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A simplified three-dimensional (3-D) zero-thickness shell model was developed to recover the

non-spherical response of thick-shelled encapsulated microbubbles subjected to ultrasound

excitation. The model was validated by comparison with previously developed models and was

then used to study the mechanism of bubble break-up during non-spherical deformations resulting

from the presence of a nearby rigid boundary. The effects of the shell thickness and the bubble

standoff distance from the solid wall on the bubble break-up were studied parametrically for a fixed

insonification frequency and amplitude. A diagram of bubble shapes versus the normalized shell

thickness and wall standoff was derived, and the potential bubble shapes at break-up from reentrant

jets were categorized resulting in four distinct zones. VC 2013 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4792492]
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I. INTRODUCTION

Encapsulated microbubbles formed of a gas core and an

elastic shell have been used in medical applications of ultra-

sound for many years. The most established use of encapsu-

lated microbubbles is with acoustic contrast agents used to

enhance ultrasonic image quality (Becher and Burns, 2000).

In addition, due to their inert properties under normal biolog-

ical conditions and their reactive character when subjected

to ultrasound excitation, there are rapidly emerging applica-

tions for thick shell microbubbles in targeted drug and gene

delivery (Ferrara et al., 2007; Mayer and Bekeredjian, 2008;

Song et al., 2002). In one design, the drug is suspended in a

highly viscous thick liquid shell (Unger et al., 2002). The

high viscosity stabilizes the encapsulated bubble and enables

it to conserve its integrity until it reaches the specific target.

Microbubble shape instabilities are then excited with an

appropriate acoustic amplitude and frequency to result in

microbubble shell break up and delivery of the drugs.

Several ways of using encapsulated microbubbles for

targeted drug and gene delivery have been studied. One

approach is to inject conventional ultrasound contrast agents

and drug-containing vesicles simultaneously (Song et al.,
2002; Price et al., 1998). Then a sufficiently strong ultra-

sound pulse is applied to the targeted area such that the

contrast agents expand explosively and collapse violently

near the cells and tissues to induce sonoporation, a tempo-

rary formation of pores on the cell membrane, and assist

large molecule drug delivery from carriers to the interstitial

tissue. An alternative approach is to incorporate the drug

directly in the encapsulating layer shell of the microbubble

(Unger et al., 2002; Chen et al., 2006; Hauff et al., 2005).

When subjected to ultrasound excitation, the shell is forced

to fragment and release the payload to the targeted area.

Such drug-laden encapsulated microbubbles require a thick

shell to increase the payload because the volume of the drug

delivered by the microbubbles is relatively small compared

to other means of drug delivery. A further improvement to

the use of drug-laden encapsulated microbubbles is to attach

a ligand that is targeted to a specific endothelial receptor

(Tartis et al., 2006). This method allows the encapsulated

microbubbles to adhere to the endothelial surface and

thus increase local microbubble accumulation and targeted

delivery.

However, sonoporation is therapeutic only when using

low doses of ultrasound. An increase in the ultrasound inten-

sity may result in cell death and other detrimental biological

side effects. Therefore characterization and understanding of

the fragmentation mechanisms of encapsulated microbubbles

is pivotal to its use for drug delivery. Although many studies

(Church, 1995; Allen et al., 2002; Marmottant et al., 2005;

Sarkar et al., 2005) have investigated shell break-up of

encapsulated microbubbles, they were limited to spherical

models, and no 3-D deformations were included. From pre-

vious studies on bubble dynamics (Plesset and Chapman,

1971; Crum, 1979; Chahine, 1977, 1982; Blake and Gibson,

1987; Zhang et al., 1993; etc.), it is known that depending

on its distance to nearby boundaries, an oscillating bubble

may form a re-entrant jet during its collapse. A similar

behavior is expected with encapsulated microbubbles,

and micro-jetting and micro-streaming associated with

violent non-spherical break-up have been hypothesized

as mechanisms to enhance drug delivery (Miller, 2000).

Understanding this phenomenon is particularly important for

drug-laden microbubbles baring surface ligands to adhere to

the endothelial surface because of their small stand-off from

the tissue surface.

