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during development and ageing. S1P 1 , S1P 2 , and S1P 3  are es-
sentially ubiquitously expressed, whereas expression of S1P 4  
and S1P 5  are highly restricted to distinct cell types ( 4 ). 

 Production of S1P can be initiated by external or inter-
nal signals, which lead to activation of the biosynthetic 
pathway beginning with metabolism of membrane SM to 
ceramide by SMases ( 5, 6 ). Ceramide, an important signal-
ing molecule itself, can be metabolized by ceramidase to 
sphingosine (Sph) ( 7 ). Sph is then phosphorylated by one 
of two Sph kinases (Sphks), Sphk1 or Sphk2, resulting in 
S1P genesis ( 8–10 ) (  Fig. 1  ).  

 Although there are proposed intracellular roles for S1P, it 
is often transported out of the cell where it can act in an au-
tocrine or paracrine manner on S1PRs ( 11, 12 ). Transport 
out of the cell may occur via several transporters; however, 
the only bona fi de transporter to date is spinster 2, which is 
also capable of FTY720 (fi ngolimod/Gilenya; Novartis) ex-
port ( 13–22 ). Once outside of the cell, S1P can bind to two 
known carriers, albumin or ApoM ( 6, 23, 24 ) ( Fig. 1 ). Ap-
proximately 35% of plasma S1P is bound to albumin and 
65% to ApoM, which is found on a small percentage ( � 5%) 
of HDL particles ( 24 ). This ApoM+HDL-bound S1P has 
been proposed as a primary contributor to the vasoprotec-
tive properties of HDLs ( 25–27 ). How albumin or ApoM 
deliver S1P to specifi c S1PRs has yet to be characterized. 

 AGONISTS AND ANTAGONISTS 

 There are several well-characterized agonists and antag-
onists of S1PRs; however, most compounds have been di-
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 Sphingosine 1-phosphate [2 S -amino-1-(dihydrogen pho-
sphate)-4E-octadecene-1,3 R -diol] (S1P) is a simple mem-
brane-derived lysophospholipid with regulatory roles in 
almost all facets of mammalian biology ( 1 ). Concentrations of 
S1P in blood and lymph plasmas are high, in the high nano-
molar to low micromolar ranges, whereas S1P concentrations 
in tissues are kept low, creating an S1P gradient ( 2 ). S1P sig-
nals through fi ve highly-specifi c G protein-coupled receptors 
with nanomolar dissociation constants ( 3, 4 ). Expression pat-
terns of the fi ve S1P receptors (S1PRs) vary in tissues and also 
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physiological functions highlights the diffi culties encoun-
tered upon extrapolation from rodent model-based char-
acterization of S1PR function to human disease therapies. 

 SEW2871 is an S1P 1 -specifi c agonist that activates ERK1/2, 
AKT  , and Rac signals at nanomolar concentrations and in-
duces receptor internalization and recycling; however, it has 
a relatively short half-life in vivo ( 38 ). AUY954 is another 
commonly used S1P 1 -selective agonist with an EC 50  of ap-
proximately 1 nM, which induces phosphorylation of ERK 
and AKT   ( 39 ). At high concentrations, AUY954 also has some 
activity on S1P 5  ( 39 ). Conversely, W146 antagonizes AKT and 
ERK phosphorylation and is the only widely utilized S1P 1 -
specifi c antagonist ( 40 ). Administration of W146 enhances 
vascular leakage and induces pulmonary edema ( 40, 41 ). 
VPC23019 is a useful in vitro tool as a dual S1P 1/3  antagonist; 
however, poor stability and in vivo effi cacy limit its use 
( 42–44 ). The only known compound with activity at S1P 2  is 
JTE-013, an antagonist with an IC 50  of approximately 20 nM, 
which blocks S1P 2  signaling through Rho-associated protein 
kinase (ROCK) and phosphatase and tensin homologue ( 45, 
46 ). The S1P 2  specifi city of JTE-013 has been called into ques-
tion by several studies that indicate it may have activity at S1P 4  
as well as non-S1PR-mediated effects ( 44, 47–49 ). 

