

The above results imply that slow and fast gamma rhythms coordinate prospective and

retrospective coding, respectively, in place cells. Yet, the above results were obtained from

isolated single units and did not directly address the question of whether slow and fast

gamma rhythms coordinate spatial coding at the network level. To address this question, we

detected theta cycles containing sequences of active place cells (‘theta sequences’) and

employed Bayesian decoding (Brown et al., 1998; Zhang et al., 1998; Jensen and Lisman,

2000) to estimate the spatial trajectory represented by the spikes in each theta sequence (as

in Gupta et al., 2012). We then measured the prediction error (i.e., predicted position –

actual position) for theta sequences associated with slow and fast gamma. We found that

prediction errors during slow and fast gamma were significantly different (t(511) = 2.1, p =

0.04; Figure 6), with slow gamma associated with positive prediction errors (3.1 ± 50.2 cm)
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and fast gamma associated with negative prediction errors (−4.5 ± 28.8 cm). We then

compared slow and fast gamma during theta sequences having cumulative prediction errors

less than or greater than zero and found significantly greater fast gamma power for negative

prediction errors (t(51648) = −10.6, p < 0.0001). We found a trend toward higher slow

gamma power for positive prediction errors compared to negative prediction errors (t(51648)

= 1.7, p = 0.09). However, when we omitted theta cycles with prediction errors close to 0 cm

and examined those theta cycles with prediction errors greater than 1 cm or less than 1 cm,

slow gamma power was significantly higher for positive errors compared to negative errors

(t(49216) = 2.1, p = 0.04) and, again, fast gamma power was significantly greater for

negative errors than for positive errors (t(49216) = −10.5, p < 0.0001). The slow gamma

effect became more pronounced when only those theta cycles with prediction errors greater

than or less than 2 cm were considered (slow gamma power significantly higher for positive

errors than negative errors: t(46127) = 2.5, p = 0.01; fast gamma power significantly higher

for negative errors than positive errors: t(46127) = −10.1, p < 0.0001). Examples of theta

sequences showing positive and negative prediction errors associated with slow and fast

gamma, respectively, are shown in Figure 7. Note how theta sequences associated with

positive prediction errors (i.e., predicted position ahead of the actual position, Figure 7A)

resemble ‘ahead sequences’ that have been reported previously by Gupta and colleagues

(2012) to occur predominantly as animals leave reward sites. Such sequences may be related

to sequences that reactivate during sharp waves (Figure S5). On the other hand, theta

sequences that are associated with negative prediction errors (i.e., predicted position behind

the actual position, Figure 7B) match ‘behind sequences’, which have been reported to occur

as animals approach reward sites (Gupta et al., 2012). In the current study, reward sites were

located at the ends of the track. The present data are consistent with the findings of Gupta

and colleagues because positive prediction errors tended to occur (Figure 8A), and slow

gamma occurred more often than fast gamma (Figure 8B), as rats left the end of the track.

On the other hand, as rats approached the end of the track, negative prediction errors were

more prevalent, and fast gamma occurred more often than slow gamma.

Theta modulation of slow and fast gamma

Earlier findings indicated that both slow and fast gamma are modulated by theta phase but

tend to occur on different theta phases and cycles (Colgin et al., 2009). Consistent with these

earlier findings, plotting gamma power within individual theta cycles revealed theta phase-

locked slow gamma as rats began a track run and theta phase-locked fast gamma as rats

ended a track run (Figure S6). Moreover, slow gamma was most strongly phase-locked to

theta during prospective coding events (mean vector length (MVL) = 0.035) compared to

retrospective coding events (MVL = 0.002) and ambiguous events (MVL = 0.022). On the

other hand, fast gamma exhibited strongest phase-locking to theta during retrospective

events (MVL = 0.025) compared to prospective (MVL = 0.011) and ambiguous events

(MVL = 0.012). These results suggest that the phenomena reported above involve theta-

modulated slow and fast gamma rather than slow and fast gamma in isolation.
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DISCUSSION

The present results suggest that distributed place cells participate in distinct network

processing modes that alternate according to whether slow and fast gamma rhythms are

present. The results indicate that the slow and fast gamma modes coordinate place cell

assemblies during prediction of upcoming locations and encoding of recent locations,

respectively. Similarly alternating prospective and retrospective modes have been reported

in entorhinal cortex grid cells (De Almeida et al., 2012), but they were not linked to any type

of oscillation. These prospective and retrospective coding modes are believed to reflect

distinct memory processing states in the entorhinal-hippocampal network. Prospective

coding is reminiscent of the backward expansion of CA1 place fields that develops with

experience (Mehta et al., 1997; Mehta et al., 2000; Lee et al., 2004). Development of such

expansion is blocked by NMDA receptor antagonists (Ekstrom et al., 2001), which also

block spatial learning (Morris et al., 1986). For these reasons, this expansion is believed to

reflect the retrieval of spatial representations that formed during earlier experiences.

Retrospective coding may be driven by persistent firing in entorhinal cortex neurons (Klink

and Alonso et al., 1997; Yoshida et al., 2008), which may be involved in short-term memory

encoding (Suzuki et al., 1997).

It should be noted that the present work uses the terms ‘prospective coding’ and

‘retrospective coding’ to describe representations of locations at the spatial scale of

individual place fields, following the terminology used in earlier studies of similar

phenomena (Muller and Kubie, 1989; Battaglia et al., 2004; De Almeida et al., 2012).