Hsiao et al. (2010) developed a 3-D numerical model

based on a domain decomposition scheme to study the

dynamics of thick liquid-shelled microbubbles. The compu-

tational domain was decomposed into inner domains com-

posed of the shelled bubbles and an outer domain covering

the host liquid medium. The inner domains are discretized
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and solved using an unsteady Navier–Stokes solver,

3DYNAFS-VIS, while the flow field in the outer domain is

solved using a boundary element method based potential

flow solver, 3DYNAFS-BEM. Both are sub-modules of our

computational fluid dynamics (CFD) code 3DYNAFS. This

method best describes the dynamics of thick-shelled encap-

sulated microbubbles, but the solution and coupling of the

two 3-D models comes with a high CPU computational cost.

To reduce computational time without great loss of accuracy

and enable parametric studies using the model, we present

here a 3-D zero-thickness shell model. The approach repla-

ces the shell thickness with an equivalent dilatational viscos-

ity term in the boundary conditions. The results of the model

are first compared to previously developed models and to the

thick shell model to evaluate accuracy. This model is then

used to study the mechanism of encapsulated microbubble

break-up due to ultrasound excitation and resulting non-

spherical bubble dynamics and deformations in the presence

of a nearby rigid wall.

II. ENCAPSULATED MICROBUBBLES 3-D MODEL

A. Problem definition

Consider the response of encapsulated microbubbles to

ultrasound acoustic waves when the bubble is excited near a

solid boundary. Due to the proximity of the boundary and to

the interaction with other bubbles, the problem is fully three-

dimensional, and a spherical model is inadequate. For a sin-

gle bubble, the computational domain for this problem, as

illustrated in Fig. 1 can be decomposed into three regions:

The region of the compressible gas in the bubble, an inner

liquid domain for the highly viscous liquid shell around the

bubble gas core, and an outer liquid domain for the host

liquid medium bounded by a solid wall. As summarized in

the subsections in the following text, in the general 3-D

finite-thickness shell model (Hsiao et al., 2010), the flow field

within the shell layer is solved using the unsteady Navier–

Stokes equations, while the flow field in the outer domain,

which is much less viscous, is solved with a boundary ele-

ment method assuming a potential flow. In the present zero-

thickness shell model, a thin-shell approximation will be

used to condense the liquid shell into a zero-thickness layer

with space varying properties, and this allows the solution of

the full problem by considering the outer domain only.

B. Solution of the outer domain liquid problem

1. Fictitious membrane

The outer domain liquid flow due to the encapsulated

bubble’s motion is assumed to be irrotational and incompressi-

ble. These are conventional assumptions for bubble dynamics

(Plesset and Chapman, 1971; Blake and Gibson, 1987;

Chahine, 1993, 1997; Church, 1995; Allen et al., 2002;

Marmottant et al., 2005; Sarkar et al., 2005). The assumption

of irrotational flow for the outer domain allows the definition

of a velocity potential, /, such that

u ¼ r/; (1)

where u is the velocity vector. The assumption that the liquid

is incompressible leads to Laplace’s equation for the potential:

r2/ ¼ 0: (2)

A boundary integral method is used to solve Eq. (2).

This method is based on an integral solution of the Laplace

equation using the Gauss–Ostrogradsky divergence theorem,

which can be written using Green’s second identity:ð
V

ð/r2G� Gr2/Þ dV ¼
ð

S

n� ½/rG� Gr/�dS: (3)

In this expression V is the 3-D domain of integration having

elementary volume dV. The boundary surface of V is S,

which includes the surface of the contrast agent and the

nearby boundaries with elementary surface element dS and

local normal unit vector n. / is harmonic in the fluid domain

V, and G is Green’s function. If G is selected to be harmonic

everywhere but at some discrete points, Eq. (17) simplifies

considerably. For instance, if

G ¼ � 1

jx� yj ; (4)

where x is a fixed point in V and y is a point on the boundary

surface S, Eq. (3) reduces to Green’s formula with ap being

the solid angle at x enclosing the domain V.

ap/ðxÞ¼
ð

S

ny � ½/ðyÞrGðx;yÞ�Gðx;yÞr/ðyÞ�dS; (5)

a¼ 4, if x is a point in the fluid, a¼ 2, if x is a point on a

smooth surface, and a< 4, if x is a point at a sharp corner of

the discretized surface.