 VASCULAR AND LYMPHATIC SYSTEMS 

 Many   effects of S1P on the vasculature are due to expres-
sion of S1P 1  by the endothelium. S1P 1 , originally named 
EDG1 (endothelial differentiation gene), was discovered 
during a search for immediate early genes regulating en-
dothelial cell differentiation ( 50 ). Although  S1pr1   � / �   em-
bryos developed a vascular network, they died in utero at 
E12.5– E14.5 due to defective coverage of large vessels by 
pericytes and vascular smooth muscle cells (VSMCs) ( 51, 52 ). 
Specifi cally, the aorta exhibited severe morphological ab-
normalities, endothelial hypersprouting, and altered VSMC 
recruitment and localization (  Fig. 2  ) ( 53, 54 ).  The genera-
tion of inducible cell-specifi c S1P 1  knockout mice has clar-
ifi ed the roles of endothelial cells (ECs)   or VSMC S1P 1  in 
the regulation of postnatal vascular development, matura-
tion, and function. In the developing retinal vasculature, 

rected toward modulating the activity of S1P 1 . FTY720 is 
the prototypical S1PR agonist and was approved by the US 
Food and Drug Administration as a fi rst line oral therapy 
for relapsing-remitting multiple sclerosis (MS) ( 18, 28 ). 
Although FTY720 acts as an agonist at picomolar to nano-
molar concentrations on S1P 1  and S1P 3–5 , it also acts as a 
functional antagonist for S1P 1  by inducing receptor endo-
cytosis and degradation of this receptor ( 29–31 ). This pro-
miscuity may be responsible for adverse affects, such as 
acute bradycardia (decreased heart rate) and hyperten-
sion, seen in fi ngolimod-treated patients ( 32, 33 ). Initial 
results from rodent studies indicated that FTY720 phos-
phate   activation of S1P 3  was responsible for both bradycar-
dia and hypertension; however, treatment of humans with 
more selective agonists indicated that S1P 1  agonism was 
responsible for reduced heart rate, whereas S1P 3  signaling 
contributed to the development of hypertension ( 34–37 ). 
The divergent utilization of S1P 1  and S1P 3  in rodents 
versus primates for the regulation of these coordinated 

  Fig.   2.  Expression of S1PRs and responses by endothelial cells. Endothelial cells express S1P 1 , S1P 2 , and 
S1P 3  protein. Endothelial cells may express different S1PRs depending on activation status.   

  
  Fig.   1.  Synthesis and export of S1P. S1P synthesis primarily be-
gins with metabolism of membrane SM. Once synthesized, S1P can 
be irreversibly degraded to phosphoethanolamine and hexadece-
nal by S1P lyase, or actively transported out of the cell. Once out-
side of the cell, S1P is found bound to ApoM or albumin. Spns2, 
spinster 2.   



1598 Journal of Lipid Research Volume 55, 2014

reaffi rm the conclusion that an antagonistic relationship 
exists between S1P 1  and S1P 2  in the vascular endothelium 
during tissue injury and disease. 

 Lymphatic endothelium also expresses S1PRs, although 
more interest has focused on the role it may play in S1P 
metabolism ( 21, 64 ). Examination of murine iliac collect-
ing lymph vessels demonstrated that while S1P does not 
induce nitric oxide or prostaglandin release, signaling via 
S1P 2  regulates tonic contractility of lymph vessels, as shown 
using S1P 2  inhibition by JTE013 ( 65 ). 

 IMMUNE SYSTEM 

 S1PRs regulate many aspects of immune cell biology. 
The best known is the regulation by S1P 1  of lymphocyte 
migration out of the secondary lymphoid organs into the 
blood and lymph (  Fig. 3  ) ( 66 ).  Regulation of migration 
occurs by S1P 1  counteracting the retention signals pro-
vided by the chemokine receptor CCR7 ( 67 ). However, 
this is not the only role for S1P 1  in lymphocytes, and roles 
for the other four S1PRs in the immune system have re-
cently been revealed. 