However, the same ‘prospective’ and ‘retrospective’ terminology has been used to refer to

place cell coding at a larger spatial scale (Ferbinteanu and Shapiro, 2003). The Ferbinteanu

and Shapiro study defined prospective coding as place cell firing rate changes that signal

which way a rat is headed and retrospective coding as firing rate changes that indicate from

which direction the rat has come. The present findings do not address the question of

whether gamma rhythms are involved in these phenomena.

In the present study, prospective and retrospective coding events tended to occur at the

beginning and end, respectively, of the linear track, consistent with findings reported by

Gupta and colleagues (2012). However, the present findings additionally show that

prospective and retrospective coding events were associated with the occurrence of slow and

fast gamma, respectively. Prospective firing is thought to occur as a result of current place

input triggering retrieval of upcoming spatial sequences that were previously associated with

a given location (Hasselmo and Eichenbaum, 2005). Prospective ‘sweep ahead’ events have

also been observed in CA3 place cells at choice points on a T-maze, locations where ~40 Hz

gamma (i.e., slow gamma) also prominently occurred (Johnson and Redish, 2007). Together,

these findings suggest that slow gamma coordination of place cells during prospective

coding facilitates retrieval of representations of future locations in the hippocampal network.

A previous study linked gamma coherence between CA3 and CA1 to memory retrieval but

did not discriminate between slow and fast variants of gamma (Montgomery and Buzsaki,

2007). The CA3-CA1 coupling they observed, however, most likely involved slow gamma

considering that CA3-CA1 coherence has been reported to be maximal in the slow gamma

range (Colgin et al., 2009). Moreover, slow gamma has been proposed to mediate memory
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retrieval during sharp wave-associated replay in quiescent behavioral states (Carr et al.,

2012; Figure S5).

If slow gamma-mediated prospective coding is related to retrieval of learned locations, as

we propose, then it should be related to the backward shifts of place fields that develop with

experience (Mehta et al., 1997; Mehta et al., 2000; Lee et al., 2004). Consistent with this, we

observed few prospective events in CA1 during the first 30 seconds on the linear track each

day (Figure 4A). However, we also observed that the probability of slow gamma occurrence

was high during this time (Figure 4B), which seems to contradict our results linking slow

gamma with prospective coding. Differences between CA3 and CA1 may provide a possible

explanation for this paradox. In a well-learned environment, CA1 place fields shift

backward over the course of the first few laps of each day, but stable spatial representations

emerge immediately in CA3 (Lee et al., 2004; Roth et al., 2012). This suggests that CA3

maintains long-term memories of spatial locations and that these memories are transmitted

to CA1 during the first few laps of each day. Slow gamma may occur during the first few

laps of each day as stored spatial memories are reactivated in CA3, but emergence of these

memories in CA1 may follow a slower time course. CA1 cells may not respond to slow

gamma-mediated inputs from CA3 until after CA3-CA1 synapses have undergone NMDA

receptor-dependent synaptic strengthening that occurs during this time (Ekstrom et al.,

2001). This could explain why few prospective coding events were seen in CA1 during the

first few laps of each day.

Here, we posit that prospective coding relies on slow gamma coupling of CA1 and CA3

during retrieval of stored memory representations. Yet, this does not explain prospective

coding in grid cells (De Almeida et al., 2012). It is possible that grid cell representations of

upcoming locations are inherited from CA1, considering that CA1 projects to MEC layer V

(Swanson and Cowan, 1977), which projects to layers II and III (van Haeften et al., 2003).

However, this remains an interesting question for later study.

Our findings also provide novel insights regarding the functional significance of theta phase

precession (O’Keefe and Recce, 1993; Skaggs et al., 1996). It is unlikely that theta phase

precession simply reflects retrieval of upcoming locations because prospective coding was

associated with slow gamma, and phase precession was less pronounced during periods of

slow gamma. Specifically, spikes were largely restricted to the late theta phase component

of theta phase precession. In other words, upcoming locations were preferentially

represented and spiking was suppressed at early theta phases when slow gamma rhythms

were present (Figure 5B). Theta phase precession did occur, however, during fast gamma

periods (Figure 5C) when cells preferentially represented locations in the recent past. These

findings support the interpretation that spikes occurring on early theta phases code recently

visited locations (Dragoi and Buzsaki, 2006), not current location as otherwise suggested

(Lisman and Redish, 2009). Recent events are thought to be maintained in short-term

memory by persistent firing in entorhinal cortex (Jensen and Lisman, 2005; Suzuki et al.,

1997; Hasselmo and Stern, 2006), and fast gamma promotes inputs from entorhinal cortex

(Colgin et al., 2009). Fast gamma inputs from MEC may also activate representations of

current location slightly later in the theta cycle. Representations of upcoming locations could

then be triggered as a result of associations that were formed across sequentially activated
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place cells during prior learning. We predict that cells coding current location would not

trigger firing of cells coding upcoming locations in a novel environment, and thus spikes on

late theta phases would be absent during fast gamma in a novel environment. However, the

theta phases at which spikes occurred were only weakly correlated with position during the

first lap on a linear track on a given day (Mehta et al., 2002). Thus, it is possible that the

relationship between theta phase and position would be greatly diminished during periods of

fast gamma in a novel environment. In any case, this remains an interesting question for

later study.