This equation states that if the velocity potential / and

its normal derivatives are known on the boundary surface S
of a domain V, where / satisfies the Laplace equation, then

/ can be determined anywhere in V by integration over the

boundary surface. Using this expression, the boundary inte-

gral method reduces by one the dimension of the problem of

solving the Laplace equation.

2. Boundary conditions

The mathematical modeling of the problem leads to a

boundary value problem posed for a domain with a fixed
FIG. 1. (Color online) Sketch for illustration of the domain decomposition

of the thick shell encapsulated microbubble problem.
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boundary (liquid/wall interface) and a moving boundary

(liquid/shell interface) on which nonlinear boundary condi-

tions should be satisfied. For the fixed boundary, the bound-

ary condition on any nearby body surface, S, states that there

is no flow across the boundary and is given for a rigid and

stationary body surface by

@/
@n
¼ 0; x 2 S: (6)

For a moving/deforming boundary, the boundary condi-

tions impose a balance of the normal stresses and an equality

of the fluid normal velocity and the interface normal

velocity, un,

@/
@n
¼ un; x 2 S: (7)

At any given time step, if the velocity potential / on the

boundary surface S is known, then the interface normal ve-

locity @/=@n can be derived from Eq. (5) by solving a sys-

tem of linear equations. For a point B on the boundary S, the

Bernoulli equation gives

PlðBÞ þ ql

@/
@t
þ 1

2
r/ � r/

� �
¼ Pðt;BÞ; (8)

where Pðt;BÞ is the imposed ultrasound pressure at the par-

ticular bubble location, B. ql is the liquid density, and Pl is

the liquid side pressure on the liquid/shell interface at B.

Once Pl is determined from the boundary conditions (see

Sec. II C 2), Eq. (8) can provide @/=@t, and the rate of

change in potential at a given point B followed in its motion

can be obtained by

D/
Dt
¼ @/
@t
þ us � r/; (9)

where us is the velocity at B, at the liquid/shell interface.

C. Thick shell viscous Navier–Stokes model

1. Governing equations

To solve the highly viscous flow in the inner domain,
the unsteady incompressible Navier–Stokes equations are

used. The continuity and momentum equations in non-

dimensional form are given as

@ui

@xi
¼ 0; (10)

@ui

@t
þ uj

@ui

@xj
¼ � @p

@xi
þ 1

Re;s

@sij

@xj
; (11)

where ui ¼ ðu; v;wÞ are the normalized Cartesian compo-

nents of the velocity, xi ¼ ðx; y; zÞ are the normalized

Cartesian coordinates, and p is the normalized pressure.

Using asterisks for the selected scales, Re;s ¼ q�s u�L�=l�s is

the Reynolds number of the viscous shell, u� and L� are the

characteristic velocity and length, q�s is the shell density, and

l�s is its dynamic viscosity. For the simulations in the

following text, L* is selected to be the encapsulated shell

inside radius, the selected characteristic time, T*, is the

imposed acoustic oscillations period, and u� ¼ L�=T�.

2. Boundary condition at the gas-shell interface

Kinematic and dynamic boundary conditions are applied

at the gas-liquid interface. The kinematic condition ensures

that a particle on the surface remains on the surface. This

can be written DF =Dt ¼ 0, with Fðxi; tÞ ¼ 0, being the

equation of the surface.

The dynamic condition imposes zero shear stress and

balance of normal stresses at the interface. The dynamic

boundary condition at f¼ 0 (gas-shell interface) in non-

dimensional form as

@U

@f

����
f¼0

¼ 0;
@V

@f

����
f¼0

¼ 0;

pl ¼ pgv þ
2

Re;s

@W

@f

����
f¼0

� Cgs

We;gs
; (12)

where ðU;V;WÞ are contravariant velocity components in

the curvilinear coordinates and Cgs is the curvature of gas-

shell interface.