 The contribution of S1PRs to regulation of the immune 
response has been studied extensively in the context of ex-
perimental autoimmune encephalomyelitis (EAE), the most 
commonly used animal model of MS ( 68 ). Although EAE 
and MS are considered to be primarily diseases of the im-
mune system, the role of S1PRs on neural cells is also gaining 
an appreciation and will be discussed later. FTY720 is a Sph 
analog that is phosphorylated, acts on S1P 1,3–5 , and was the 
fi rst US Food and Drug Administration approved oral ther-
apy for MS ( 69 ). The presumed mechanism of action has 
been the trapping of autoreactive T and B cells in the lym-
phoid organs, away from the central nervous system ( 70, 71 ). 
However, T cell S1P 1  may also regulate the activation and dif-
ferentiation status of these immune cells. Deletion of T cell 
S1P 1  signifi cantly suppresses the ability of these cells to be 
polarized to T-helper (Th)17 in vitro ( 72 ). Conversely, when 
EAE was induced in mice expressing an internalization-
defective S1P 1  (S5A), this signifi cantly increased polarization 
of T cells to the Th17 phenotype resulting in increased disease 
pathology and immune cell infi ltration into the CNS ( 72 ). 

 S1P 1  is also expressed on CD4 T cells isolated from human 
rheumatoid arthritis patients ( 73 ). S1P enhances TNF � -
induced expression of the receptor activator of nuclear fac-
tor kB (RANK) ligand by these cells, an effect replicated in a 
synovial cell-like cell line, MH7 ( 73 ). In collagen-induced 
models of rheumatoid arthritis, a S1P 1 -specifi c antagonist 
prevented or ameliorated disease by upregulating lympho-
cyte CD69 expression, which downregulates S1P 1  surface ex-
pression, blocking thymic egress ( 73–75 ). 

 S1P 1  also affects other populations of T cells, such as T 
regulatory cells (T reg ), which, as the name implies, play an 
important role in controlling immune responses and T 
memory cells ( 76, 77 ). S1P 1  suppresses T reg  development 
via the AKT/mammalian target of rapamyacin pathway and 
affects their migration from the thymus and out of the pe-
riphery by counteracting CCR7 retention signals, similar to 

S1P 1  expression is restricted to the ECs and increases with 
vessel maturity, as the lowest levels of expression are found 
at the vascular leading front ( 55 ). Postnatal deletion of EC 
 S1pr1  did not affect mural cell recruitment or vessel cover-
age in the retina; however, angiogenic hypersprouting oc-
curred, characterized by dilated vessels and increases in 
the number of branch points and tip cells. Induced over-
expression of EC S1P 1  suppressed vascular sprouting ( 55 ). 
Changes in the vascular architecture of EC  S1pr1   � / �   mice 
were accompanied by increased vascular permeability, 
resulting from altered vascular endothelial   cadherin lo-
calization at endothelial cell-cell junctions   ( 54, 55 ). These 
data confi rmed numerous earlier in vitro studies describing 
the necessity of EC S1P 1  for the maintenance of vascular 
barrier function through adherens junction formation 
induced by activation of Rac after G  � i  coupling to S1P 1  
( Fig. 2 ) ( 56, 57 ). 

 Maintenance and formation of adherens junctions was 
dependent on S1P 1  signaling initiated not only by ligand, 
but also by fl uid shear stress ( Fig. 2 ). Examination of mu-
rine aortae found that areas of turbulent fl ow (the lesser 
curvature) had poor endothelial cell alignment and S1P 1  
relocalized from the EC surface to endocytic vesicles, 
whereas in the descending aorta, an area of laminar fl ow, 
S1P 1  and vascular endothelial cadherin colocalized to the 
cell surface ( 55 ). Additionally, maintenance of vascular 
homeostasis by the endothelial glycocalyx, which is also 
susceptible to changes in fl ow dynamics, was dependent 
upon S1P 1 -induced inhibition of matrix metalloproteinase 
( 58 ). 

 Mice with endothelium-specifi c deletion of S1P 1  devel-
oped severe pathology in a model of renal ischemia/reper-
fusion injury, both in the kidneys and the liver, characterized 
by elevated plasma creatinine, alanine transferase  , and tis-
sue necrosis ( 59 ). Conversely, of the fi ve S1PRs, S1P 2  mRNA 
in the kidney was most increased upon renal ischemia/rep-
erfusion, and mice defi cient in S1P 2  developed signifi cantly 
less pathology compared with WT controls ( 60 ). When 
 S1pr2   � / �   mice were treated with the S1P 1  antagonist, W146, 
before ischemia/reperfusion, they were no longer pro-
tected from renal injury, suggesting that S1P 1  and S1P 2  in 
the renal vasculare endothelium play protective and injuri-
ous roles, respectively, in kidney injury and disease ( 60 ). 