Another interesting question is how slow and fast gamma modes relate to different classes of

gamma-modulated cells in CA1 reported by Senior and colleagues (Senior et al., 2008). In

that study, ‘TroPyr’ cells fired at the trough of gamma and fired across the full range of theta

phases during theta phase precession, whereas ‘RisPyr’ cells fired at the rising phase of

gamma as the animal was leaving a cell’s place field. The study did not differentiate

between different frequencies of gamma. However, TroPyr cells may correspond to fast

gamma-modulated cells. Place cells fired across the full range of theta phase precession

during fast gamma in the present study (Figure 5C), and earlier work showed that cells that

were significantly phase-locked to fast gamma tended to fire on the fast gamma trough

(Colgin et al., 2009). The relationship between RisPyr cells and slow and fast gamma

remains unclear, however. Place cells that were significantly phase-locked to slow gamma

did tend to fire on the rising phase of slow gamma (Colgin et al., 2009). However, place

cells fired in the initial part of their place fields during periods of slow gamma (Figure 5B),

whereas RisPyr cells tended to fire in the later portions of their place fields (Senior et al.,

2008).

Although it is possible that our results were influenced by factors unrelated to memory (e.g.,

consumption of reward), the relationship of slow and fast gamma rhythms to prospective

and retrospective coding modes suggests that different frequencies of gamma coordinate

different types of spatial memory processing. Fast gamma may correspond to an encoding

mode, similar to that proposed previously for theta-modulated gamma during learning

(Jensen and Lisman, 1996; Lisman and Otmakhova, 2001). In this mode, representations for

recently visited locations may be held in a short-term memory buffer that provides the

repetitive firing necessary to encode new memories. On the other hand, slow gamma may

correspond to a retrieval mode, in which firing is facilitated before the center of the place

field and suppressed in the later part of the place field. This may prevent ongoing encoding

from interfering with retrieval of previously stored spatial memories, as can occur if these

processes are engaged at the same time (Hasselmo et al., 2002). Considering that slow and

fast gamma rhythms occur in other brain regions (Kay, 2003; van der Meer and Redish,

2009; Igarashi et al., 2013; Manabe and Mori, 2013), separate slow and fast gamma modes

may mediate different types of information processing throughout the brain.

EXPERIMENTAL PROCEDURES

Subjects

Five male Long Evans rats weighing approximately 350–500 grams were used in the study.

Animals were housed on a reverse light dark cycle (lights off from 8 a.m.–8 p.m.) and tested
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during the dark phase. After surgery, animals were housed individually in cages (~40 cm ×

40 cm × 40 cm) built from clear acrylic and containing enrichment materials (e.g., plastic

balls, cardboard tubes, wooden blocks). Rats were allowed to recover from surgery for at

least one week prior to the start of training. During the data collection period, rats were

placed on a food deprivation regimen that maintained them at ~90% of their free-feeding

body weight. All experiments were conducted according to the guidelines of the United

States National Institutes of Health Guide for the Care and Use of Laboratory Animals

under a protocol approved by the University of Texas at Austin Institutional Animal Care

and Use Committee.

Tetrode placement

Over the course of a few weeks after drive implantation, tetrodes were slowly lowered

toward their target locations. 11–12 of the tetrodes (11 in one rat, 12 in the other four rats)

were targeted toward CA3 and CA1 cell body layers. Another tetrode was targeted toward

the apical dendritic layers of CA1 and was used for hippocampal depth estimation as the rest

of the tetrodes were turned down. Another tetrode was used as a reference for differential

recording. This reference tetrode was placed at the level of the corpus callosum or higher

and was recorded against ground to make sure that it was placed in a quiet location. All

recording locations were verified histologically after experiments were finished.

Representative examples of final recording locations are shown in Figure S7. Final

hippocampal recording sites used in the study were located in or near CA1 and CA3 strata

pyramidale. In one rat, two tetrodes targeted toward CA1 appeared in histological sections to

be on the border of CA2-CA1. However, place cells and LFPs recorded from these tetrodes

were indistinguishable from other CA1 recordings collected simultaneously. Therefore,

place cells, interneurons, and LFPs from these tetrodes were included in this study. The

majority of CA3 tetrodes were located in CA3c (i.e., in the hilus, see Figure S7 for an

example). Because gamma oscillations exhibit large amplitudes in the hilus (Buzsaki et al.,

1983; Bragin et al., 1995), volume-conducted gamma oscillations from the hilus

contaminated LFP recordings from these tetrodes. Thus, we did not include recordings from

CA3 tetrodes in our main analyses involving LFPs. Single unit recordings from CA3

tetrodes were, however, included in Bayesian decoding analyses of activity during periods

of slow and fast gamma in CA1. In 2 rats, some of the tetrodes targeted toward CA3 ended

up in the dentate gyrus (1 tetrode in 1 of the rats and 2 tetrodes in the other). Recordings

from dentate gyrus tetrodes were not used in this study.

Classification of individual place cell coding modes (Figures 1, 2, and 4; Figures S1 and
S2)

692 CA1 cells from 5 rats were used for classification of coding modes. If multiple days of

the same cell were recorded, only data from the first acceptable day was used for that cell.