We;gs ¼ q�s u�2L�=c�gs; (13)

is the Weber number with c�gs being the surface tension at the

gas-shell interface.

pgv ¼ ðp�g þ p�v � p�1Þ=q�s u�2; (14)

where p�g; p
�
v , and p�1 are the dimensional gas and vapor

partial pressures inside the bubble and the imposed driving

pressure function far from the bubble.

To determine the gas pressure we assume that the

amount of gas inside the bubble remains constant and that

the gas satisfies the polytropic relation

p�gV�j ¼ const; (15)

where V� is the gas volume and j is the gas polytropic

exponent.

III. BOUNDARY CONDITION AT THE SHELL–LIQUID
INTERFACE

The shell–liquid interface is a liquid–liquid interface at

which the boundary conditions are continuity of the shear

stresses, balance of the normal stresses, and continuity of

the velocity. These can be written in nondimensional format

as

@U

@f

����
f¼1

¼ ll

ls

sl;n;
@V

@f

����
f¼1

¼ ll

ls

sl;g;

p� 2

Re;s

@W

@f

����
f¼1

¼ Pl þ
2

Re;s

ll

ls

sl;f þ
Csl

We;sl
; (16)

Wjf¼1 ¼ us � n: (17)
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In the preceding expressions, ll is the normalized dynamic

viscosity of the host liquid, ql is its normalized density, Csl is

the normalized curvature of the shell-liquid interface, and

We;sl ¼ q�s u�2L�=c�sl; (18)

is the Weber number, where c�sl is the surface tension at the

shell-liquid interface.

sl;n; sl;g are the normal derivatives of the tangential

velocity components in the n and g directions, respectively,

at the liquid side of the interface. sl;f is the derivative along

the normal of the velocity normal component, and Pl is the

pressure on the liquid side of the shell-liquid. n is the local

unit normal vector to the boundary, and us is the viscous

liquid velocity at the boundary which will be provided by

the solution of the outer domain.

A. Zero-thickness approximation

In Eq. (8), Pl can be determined by considering the

normal stress balance across the liquid/shell interface and

computed in the inner domain as described in the previous

study (Hsiao et al., 2010). However, there are great advan-

tages if this relatively CPU-costly procedure is replaced by

an equivalent zero-thickness shell with properties reproduc-

ing the real finite-thickness shell behavior. To do this, the

stresses exerted by the liquid on the encapsulated bubble

have to be properly captured. For the study of microbubble

rupture by acoustic excitation, the normal stresses are pre-

dominant and can be expressed through the normal stress

boundary condition across the liquid/shell/gas interface. To

do this, let us consider the dynamics of a spherical thick shell

encapsulated bubble with inner and outer shell radii, R1 and

R2, respectively. The continuity equation and incompressi-

bility of the shell material and host liquid fluid leads to

ur ¼
_R1R2

1

r2
¼

_R2R2
2

r2
; _R1 ¼ _R2

R2
2

R2
1

; (19)

where ur is the radial velocity in the shell and host liquids.

This provides a direct relationship between R1 and R2, the

inner and outer radius of the shell.

Applying the momentum equations to both the inner and

outer domain problem with the boundary equations

described in the following text leads to a non-dimensional

Rayleigh–Plesset-like differential equation for R2, which

describes the time variation of R2—and thus R1 too because

of Eq. (19)—which has the following non-dimensional

expression (Allen et al., 2002, Lu et al., 2010):

R2
€R2 ð1� qsÞ þ qs

R2

R1

� �
þ ð1� qsÞ

3

2
_R

2

2

þ qs
_R

2

2 2R2=R1 �
1

2
ðR2=R1Þ4

� �

¼ pgv �
2

We;gsR1

þ 2

We;slR2

� �
� 4

1

Re;l

_R2

R2

� 4
1

Re;s

_R2

R2

R2

R1

� �3

� 1

 !
; (20)

where qs ¼ q�s=q
�
l and Re;l ¼ q�l u�L�=l�l . The characteristic

length L� is chosen to be the initial outer radius R�20 and the

characteristic velocity is u� ¼ R�20=T�. T� is the selected

characteristic time and is the smallest of the inverse of the

frequency, f, of the imposed acoustic waves or the bubble

Rayleigh period based on DP the amplitude of the imposed

acoustic waves:

T� ¼ min
1

f
; R�20

ffiffiffiffiffiffiffi
q�l
DP

r� �
: (21)

In the case of a highly viscous liquid shell of thickness,

d, which tends toward zero, we have

R � R2 � R1;
d

R2

¼ R2 � R1

R2

� 1;

R2

R1

¼ R2

R2 � d
� 1;

1

Re;s
� 1

Re;l
; (22)

and Eq. (20) becomes

R €R þ 3

2
_R

2 ¼ qgv �
2

R

1

We;gs
þ 1

We;sl

� �
� 4

_R

R

1

Re;l

� 12
d

Re;s

_R

R2
: (23)

If we ignore the layer thickness variations in a zero-

thickness model, d can be replaced by its initial value d0,

and if we define the equivalent properties for Weber number,

We, and dilatational parameter, js:

1 =We ¼ 1 =We;gs þ 1 =We;sl; js ¼ 3d0 =Re;s; (24)

we obtain the equivalent zero-thickness differential equation:

R €R þ 3

2
_R

2 ¼ pgv �
2

R

1

We

� 4
_R

R

1

Re;l
þ js

R

� �
: (25)

Incidentally, this spherical finite-thickness shell model

recovers the spherical zero-thickness shell model derived by

Sarkar et al. (2005) using a dilatational viscosity in the nor-

mal stress balance equation. In dimensional form, the dilata-

tional coefficient is given by

js� ¼ 3d0ls: (26)

This same concept can be applied in 3-D to develop a 3-

D zero-thickness shell model. In this model, the dynamics

boundary condition at the contrast agent/liquid interface is

obtained by analogy with the spherical zero-thickness model,

(25), by balancing the pressure in the liquid at the interface

with the partial gas and vapor pressures, the surface tension

and the viscous and dilatational normal stresses:

Pl ¼ pgv �
2

We

1

R
� 4

_R

R

1

Re;l
þ js

R

� �
: (27)

To derive the boundary condition for the 3-D equivalent

zero-thickness model, we start from combining Eqs. (12)

and (16):
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Pl � pgv þ
2

Re;s

@W

@f

����
f¼1

� 2

Re;s

@W

@f

����
f¼0

þ 2

Re;l
sl;f þ

Csl

We;sl
þ Cgs

We;gs
¼ pf¼1 � pf¼0: (28)

The finite thickness shell can be replaced by a vanishing thin

boundary, if new equivalent parameters are used for the

Weber number and the dilatational viscosity,

pf¼1 ¼ pf¼0;

1

We;sl
þ 1

We;gs
¼ 1

We

;

Csl ¼ Cgs ¼ C;
@W

@f

����
f¼1

¼ @W

@f

����
f¼0

: (29)

Therefore Eq. (28) can be reduced to

Pl ¼ pgv �
C

We

� 2

Re;l
sl;f þ sn (30)

where sn is an “effective” normal stress that is introduced to

represent the normal stress of the finite thickness shell. By

comparing Eqs. (27) and (30), we can find all equivalent

terms, i.e., C=We!ð1=WeÞð2=RÞ; �ð2=Re;lÞs l;f! �ð2=
Re;lÞð@ur=@rÞjr¼R ¼�ð4=Re;lÞð _R=RÞ, and sn¼�12d0ls

_R=R2

if a local spherical model is assumed. To adapt Eq. (30) for

the current 3-D zero-thickness model, a local-spherical

motion approximation is applied such that R	2=C and
_R	@/=@n. As a result, the normal stress boundary condi-

tion is written as

Pl ¼ pgv �
C

We

� C 2

Re;l
þ jsC

� �
@/
@n

: (31)

In the equivalent zero-thickness model, as expressed in

Eq. (22), the inner and outer bubble shell radii become the

same, and the first choice this study made was to use the ini-

tial outer radios, R�20, as the equivalent microbubble radius to

track and use for the computations in Eq. (23) especially that

R�20 was selected as length scale. However, the conducted

3-D numerical validation tests comparing the equivalent

zero-thickness model with the thick model suggest that using

the mid-layer thickness, i.e., R�20 � d�0 = 2 ¼ ðR�20 þ R�10Þ=2,

is a better choice for improved equivalency.