 The pro-infl ammatory tendency of S1P 2  is supported by 
in vitro studies suggesting a paracrine feedback loop in-
volving EC TNF �  induction of S1P 2  expression leading to 
activation of nuclear factor (NF)- � B   and increases in intra-
cellular adhesion molecule (ICAM)-1 and vascular cell ad-
hesion molecule (VCAM)-1 ( 61 ). In vivo studies utilizing 
 S1pr2   � / �   mice and a model of acute infl ammation, endo-
toxemia, further support the conclusion that S1P 2  is an 
important regulator of vascular activation and therefore, 
permeability ( 62 ). Induction of endotoxemia in mice lack-
ing  S1pr2  in the stroma and not in the bone marrow (BM) 
compartment resulted in decreased vascular permeability, 
VCAM-1 and ICAM-1 expression, and more rapid resolu-
tion ( 62 ). Similarly, in vitro, S1P 2  actively suppressed an-
giogenic sprouting through leukemia-associated RhoGEF 
(LARG) activation of RhoC ( 63 ). These recent studies 
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in human DLBCL ( 84 ). Under homeostatic conditions, 
S1P 2  signals via G 12/13  to activate Rho/ROCK, antagonizing 
activation of AKT and pro-survival signals ( 82 ). B cell S1P 2  
also regulates follicular positioning of B cells by directing 
their clustering to GC in response to follicular DC-derived 
S1P ( 82, 85 ). The ability of follicular B cells to exit the 
follicle is, however, dependent upon S1P 1  expression ( 86 ). 
Additionally, traffi cking of marginal zone (MZ) B cells be-
tween the MZ and the follicle is regulated by S1P 1 , which 
maintains these cells in the MZ in order for them to capture 
blood-borne antigens ( 86–88 ). 

 Studies of nonobese diabetic mice have shown that up-
regulation of S1P 3  by MZ B cells and their T2 MZ precur-
sors may also play a role in enhancing MZ retention in 
these mice ( 89, 90 ). S1P 3  has already been shown to regu-
late B cell migration in vitro, but not in vivo, in WT mice 
( 83, 87 ). However, it may be important for positioning of 
immature B cells and their progenitors within the BM, 
whereas S1P 1  participates in directing their migration 
from the BM parenchyma into sinusoids and subsequently 
into circulation ( 83 ). 

 Natural killer (NK) cells are considered innate lym-
phoid cells that develop from lymphoid progenitors in the 
BM  , but do not undergo genomic changes that occur in 
the B or T cell receptor genes ( 91, 92 ). They are important 
for anti-tumor immunity and are prolifi c producers of IFN �  
( 92 ). Mouse NK cells have low levels of transcript for  S1pr1 , 
 S1pr2 , and  S1pr4  and high  S1pr5  mRNA levels ( Fig. 3 ) ( 93, 
94 ). S1P 5  normally antagonizes NK CXCR4 BM retention 
signals, and  S1pr5   � / �   mice have decreased numbers of NK 

the mechanism regulating the egress of effector T cells 
from lymph nodes ( 67, 77, 78 ). S1P 1  signals may also mod-
ulate nuclear localization of the transcription factor fork-
head box P3, which is necessary for T reg  generation ( 78 ). In 
human patients, FTY720 signifi cantly increased the number 
of T reg  while decreasing central memory T cells ( 79 ). In a 
specifi c subset of T memory cells, nonlymphoid resident 
memory cells (T RM ), cytokines that induce the T RM  pheno-
type also downregulate the transcription factor Krüppel-like 
factor2 and its target gene,  S1pr1  ( 80 ). Subsequently, T RM  
are unable to sense S1P in circulation and are maintained 
in the periphery. 

 Although S1P 1  has been the focus of much research, not 
much is known of the roles of the other S1PRs. In CD8 ef-
fector T cells, S1P 4  may infl uence their traffi cking to lymph 
nodes (LNs)  , although it appears not to be a primary 
regulator ( 81 ).  S1pr4   � / �   mice have decreased Th17 T cell 
polarization; however, reduced Th17 differentiation is 
likely T cell extrinsic and primarily due to functions of 
S1P 4  in dendritic cells (DCs) ( 81 ). 