Animals’ movements along the linear track were collapsed into one dimension for ease of

analysis. Place field passes in which the animal’s running speed dropped below 5 cm/s were

discarded. The average place field center was then defined as the center of mass of the

positions of the remaining spikes. Prospective passes were defined as those in which >= 2/3

of spikes occurred before the place field center. Retrospective passes were defined as those

in which >= 2/3 of spikes occurred after the place field center. All remaining passes through
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the place field were categorized as ambiguous. To determine the time difference between

cell pairs exhibiting the same or different type of coding (Figure 1C), ambiguous passes

were excluded. The time point for each coding event was defined as the time when the rat

passed through the center of the spiking activity for that particular traversal through the

field. To determine whether the place cell population exhibited coding modes more often

than expected by chance, we determined the proportion of passes through the place field that

would randomly exhibit coding modes for each cell (Figure 1B). To do this, we preserved

the number of spikes for each place cell, and preserved the number of spikes that occurred

on each pass through a place field, but randomly shuffled the spikes’ assignments to

particular passes.

Gamma power during prospective and retrospective coding (Figure 2B)

Prospective, retrospective, and ambiguous passes through a place field were defined as

described above for the population of CA1 cells. For each categorized place field traversal,

the period of time during which the place cell emitted spikes in the field defined the time

windows that were used to estimate slow and fast gamma power. Time-varying slow and

fast gamma power estimates were obtained for these time windows as described below.

Estimating slow and fast gamma power

For fast and slow gamma estimates (see Supplemental Experimental Procedures), time-

varying power was computed across the 60–100 Hz and 25–55 Hz frequency bands,

respectively. Although fast gamma has previously been defined as extending up to 140 Hz

(Colgin et al., 2009), we chose to cut it off at 100 Hz to avoid overlap with the recently

defined epsilon band (90–150 Hz; Belluscio et al., 2012) and to avoid contamination by

spike waveforms, which can generate power across a broad range of high frequencies,

sometimes extending down to ~150 Hz (Colgin et al., 2009). A single estimate of slow

gamma power and a single estimate of fast gamma power were then obtained for each

categorized place field traversal by averaging power for each gamma type across the time

window and across the frequency band of interest (i.e., 60–100 Hz for fast gamma and 25–

55 Hz for slow gamma).

Matching prospective and retrospective coding events according to running speed

Counts of retrospective and prospective events were binned by average running speed using

intervals of 5 cm/s. The number of events was randomly downsampled so that the numbers

of retrospective and prospective events within each speed bin were equal. Measurements of

slow and fast gamma were then obtained for the remaining events, as described above.

Detection of gamma episodes (Figures 3, 4B, 5B, 5C, 8B, S3, and S4B)

To extract periods of slow and fast gamma activity in the LFP recordings, time-varying slow

and fast gamma power were calculated, using the method described above. Power at each

time point was averaged across the slow and fast gamma frequency ranges to obtain an

estimate of slow and fast gamma power for each time point. Time points were collected

during which slow and fast gamma power exceeded 2 SD above the mean power of slow

and fast gamma, respectively, across all time points. This method of slow and fast gamma
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detection has been used previously (Colgin et al., 2009). Time windows, 125 ms in length,

were cut around the selected time points. In each 125 ms segment, the slow and fast gamma

amplitude maxima were determined from the slow and fast gamma bandpass filtered

versions of the recordings. Duplicated gamma windows, a consequence of detecting

overlapping time windows, were avoided by discarding identical maxima values within a

given gamma subtype and further requiring that maxima of a given gamma subtype be

separated by at least 100 ms. The maxima were then used to define the centers of slow and

fast gamma episodes. Slow and fast gamma episodes/periods were defined as 125 ms-long

windows centered around the slow and fast gamma maxima.

Theta phase precession (Figure 5)

Theta phase was determined by band-pass filtering the LFP signal in the theta range (6–

10Hz) and performing a Hilbert transform. Each spike was assigned a theta phase using the

signal from the tetrode from which it was recorded. Spike locations were normalized using

the boundaries of the place field (ranging from 0 to 1). Leftward runs were reversed such

that movement always occurred from 0 to 1. Gamma episodes were detected as described

above, and spikes occurring within slow and fast gamma episodes were used to construct the

position-phase plots shown in Figures 5B and 5C.

Detecting individual theta cycles for Bayesian decoding (Figures 6, 7, and 8A)

The LFP signal was chosen from the tetrode with the most recorded CA1 cells for that

particular recording. The signal was separately band-pass filtered for theta (6–12 Hz) and

delta (2–4 Hz), and the power for each was determined using a convolving Morlet wavelet

(as described in Supplemental Experimental Procedures). The presence of theta activity was

defined when theta power was greater than delta by 3 times or more. The maxima of the

bandpass filtered signal were then identified as theta peaks for each recording. Individual

theta cycles were cut from peak to peak, as in Gupta et al. (2012), and spikes occurring

within those theta cycles were used to reconstruct position estimates for each theta cycle

using a Bayesian decoding approach, described below.

Bayesian decoding analyses (Figures 6, 7, and 8A)

The most likely position represented by spiking activity from a population of 456 CA1 cells

and 87 CA3 cells was estimated using a Bayesian decoding approach (Zhang et al., 1998;

Brown et al., 1998; Jensen and Lisman, 2000). Recording sessions with fewer than 20 cells

were not used, and cells were not excluded from Bayesian analyses on the basis of the place

field acceptance criteria (see Supplemental Experimental Procedures). These factors explain

why the number of CA1 cells listed here differs from the number used for the single unit

analyses. Only theta cycles containing at least 2 active place cells were included in the

analysis. Additionally, theta epochs were selected using the same theta/delta threshold

method described above; spikes that occurred during non-theta epochs were not included.