IV. NUMERICAL SOLUTION METHOD

A. Boundary element method

With the equivalent thin layer approximation, the prob-

lem has been reduced to the potential flow solution of the

outer problem only, Eq. (5). This is solved using a boundary

element method. To do so, all boundaries are discretized into

triangles, Sk, and the surface integrals are evaluated at any

field point x as a summation over all panels of the influence

of singularity distributions over the boundaries. This enables

one to write Green’s second formula, (5), in the form

ap/ðxÞ ¼
XM

k¼1

ð
Sk

/ðyÞ@G

@n
ðx;yÞ �Gðx;yÞ@/

@n
ðyÞ

� �
dSk;

(32)

where M is the number of surface elements on the boundary.

To evaluate the integrals over Sk, given in Eq. (32), it is nec-

essary to assume a relation between / and @/=@n at a sur-

face node with the values of these quantities at the

discretized nodes. Here we assume that these quantities vary

linearly over a panel and can be described by the panel

nodes. By applying a linear interpolation for each panel Sk,

each elementary integral can be written as a linear combina-

tion of / or @/ = @n evaluated at the surrounding nodes. The

integration expressions are complex, and details can be

found in our previous study (Chahine et al., 1989). With the

integration over each panel performed, the discretized

Eq. (32) can be expressed as

ap/j ¼
XM

k¼1

Xm

i¼1

Bk
i /

k
i � Ak

i

@/
@n

� �k

i

" #
;

j ¼ 1;N; m ¼
3 triangular element;

4 quadrilateral element;

�
(33)

where /k
i and @/=@nk

i are the potential and its normal deriv-

ative at node i of panel k, and Ak
i and Bk

i are influence coeffi-

cients obtained from elementary integration and N is the

total node number.

Following a “collection” procedure in which the contri-

butions due to the same node are collected from the various

contiguous elementary surfaces and summed up, Eq. (33)

can be rewritten as

ap/j ¼
XN

i¼1

�Bi/i � �Ai
@/
@n

� �
i

� �
; j ¼ 1;N; (34)

where �A and �B are the altered influence coefficients due to

summation of the same node. It is noted that the “collection”

approach transfers the panel contribution in Eq. (33) to the

node contribution in Eq. (34). Equation (34) can be

expressed in a matrix form as

�A
@/
@n
¼ ðapIþ �BÞ/; (35)

where I is an N 
 N identity matrix, and �A and �B are N 
 N
influence coefficient matrices. With / known on all bound-

ary nodes, Eq. (35) is a linear system of N equations and can

be readily solved for N unknowns of @/ = @n, using classical

methods such as LU decomposition and Gauss elimination.

The LU decomposition factorizes a matrix as the product of

a lower triangular matrix and an upper triangular matrix.

The LU decomposition can be viewed as the matrix form of

Gaussian elimination (Poole, 2010).

B. Time integration

To proceed with the time integration, the points on the

bubble surface are advanced using the node velocities. The
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normal velocity is known from the solution of the integral

equation while the tangential velocity is obtained by using a

local surface fit to the velocity potential /. The nodes are

then advanced according to

Dx

Dt
¼ u: (36)

The 3DYNAFS-BEM
# version used here uses a simple

Euler stepping scheme to numerically integrate Eq. (36).

The time stepping uses an adaptive scheme with the step

dt selected to ensure that smaller time steps are used when

rapid changes in the velocity potential occur, while larger

ones are chosen for less rapid changes. The time step is

determined by

dt ¼ 1

A

Dlmin

Vmax

; (37)

where Vmax is the highest nodal velocity and Dlmin is the

minimum distance between the nodes at the current step.

The factor A in the denominator is a user input to further

control the time scale.

To prevent excessively small steps or large steps leading

to inordinately long run times or erroneous results, the time

step size is not allowed to become smaller or larger than pre-

scribed minimum and maximum values.