 S1PR expression choreographs many aspects of B cell 
subset localization within lymphoid organs, thereby affect-
ing their functionality; however, there are some direct ef-
fects of S1P signaling on B cell survival ( Fig. 3 ) ( 82, 83 ). 
While S1P 1  has some regulatory functions in B cells, it ap-
pears that S1P 2  has a greater impact on these cells. Aged 
 S1pr2  �    / �   mice develop diffuse large B cell lymphoma (DL-
BCL), characterized by increased germinal center (GC) 
B cells and spontaneous GC formation, which correlates 
with an approximate 26% mutation incidence for  S1PR2  

  Fig.   3.  Expression of S1PRs and responses by cells 
of the acquired immune system. T cells express S1P 1  
and S1P 4 , B cells express S1P 1 , S1P 2 , S1P 3 , and S1P 4 , 
and NK cells express S1P 1  and S1P 5 . Cells do not 
necessarily express all of the illustrated S1PRs at one 
time, but may have differential expression during 
different stages of maturation or activation.   
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atherosclerosis, accompanied by decreased macrophage and 
monocyte retention in atherosclerotic plaques, indicating ef-
fects on migration, tissue retention, and activation ( 103 ). In 
comparison,  S1pr3   � / �   mice on the same  Apoe   � / �   background 
do not have altered development of atherosclerosis, but do 
have decreased monocytes and macrophages with athero-
sclerotic lesions ( 101 ). In WT mice, treatment with FTY720 
results in decreased circulating monocytes; however, use of 
the S1P 1/4/5  agonist, BAF312, yielded similar results, both at 
homeostasis and during EAE, indicating that S1P 3  is not the 
sole regulator of monocyte circulation ( 104 ). This could be a 
cell subtype-specifi c effect, or dependent on environment, as 
local administration of FTY720 appeared to enhance recruit-
ment of anti-infl ammatory pro-angiogenic monocytes ( 105 ). 
This supports an earlier report that macrophage S1P 3  in-
duces a pro-regenerative phenotype in a model of renal 
ischemia/reperfusion ( 106 ). 

 A report utilizing the zymosan peritonitis model pro-
posed that the resulting apoptotic neutrophils induced 
S1P 1  expression on recruited macrophages and that S1P 1  
is necessary for emigration from the infl amed perito-
neum, but has no role in efferocytosis or activation ( 107 ). 
S1P 2  on alveolar macrophages may regulate their phago-
cytic capacity, as  S1pr2   � / �   alveolar macrophages dis-
played decreased phagocytosis of the fungus  Cryptococcus 
neoformans  due to decreased expression of Fc receptors 
necessary for phagocytosis of antibody-opsonized fungus 
( 108 ). 

cells in the periphery and increased numbers in lymph 
nodes and BM   due to defective migration ( 93, 95 ). This phe-
notype is also observed in the mouse model of Niemann-
Pick disease type C, a lysosomal storage disorder presenting 
as an accumulation of cholesterol and sphingolipids in the 
lysosome and decreased concentrations of circulating S1P 
in human patients ( 96, 97 ). Studies utilizing FTY720 indi-
cated that S1P 1  also contributes to NK cell migration from 
LN to lymph, but the contribution is relatively minor com-
pared with that of S1P 5 , which is not subject to CD69 regu-
lation ( 75, 94 ). Decidual NK (dNK) cells are a specialized 
NK cell subset that regulates trophoblast invasion during 
early pregnancy by secreting pro-angiogenic and growth 
factors, including vascular endothelial growth factor (VEGF) 
( 98 ). S1P 1  and S1P 5  are increased in human dNK cells 
compared with circulating NK cells, and S1P 5  expression 
decreases after the fi rst trimester ( 99 ). FTY720 treatment 
decreased dNK S1P 5  expression, VEGF production, and 
trophoblast invasion in vitro ( 99 ). 