Place fields for each of the cells were constructed from each recording session on the linear

track, as described in the “Place fields” section in Supplemental Experimental Procedures.

Decoding was performed for each theta cycle using a 40-ms sliding time window shifted by

10 ms at each step, as in Gupta et al. (2012). The probability of the animal to be at position
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x, given the number of spikes n from each cell collected in the time window t was estimated

using Bayes rule:

P(x) was calculated from the experimental tracking data. P(n|x) was estimated using the

firing rates from the experimentally obtained place fields in the same 10-minute linear track

session, assuming that the firing rates of different place cells are statistically independent

and that the number of spikes from each cell has a Poisson distribution (Zhang et al., 1998;

Jensen and Lisman, 2000). P(n), the normalizing constant, was set so that P(x|n) summed to

1. Reconstructed positions were identified for each time bin as the center of mass of the

probability distribution, P(x|n).

The reconstructed location at each time bin was then compared with the actual location

identified from position tracking data. A prediction error was calculated for each time bin by

subtracting the actual position from the reconstructed position. Errors were then averaged

across all time bins within a theta cycle to obtain a single prediction error estimate for each

theta cycle.

Slow and fast gamma power estimates were calculated for each theta cycle in the following

manner. For every tetrode with cells that were used for Bayesian decoding, slow and fast

gamma power were estimated within the theta cycle using the method described above.

Slow and fast gamma power estimates were then averaged across tetrodes, and averaged

across time within the theta cycle, to obtain a single slow gamma power estimate and a

single fast gamma power estimate for each theta cycle. Theta cycles associated with slow or

fast gamma (Figure 6) were then detected by identifying theta cycles with slow and fast

gamma power estimates that were 2 SD greater than the mean slow and fast gamma power,

respectively, across all theta cycles.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank S. Amen from the Division of Statistics and Scientific Computation at UT Austin for advice regarding
statistical analyses used to control for running speed. We thank A. Enenmoh for help with cell sorting analyses,
S.G. Trettel for valuable contributions to video analyses, and C.T. Tulisiak for assistance with data collection. We
also thank O. Jensen and J.W. Pillow for helpful comments. This work was supported by the Esther A. and Joseph
Klingenstein Fund, the Alfred P. Sloan Foundation, grant P30 MH089900 from NIMH, and 1F30MH100818-01A1
from NIMH (to K.W.B.).

References

Ahmed OJ, Mehta MR. Running speed alters the frequency of hippocampal gamma oscillations. J
Neurosci. 2012; 32:7373–7383. [PubMed: 22623683]

Bieri et al. Page 14

Neuron. Author manuscript; available in PMC 2015 May 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Barbieri R, Wilson MA, Frank LM, Brown EN. An analysis of hippocampal spatio-temporal
representations using a Bayesian Algorithm for Neural Spike Train Decoding. IEEE Trans Neural
Syst Rehabil Eng. 2005; 13:131–136. [PubMed: 16003890]

Battaglia FP, Sutherland GR, McNaughton BL. Local sensory cues and place cell directionality:
additional evidence of prospective coding in the hippocampus. J Neurosci. 2004; 24:4541–4550.
[PubMed: 15140925]

Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzsaki G. Cross-frequency phase-phase coupling
between theta and gamma oscillations in the hippocampus. J Neurosci. 2012; 32:423–435.
[PubMed: 22238079]

Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsaki G. Gamma (40–100 Hz) oscillation in the
hippocampus of the behaving rat. J Neurosci. 1995; 15:47–60. [PubMed: 7823151]

Brown EN, Frank LM, Tang D, Quirk MC, Wilson MA. A statistical paradigm for neural spike train
decoding applied to position prediction from ensemble firing patterns of rat hippocampal place
cells. J Neurosci. 1998; 18:7411–7425. [PubMed: 9736661]

Brun VH, Leutgeb S, Wu HQ, Schwarcz R, Witter MP, Moser EI, Moser MB. Impaired spatial
representation in CA1 after lesion of direct input from entorhinal cortex. Neuron. 2008; 57:290–
302. [PubMed: 18215625]

Brun VH, Otnass MK, Molden S, Steffenach HA, Witter MP, Moser MB, Moser EI. Place cells and
place recognition maintained by direct entorhinal-hippocampal circuitry. Science. 2002; 296:2243–
2246. [PubMed: 12077421]

Buzsaki G, Leung LW, Vanderwolf CH. Cellular bases of hippocampal EEG in the behaving rat. Brain
Res. 1983; 287:139–171. [PubMed: 6357356]

Carr MF, Karlsson MP, Frank LM. Transient slow gamma synchrony underlies hippocampal memory
replay. Neuron. 2012; 75:700–713. [PubMed: 22920260]

Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser MB, Moser EI. Frequency
of gamma oscillations routes flow of information in the hippocampus. Nature. 2009; 462:353–357.
[PubMed: 19924214]

Colgin LL, Moser EI. Gamma oscillations in the hippocampus. Physiology (Bethesda). 2010; 25:319–
329. [PubMed: 20940437]