C. Curvature computation

The curvature C introduced in Eq. (31) is the local sur-

face curvature given by

C ¼ r � n: (38)

The local normal at the surface is defined by

n ¼ 6
rF

jrFj ; (39)

where F is a local description of the surface. The appropriate

sign is chosen so that all normals point toward the liquid do-

main. The normal is computed at each node with a first order

finite difference using the surrounding nodes. Because all

the cases presented in this study are axisymmetric, azimuthal

averaging was applied to smooth the value of curvature

computed.

V. EXAMPLE NUMERICAL RESULTS

The results and computations in this study focus on oil-

shelled microbubbles developed for drug delivery. For

example, ImaRx Therapeutics (Tucson, AZ) has produced a

prototype with a triacetin shell. In the present study, we con-

sider a triacetin-shelled bubble in water with the following

physical properties: Triacetin density (May et al., 2002):

q�s ¼ 1150 kg=m3, triacetin viscosity: l�s ¼ 0:028 kg=ms,

surface tension at gas-triacetin interface: c�gs ¼ 0:008 kg=s2,

water density: q�l ¼ 1000 kg=m3, water viscosity: l�l
¼ 0:001 kg=ms, surface tension at triacetin-water interface:

c�sl ¼ 0:06 kg=s2. The bubble is assumed to contain a gas

with negligible density and viscosity and with a gas

polytropic constant, j ¼ 1:4.

A. Validity of equivalent spherical zero-thickness shell
model

To examine the validity of replacing the triacetin shell

with a zero-thickness shell of equivalent properties and

explore for the region of applicability of the method for the

triacetin-shelled microbubble, we consider first an isolated

microbubble excited by an ultrasound acoustic wave and

compare the results obtained from both the finite-thickness

spherical model and the equivalent zero-thickness spherical

model as shown in Eqs. (20) and (25), respectively.

Figure 2(a) shows a comparison between the two

models for a triacetin-shelled bubble with initial outer

radius of 1.7 lm and an initial thickness of d�0 ¼ 10�4 lm

driven by a sinusoidal acoustic wave with amplitude,

DP ¼ 0:2 MPa, and frequency, f¼ 2.5 MHz in water at

atmospheric pressure, Patm ¼ 0:1 MPa. The figure shows

that the shelled microbubble oscillates at a frequency com-

posed of both the acoustic driving frequency (2.5 MHz)

and the bubble natural frequency, fn; which appears to be

of the order of 10 MHz from the short period oscillations

in the figure. A simple formula to describe the natural

frequency of highly viscous shelled bubble is not readily

available; however, when the shell thickness is negligible,

the dilatation term can be ignored and the frequency can

be estimated using

fn ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpaim � pvÞ

qs

3k

R2
20

þ
2ðcgs þ cslÞ

qsR
3
20

ð3k� 1Þ

s
: (40)

This is a modified expression from the expressions given in

Brennen (1995) and Krismatullin (2004) without consider-

ing the viscous damping of the surrounding liquid and shell

and gives a value of about 3.53 MHz for the case in

Fig. 2(a). As we can see in the figure, both the finite-

thickness and the zero-thickness shell models capture the

same behavior and the solution of the equivalent zero-

thickness model matches very well with that of the finite-

thickness model.

Figure 2(b) shows a comparison between the two mod-

els for a much thicker shelled contrast agent ðd�0 ¼ 0:05 lmÞ
driven by a sinusoidal acoustic wave with DP ¼ 0:2 MPa,

and frequency, f¼ 2.5 MHz in water at atmospheric pressure,

Patm ¼ 0:1 Mpa. While the viscous damping from the sur-

rounding liquid can be neglected, a viscous correction for

the shell is needed for the case in Fig. 2(b). Using the correc-

tion from Krismatullin (2004),

fnv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
n �

1

2p2

2ls

qsR
2
20

R3
20

R2
10

� 1

� �� �2
s

; (41)

the natural frequency decreases to the value of 3.23 MHz.