 Macrophages are important sentinel cells that develop 
from monocytes to fi ght infection and repair damaged tissue 
( 100 ). S1PRs expressed by monocytes and macrophages reg-
ulate their migration and activation, and the receptors re-
sponsible are cell subtype- and situation-specifi c (  Fig. 4  ).  
In general, S1P 1  and S1P 3  appear to induce migration to-
ward S1P, whereas S1P 2  expression repulses macrophages 
from S1P ( 101, 102 ).  S1pr2   � / �   mice on a pro-atherogenic 
genetic background ( Apoe   � / �  ) developed signifi cantly less 

  Fig.   4.  Expression of S1PRs and responses by cells 
of the innate immune system. Monocytes and/or 
macrophages express S1P 1–4 , neutrophils express 
S1P 1 , S1P 3 , and S1P 4 , eosinophils and MCs express 
all S1PRs, and DCs express S1P 1 , S1P 3 , and S1P 4 . Cells 
do not necessarily express all of the illustrated S1PRs 
at one time, but may have differential expression dur-
ing different stages of maturation or activation.   
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 DCs are professional antigen-presenting cells and as 
such, are required for proper induction and direction of 
the acquired immune response ( 117 ). Both human and 
mouse DCs express mRNA for S1P 1–5  and exhibit varied 
responses to S1P stimulation in vitro and in vivo ( Fig. 4 ) 
( 118, 119, 120 ). Langerhans cells, skin resident DCs, re-
quire S1P 1  for migration to LN, whereas kidney resident 
DCs require S1P 3  for maturation in ischemia/reperfusion 
( 121, 122 ). This is also the case in models of sepsis, where 
DC S1P 3  is required for interleukin-1 �  production ( 123 ). 
In EAE, although S1P 1  agonism decreased disease pathol-
ogy, it did not affect entry into the CNS of a subset of DCs 
(plasmacytoid DCs). However, plasmacytoid DCs in the 
CNS were necessary for the effi cacy of S1P 1  agonist treat-
ment ( 124 ). 

 S1P 4  was cloned from mature human DCs, yet not much 
is known about the role this receptor plays in these cells 
( 125 ). In models of autoimmune disease, Th2-type im-
mune responses such as allergic airway infl ammation and 
cutaneous hypersensitivity,  S1pr4   � / �   mice had increased 
pathology and up to 50% increase in DCs in draining LN 
after topical antigen application ( 81 ). This implies that 
S1P 4  may antagonize S1P 1  in DCs, regulating their ability 
to migrate from the periphery after antigen uptake. 

 NERVOUS SYSTEM 

 Neural progenitors express mRNA for S1P 1–5  and respond 
to S1P stimulation with induction of Ca 2+  mobilization 

 Neutrophils are the fi rst immune cell line of defense 
and can shape the immune response ( 109 ). Neutrophils 
express mRNA for all S1PRs; however, the level of expres-
sion and the ability of S1P to affect changes in their re-
sponses depend upon their activation status ( Fig. 4 ) ( 110 ). 
More recently, it was reported that S1P lyase ( Sgpl )  � / �   
mice are unable to degrade S1P and have neutrophilia 
( 111 ). Although S1P 4  defi ciency in  Sgpl  knockouts resulted 
in circulating neutrophil numbers that were close to WT, 
S1P 4  was not specifi cally deleted in neutrophils, raising the 
possibility that multiple cell types were responsible for the 
effect. Specifi c deletion of neutrophil S1P 1  did not nor-
malize neutrophil numbers in  Sgpl   � / �   mice. However, in 
rat models of hyperalgesia dependent upon neutrophil in-
fi ltration, S1P 1  was necessary for neutrophil recruitment 
( 112 ). Specifi c S1P 1  antagonism blocked neutrophil infi l-
tration, whereas agonism increased sensitivity. 

 Eosinophils and mast cells (MCs) are both involved in 
anti-parasite immune responses and allergic immunity ( 113 ). 
Eosinophils from mice over-expressing interleukin-5, an eo-
sinophil growth factor, express high levels of S1P 3  and dem-
onstrate increased chemotactic responses to S1P in vitro 
( Fig. 4 ) ( 114 ). In a model of allergic rhinitis, FTY720 treat-
ment signifi cantly decreased the numbers of infi ltrating 
MCs and eosinophils, resulting in resolution ( 115 ). In vitro, 
FTY720 induced MC apoptosis in a dose-dependent man-
ner ( 115 ). Similar to lymphocytes, S1P 1  regulates MC migra-
tion toward the antigen, whereas S1P 2  regulates their 
activation status upon Fc � RI ligation, inducing degranula-
tion and CCL2 secretion ( 116 ). 