De Almeida L, Idiart M, Villavicencio A, Lisman J. Alternating predictive and short-term memory
modes of entorhinal grid cells. Hippocampus. 2012; 22:1647–1651. [PubMed: 22549964]

Dragoi G, Buzsaki G. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron.
2006; 50:145–157. [PubMed: 16600862]

Ekstrom AD, Meltzer J, McNaughton BL, Barnes CA. NMDA receptor antagonism blocks experience-
dependent expansion of hippocampal “place fields”. Neuron. 2001; 31:631–638. [PubMed:
11545721]

Ferbinteanu J, Shapiro ML. Prospective and retrospective memory coding in the hippocampus.
Neuron. 2003; 40:1227–1239. [PubMed: 14687555]

Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation.
Annu Rev Neurosci. 2009; 32:209–224. [PubMed: 19400723]

Fyhn M, Molden S, Witter MP, Moser EI, Moser MB. Spatial representation in the entorhinal cortex.
Science. 2004; 305:1258–1264. [PubMed: 15333832]

Gupta AS, van der Meer MA, Touretzky DS, Redish AD. Segmentation of spatial experience by
hippocampal theta sequences. Nat Neurosci. 2012; 15:1032–1039. [PubMed: 22706269]

Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal
cortex. Nature. 2005; 436:801–806. [PubMed: 15965463]

Harris KD, Csicsvari J, Hirase H, Dragoi G, Buzsaki G. Organization of cell assemblies in the
hippocampus. Nature. 2003; 424:552–556. [PubMed: 12891358]

Hasselmo ME, Bodelon C, Wyble BP. A proposed function for hippocampal theta rhythm: separate
phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 2002;
14:793–817. [PubMed: 11936962]

Hasselmo ME, Eichenbaum H. Hippocampal mechanisms for the context-dependent retrieval of
episodes. Neural Networks. 2005; 18:1172–1190. [PubMed: 16263240]

Bieri et al. Page 15

Neuron. Author manuscript; available in PMC 2015 May 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Hasselmo ME, Stern CE. Mechanisms underlying working memory for novel information. Trends
Cogn Sci. 2006; 10:487–493. [PubMed: 17015030]

Igarashi J, Isomura Y, Arai K, Harukuni R, Fukai T. A θ-γ oscillation code for neuronal coordination
during motor behavior. J Neurosci. 2013; 33:18515–18530. [PubMed: 24259574]

Jensen O, Lisman JE. Hippocampal CA3 region predicts memory sequences: accounting for the phase
precession of place cells. Learn Mem. 1996; 3:279–287. [PubMed: 10456097]

Jensen O, Lisman JE. Position reconstruction from an ensemble of hippocampal place cells:
contribution of theta phase coding. J Neurophysiol. 2000; 83:2602–2609. [PubMed: 10805660]

Jensen O, Lisman JE. Hippocampal sequence-encoding driven by a cortical multi-item working
memory buffer. Trends Neurosci. 2005; 28:67–72. [PubMed: 15667928]

Johnson A, Redish AD. Neural ensembles in CA3 transiently encode paths forward of the animal at a
decision point. J Neurosci. 2007; 27:12176–12189. [PubMed: 17989284]

Kay LM. Two species of gamma oscillations in the olfactory bulb: dependence on behavioral state and
synaptic interactions. J Integr Neurosci. 2003; 2:31–44. [PubMed: 15011275]

Klink R, Alonso A. Muscarinic modulation of the oscillatory and repetitive firing properties of
entorhinal cortex layer II neurons. J Neurophysiol. 77:1813–1828. [PubMed: 9114238]

Lee I, Rao G, Knierim JJ. A double dissociation between hippocampal subfields: differential time
course of CA3 and CA1 place cells for processing changed environments. Neuron. 2004; 42:803–
815. [PubMed: 15182719]

Lisman J, Redish AD. Prediction, sequences and the hippocampus. Philos Trans R Soc Lond B Biol
Sci. 2009; 364:1193–1201. [PubMed: 19528000]

Lisman JE, Otmakhova NA. Storage, recall, and novelty detection of sequences by the hippocampus:
elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine.
Hippocampus. 2001; 11:551–568. [PubMed: 11732708]

Manabe H, Mori K. Sniff rhythm-paced fast and slow gamma-oscillations in the olfactory bulb:
relation to tufted and mitral cells and behavioral states. J Neurophysiol. 2013; 110:1593–1599.
[PubMed: 23864376]

Mehta MR, Barnes CA, McNaughton BL. Experience-dependent, asymmetric expansion of
hippocampal place fields. Proc Natl Acad Sci U S A. 1997; 94:8918–8921. [PubMed: 9238078]

Mehta MR, Quirk MC, Wilson MA. Experience-dependent asymmetric shape of hippocampal
receptive fields. Neuron. 2000; 25:707–715. [PubMed: 10774737]

Mehta MR, Lee AK, Wilson MA. Role of experience and oscillations in transforming a rate code into
a temporal code. Nature. 2002; 417:741–746. [PubMed: 12066185]

Montgomery SM, Buzsaki G. Gamma oscillations dynamically couple hippocampal CA3 and CA1
regions during memory task performance. Proc Natl Acad Sci U S A. 2007; 104:14495–14500.
[PubMed: 17726109]