  Fig.   5.  Expression of S1PRs and responses by neu-
ral cells. Neural progenitors express S1P 1  and S1P 2 , 
neurons express S1P 1  and S1P 3 , oligodendrocytes 
express S1P 1  and S1P 5 , and astrocytes express S1P 1  
and S1P 2 . S1P 1  couples exclusively to G  � i . S1P 2  and 
S1P 3  can couple to G  � i , G  � 12/13 , or G  � q , and S1P 5  can 
couple to G  � i  or G  � 12/13 . Cells do not necessarily ex-
press all of the illustrated S1PRs at one time, but 
may have differential expression during different 
stages of maturation or activation.   
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downregulated production of pro-infl ammatory molecules 
by microglia while increasing neurotrophic factor produc-
tion, resulting in an overall neuroprotective phenotype 
( 142 ). FTY720 also inhibited secretory vesicle mobility and 
exocytic release by astroglia, thus inhibiting the release 
of pro-infl ammatory mediators by this cell type, as well 
( 143 ). Astrocytic gliosis also occurs in EAE and MS ( Fig. 5 ) 
( 71 ). In vitro treatment of a human astrocyte cell line 
with FTY720 suppressed S1P-induced production of pro-
infl ammatory cytokines ( 144 ). In vivo, specifi c deletion of 
astrocyte S1P 1  resulted in decreased EAE pathology and a 
loss of FTY720 effi cacy, indicating that the primary target 
of FTY720 during EAE was S1P 1  specifi cally on astrocytes 
( 145 ). Additionally, in a model of spinal cord injury, 
FTY720 affected the later stages of vascular permeability 
and astrogliosis, partially through agonism of S1P 1  ( 146 ). 
Another target of FTY720, S1P 3 , was also found on reactive 
astrocytes in human MS lesions and upregulated by li-
popolysaccharide   stimulation of astrocytes in vitro, al-
though it is unknown if expression of S1P 3  is protective or 
pathogenic in the context of MS/EAE ( 147 ). Mice defi -
cient in the one S1PR not targeted by FTY720, S1P 2 , are 
prone to seizures resulting in 40% mortality and have en-
hanced hippocampal gliosis accompanied by behavioral 
defects ( 148 ). Importantly, MS patients treated with fi n-
golimod show reduced brain volume loss and lesional ac-
tivity, suggesting the importance of S1PR pathways in 
neuroprotection ( 149–151 ). 

 The blood brain barrier (BBB) forms through unique 
interactions between brain endothelial cells, astrocyte 
foot-processes, and pericytes, and regulates interactions 
between the immune and nervous systems ( 152 ). Altera-
tions in the BBB are implicated or present in numerous 
neurological diseases, including MS, stroke, and demen-
tias ( 153 ). S1P 5  was highly expressed by human brain cap-
illary endothelial cells, and antagonism of S1P 5  in an in 
vitro model of BBB decreased vascular permeability and 
monocytic transmigration ( 154 ). Studies of FTY720 treat-
ment in the context of transient cerebral ischemia and 
reperfusion have demonstrated neuroprotection in mouse 
and rat models; however, these effects may be due to ef-
fects on interactions between the neurovasculature and 
immune cells ( 155, 156 ). FTY720 treatment reduced brain 
edema as well as expression of the vascular adhesion mol-
ecule, ICAM-1, resulting in decreased neutrophil infi ltra-
tion ( 155 ). Additionally, when transient cerebral ischemia 
was induced in lymphocyte-defi cient  Rag1   � / �   mice, the 
protective effect of FTY720 was lost, further implying that 
FTY720-mediated protection is due to effects on the neu-
rovasculature and its interactions with immune cells ( 156 ). 
Conversely, a study utilizing a model of permanent cere-
bral ischemia demonstrated no effect on pathology with 
FTY720 treatment, whereas another group demonstrated 
effi cacy after delaying FTY720 treatment for 3 days after 
photothrombosis induction, with increased functional ca-
pacity and decreased astrogliosis ( 157, 158 ). Thus, protec-
tion by FTY720 may be dependent on the method of 
ischemia induction and temporal regulation of cell activa-
tion and recruitment. 