Morris RGM, Anderson E, Lynch GS, Baudry M. Selective impairment of learning and blockade of
long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature. 1986;
319:774–776. [PubMed: 2869411]

Muller RU, Kubie JL. The firing of hippocampal place cells predicts the future position of freely
moving rats. J Neurosci. 1989; 9:4101–4110. [PubMed: 2592993]

O’Keefe J. Place units in the hippocampus of the freely moving rat. Exp Neurol. 1976; 51:78–109.
[PubMed: 1261644]

O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity
in the freely-moving rat. Brain Res. 1971; 34:171–175. [PubMed: 5124915]

O’Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm.
Hippocampus. 1993; 3:317–330. [PubMed: 8353611]

Penttonen M, Kamondi A, Acsady L, Buzsaki G. Gamma frequency oscillation in the hippocampus of
the rat: intracellular analysis in vivo. Eur J Neurosci. 1998; 10:718–728. [PubMed: 9749733]

Roth ED, Yu X, Rao G, Knierim JJ. Functional differences in the backward shifts of CA1 and CA3
place fields in novel and familiar environments. PLoS One. 2012; 7:e36035. [PubMed: 22558316]

Bieri et al. Page 16

Neuron. Author manuscript; available in PMC 2015 May 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Senior TJ, Huxter JR, Allen K, O’Neill J, Csicsvari J. Gamma oscillatory firing reveals distinct
populations of pyramidal cells in the CA1 region of the hippocampus. J Neurosci. 2008; 28:2274–
2286. [PubMed: 18305260]

Skaggs WE, McNaughton BL, Wilson MA, Barnes CA. Theta phase precession in hippocampal
neuronal populations and the compression of temporal sequences. Hippocampus. 1996; 6:149–
172. [PubMed: 8797016]

Soltesz I, Deschenes M. Low- and high-frequency membrane potential oscillations during theta
activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine
anesthesia. J Neurophysiol. 1993; 70:97–116. [PubMed: 8395591]

Steffenach HA, Sloviter RS, Moser EI, Moser MB. Impaired retention of spatial memory after
transection of longitudinally oriented axons of hippocampal CA3 pyramidal cells. Proc Natl Acad
Sci U S A. 2002; 99:3194–3198. [PubMed: 11867718]

Sutherland RJ, Whishaw IQ, Kolb B. A behavioural analysis of spatial localization following
electrolytic, kainate- or colchicine-induced damage to the hippocampal formation in the rat. Behav
Brain Res. 1983; 7:133–153. [PubMed: 6830648]

Suzuki WA, Miller EK, Desimone R. Object and place memory in the macaque entorhinal cortex. J
Neurophysiol. 1997; 78:1062–1081. [PubMed: 9307135]

Swanson LW, Cowan WM. An autoradiographic study of the organization of the efferent connections
of the hippocampal formation in the rat. J Comp Neurol. 1977; 172:49–84. [PubMed: 65364]

Tsodyks MV, Skaggs WE, Sejnowski TJ, McNaughton BL. Population dynamics and theta rhythm
phase precession of hippocampal place cell firing: a spiking neuron model. Hippocampus. 1996;
6:271–280. [PubMed: 8841826]

van der Meer MA, Redish AD. Low and High Gamma Oscillations in Rat Ventral Striatum have
Distinct Relationships to Behavior, Reward, and Spiking Activity on a Learned Spatial Decision
Task. Front Integr Neurosci. 2009; 3:9. [PubMed: 19562092]

van Haeften T, Baks-te-Bulte L, Goede PH, Wouterlood FG, Witter MP. Morphological and numerical
analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal
cortex of the rat. Hippocampus. 2003; 13:943–952. [PubMed: 14750656]

Yoshida M, Fransen E, Hasselmo ME. mGluR-dependent persistent firing in entorhinal cortex layer III
neurons. Eur J Neurosci. 2008; 28:1116–1126. [PubMed: 18783378]

Zhang K, Ginzburg I, McNaughton BL, Sejnowski TJ. Interpreting neuronal population activity by
reconstruction: unified framework with application to hippocampal place cells. J Neurophysiol.
1998; 79:1017–1044. [PubMed: 9463459]

Bieri et al. Page 17

Neuron. Author manuscript; available in PMC 2015 May 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Highlights

• Place cells code current location during fast gamma

• Place cells predict upcoming locations during slow gamma

• Spikes precess across the full range of theta phases during fast gamma

• Place cells mainly spike in the first half of their fields during slow gamma
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Figure 1. Prospective and retrospective coding modes in CA1 place cells
(A) Individual spike positions for an example CA1 place cell recorded in a rat running on a

linear track. Successive laps in the rightward direction are shown for an ~10 minute session.

The mean field position across all laps is indicated with a vertical dashed line. Passes

through a place field were classified as ‘prospective’ (black circles) if ≥2/3 of spikes were in

the 1st half of the field and ‘retrospective’ (gray circles) if ≥2/3 of spikes were in the 2nd

half of the field. Passes that did not fall under either of these definitions were classified as

ambiguous (white circles). See also Figure S1. (B) Prospective and retrospective coding
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occur more often than expected by chance. The percentage of runs showing some type of

coding (i.e., either prospective or retrospective, not ambiguous) is shown. A greater

proportion of runs exhibit some type of coding mode, either prospective or retrospective, in

the actual data compared to shuffled data, in which a larger number of ambiguous runs

occur. (C) Prospective and retrospective coding events were detected for all recorded CA1

place cells. Successive coding events from place cell pairs were likely to be of the same type

if they occurred closely in time (i.e., < 0.8 s).
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Figure 2. Slow and fast gamma during prospective and retrospective coding in CA1
(A) Example LFP recordings from CA1 s. pyramidale are shown with corresponding spikes

from an example place cell (orange vertical lines, same place cell as shown in Figure 1A).