(  Fig. 5  ) ( 126 ).  S1P regulates embryonic nervous system 
development, as the neuroepithelial layers of the develop-
ing telencephalon in  S1pr1   � / �   embryos have signifi cantly 
increased apoptosis and decreased mitosis ( 127 ). S1P 2  may 
also play a role in regulating neural progenitors, as pos-
tischemic administration of the S1P 2  antagonist JTE-013 
or short hairpin RNA against S1P 2  signifi cantly increased 
progenitor migration to the ischemic region ( 128 ). This in-
dicates that S1P 2  may repel neural progenitors from areas of 
high S1P concentration in the same manner as it regulates 
macrophage migration ( 102 ). Indirectly, S1P signaling on 
astrocytes affects neural progenitors by increasing lamin 
production, thereby encouraging maturation and neurite 
outgrowth by progenitors ( 129 ). Interestingly, neural stem 
cells were protected from radiation-induced apoptosis by 
nanomolar FTY720 treatment in vitro, although it is un-
known which receptor is involved in this protection ( 130 ). 

 Although analyses of entire mouse dorsal root ganglion 
found that S1P 3  was the most highly expressed S1PR, sin-
gle cell mRNA analysis of individual neurons found that 
S1P 1  was most highly expressed, regardless of neuronal 
subtype, indicating that high expression of S1P 3  occurs in 
ganglion cell types other than neurons ( Fig. 5 ) ( 131, 132 ). 
One group found that pain responses induced by intrader-
mal S1P injection or models of postoperative pain were 
signifi cantly decreased in  S1pr3   � / �   mice, whereas minimal 
differences were seen in  S1pr1   � / �   mice ( 131 ); however, 
another group found that mice lacking S1P 1  specifi cally 
in nociceptor neurons were protected from S1P-induced 
pain ( 133 ). Finally, in the murine model of the neu-
rodevelopmental disease, Rett syndrome, FTY720 or S1P 1 -
specifi c agonist SEW2871 in vivo treatment increased 
neuron production of brain-derived neurotrophic factor 
and decreased neurological symptoms ( 134 ). 

 Oligodendrocytes are the myelinating cells of the CNS 
and the primary cell type affected in MS and in the mouse 
EAE model ( 135 ). Process retraction, Rho/ROCK-mediated 
inhibition of immature oligodentrocyte precursor migra-
tion, and G i /AKT-mediated survival in mature oligoden-
drocytes occurs via S1P 5  ( Fig. 5 ) ( 136, 137 ). Ex vivo studies 
using cerebellar slice cultures indicated that S1PR agonism, 
particularly S1P 1 , could prevent or reverse demyelination, 
explaining the ability of FTY720 to induce remyelination 
and process extension in the same system ( 138, 139 ). Data 
from a different in vitro system, myelinated neurospheres, 
indicated that FTY720 decreased microglial activation and 
oligodenrocyte apoptosis, and induced remyelination pri-
marily by S1P 5  agonism ( 140 ). An in vivo study provides 
confl icting evidence to these in vitro studies, reporting no 
effects on myelin repair with FTY720 treatment; however, 
the models of demyelination utilized in both the in vitro 
and in vivo studies were induced chemically and were 
meant to exclude possible effects of immune or vascular 
cells ( 141 ). As such, they cannot model complex neuroin-
fl ammatory disease and care must therefore be taken when 
attempting to extrapolate results to in vivo disease, such as 
EAE or MS. 

 The resident immune cells of the CNS, microglia, express 
all S1PRs ( 142 ). In vitro studies indicated that FTY720 
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survival or by controlling the localization of cells within 
permissive environments such as the lymph nodes. 

 CONCLUDING REMARKS 

 S1PRs are gaining appreciation as powerful modulators 
of homeostasis and pathogenesis. In all biological systems, 
S1PRs play some role in regulating cell survival, migration, 
phenotype, activation status, and proliferation. In the cur-
rent review, we have attempted to summarize the most re-
cent advances in the fi eld of S1PR biology and to provide 
novel insights into the biological responses regulated. As 
more cell-specifi c animal models of gene deletion or over-
expression are created, and agonists and antagonists with 
greater S1PR subtype specifi city are developed, further 
studies with such tools will clarify the contributions of spe-
cifi c S1PRs in each physiological or pathological context. 
This is especially true of the less explored members of the 
S1PR family, S1P 4  and S1P 5 . Additionally, we anticipate 
that the development of more compounds for clinical use 
will expand our understanding of the complex signaling 
networks regulated by S1PRs and their role in human ho-
meostasis and disease.  
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