Slow gamma during a prospective coding event is shown above, and fast gamma during a

retrospective coding event is shown below (calibration: 100 ms, 0.2 mV). The top recording

corresponds to one of the prospective coding events shown in Figure 1A (5th row from the

bottom), and the bottom recording corresponds to a retrospective coding event in Figure 1A

(5th row from the top). (B) Slow (blue) and fast (red) gamma power in CA1 during

prospective and retrospective coding events. Power is plotted as the percent change (mean ±

SEM) relative to power during ambiguous runs (see Figure S2A). Slow gamma power was

higher during prospective coding than during retrospective coding. Fast gamma power was

greater for retrospective coding compared to prospective coding. (C) Phase-locking of

interneuron spike times (mean ± SEM) to slow and fast gamma during prospective and

retrospective coding events. Slow gamma phase-locking was greater during prospective

coding than during retrospective coding. Fast gamma phase-locking was greater during

retrospective coding than during prospective coding. See also Figure S2B.

Bieri et al. Page 21

Neuron. Author manuscript; available in PMC 2015 May 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. Place fields constructed from spikes emitted during slow and fast gamma periods in
CA1
(A) Rate maps constructed for spikes occurring during slow and fast gamma for an example

CA1 place cell from a rat running in the rightward direction (B) Spike counts across position

combined for all spikes from all cells, subsampled for non-overlapping slow and fast gamma

periods. Spike counts were normalized according to each cell’s maximum, and the x-axis

shows normalized position within each cell’s place field (ranging from 0 to 1). Leftward

runs were reversed so that place fields from runs in both directions could be combined, such

that animals were running from position = 0 to position = 1 in all cases. See also Figure S3.

(C) Center of mass (COM) deviations (mean ± SEM) for place fields subsampled for non-

overlapping slow and fast gamma periods. Zero represents the place field COM for all

spikes. Place field COMs were shifted significantly forward during fast gamma compared to

place field COMs during slow gamma.

Bieri et al. Page 22

Neuron. Author manuscript; available in PMC 2015 May 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. Time course of slow and fast gamma episodes and prospective and retrospective coding
events in CA1
(A) The mean (± SEM) distribution of ambiguous, retrospective, and prospective coding

events during the first 10-minute session of each day is shown. (B) The mean (± SEM)

probability of detecting slow and fast gamma episodes across the first 10-minute recording

session for each day is shown.
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Figure 5. Theta phase precession during slow and fast gamma periods in CA1
For each panel, normalized position within the place field is plotted on the x-axis, and the

theta phase at which each spike occurred is plotted on the y-axis. (A) Theta phase precession

is depicted for all spikes. (B) The relationship between theta phase and position is shown

during periods of slow gamma. Note how spikes primarily occur in the first half of the place

field. (C) The relationship between theta phase and position is shown during periods of fast

gamma. Spikes occur across the full range of positions and theta phases. Note that spike
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counts in (B) and (C) do not sum to spike counts in (A) because (A) also includes periods

when neither fast nor slow gamma were detected. See also Figure S4.
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Figure 6. Reconstruction errors (difference between the position estimated by Bayesian decoding
and the animal’s actual position) during periods of slow and fast gamma in CA1
Prediction errors (mean ± SEM) were negative on average during fast gamma and positive

on average during slow gamma. Negative prediction errors indicate that the decoded

position is behind the actual position, whereas positive prediction errors indicate that the

decoded position is ahead of the actual position. See Figure S7 for example place cell

recording sites used in Bayesian decoding analyses.
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Figure 7. Examples of reconstructed positions from theta cycles showing slow or fast gamma
Top panels show Bayesian decoded spatial probability distributions for example theta cycles

(raw traces shown in middle panels); the gray line indicates the rat’s actual position. Rats

were running from 0 to 200 cm. The bottom panels depict color-coded power across time (x-

axis) for the range of gamma frequencies (y-axis). (A) Examples showing positive

prediction errors associated with slow gamma. (B) Examples showing negative prediction

errors associated with fast gamma. See also Figure S5.
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Figure 8. Negative and positive prediction errors from Bayesian decoding are associated with
particular locations, and slow and fast gamma predominate at different locations, on the linear
track
Leftward runs were reversed (as described in Figure 3). (A) Mean prediction errors ± 95%

confidence intervals are plotted against position on the track. Note that positive prediction

errors were associated with positions where rats were leaving the end of the track, and

negative prediction errors were associated with positions where rats were approaching the

end of the track. (B) The ratio of the probability of slow gamma occurrence to the

probability of fast gamma occurrence (blue) and the ratio of the probability of fast gamma

occurrence to the probability of slow gamma occurrence (red) are plotted against position on
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the track. Note that these results are a transformed version of what is shown in the left panel

of Figure S4B. See also Figure S6.
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