Here again both the finite-thickness and zero-thickness shell

models capture the same oscillation behavior, but the figure

shows some discrepancies in the details especially during the

lower amplitude higher frequency cycles.
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Figure 3 generalizes the results of Fig. 2 by considering an

extensive range of the non-dimensional shelled microbubble

thickness. The figure compares the steady state maximum

microbubble amplitude of oscillation of the radius versus the

normalized initial shell thickness, i.e., after the bubble has

reached repeated oscillations cyclic behavior. Here again,

the driving pressure considered was DP ¼ 0:2 MPa,

Patm ¼ 0:1 MPa, and f ¼ 2.5 MHz for both methods. It can be

seen that the equivalent zero-thickness model starts to deviate

significantly from the finite-thickness model if the shell

thickness exceeds 10% of the initial outside shell radius. This

shows that for these conditions the domain of application of

the thin shell model is quite extensive but not universal. The

weakest assumption in the equivalent model is probably the

assumption that the shell thickness retains the initial values

during the dynamics. This assumption is being improved in the

follow-up model.

B. Validity of equivalent 3D zero-thickness shell
model

To validate the equivalent 3-D zero-thickness shell

model using the thin shell approximation as expressed by

FIG. 3. (Color online) Comparison of the normalized maximum radius ver-

sus normalized initial shell thickness between the finite-thickness and the

zero-thickness model for DP ¼ 0:2 MPa, Patm ¼ 0:1 MPa, and f¼ 2.5 MHz.

FIG. 4. (Color online) Comparison between 3-D equivalent zero-thickness

and spherical finite-thickness models for a Triacetin-shelled contrast agent

oscillating under a sinusoidal acoustic excitation pressure with DP ¼ 1 MPa,

Patm ¼ 0:1 MPa, and f¼ 2.5 MHz.

FIG. 2. (Color online) Comparison of the time history of the shelled bubble

outer radius between finite-thickness and equivalent zero-thickness models

for (a) d�0 ¼ 10�4lm, 1 MPa, and (b) d�0 ¼ 0:05 lm under a sinusoidal

acoustic excitation pressure with DP ¼ 0:2 MPa, Patm ¼ 0:1 MPa, and

f¼ 2.5 MHz. The radii are normalized by the initial outer radius size, while

times are normalized by 1/f.
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Eq. (31), we consider an isolated bubble first and compare

its corresponding 3D solutions with those obtained by a

spherical finite-thickness shell model that has been vali-

dated with experimental measurement by Hsiao et al.
(2010). To do so, we consider the 3-D non-spherical

zero-thickness model results for a triacetin-shelled

contrast agent driven by a sinusoidal acoustic wave with

DP ¼ 0:2 MPa, Patm ¼ 0:1 MPa, and f ¼ 2:5 MHz in an

unbounded domain. For these simulations, we use

js� ¼ 4:2 
 10�10 Ns=m, which corresponds to a thickness

of 0.5 lm; a total of 402 nodes and 800 panels are used to

discretized the bubble. As shown in Fig. 4 the solution

obtained by the 3-D model gives an excellent agreement

with the spherical solution.

The 3-D zero-thickness shell model is also applied

to the simulation of the dynamics of a thick-shelled micro-

bubble near a rigid wall when subjected to ultrasound acous-

tic excitation with amplitude DP ¼ 1 MPa, and frequency

f ¼ 2:5 MHz and Patm ¼ 0:1 MPa. The thick-shelled micro-

bubble has an initial inner radius of 1.2 lm and an initial

outer radius of 1.7 lm and is initially located 2.85 lm

away from the solid wall. The results of the equivalent

zero-thickness model were compared to those of the finite-

thickness shell model. During the study, we found that using

as radius in the equivalent zero-thickness model, R2 � d0 = 2,

i.e., R0 ¼ 1:45 lm, gives the best match with the finite-

thickness shell model results.

Figure 5 shows the comparison of the bubble shape var-

iations between the two models at several time steps during

the first bubble cycle of oscillations while Fig. 6 shows the

comparison of the equivalent encapsulated bubble radius

versus time. It can be seen that the bubble shapes of the

equivalent zero-thickness shell model fall almost between

the 3-D finite-thickness fully computed shapes of the inner

and outer shell interfaces. The shapes start to deviate from

each other when the thickness increases significantly toward

the end of the bubble collapse. In addition to such deviation,

the bubble shape of the zero-thickness model also shows

undulations at the end of the first cycle. These are higher

order mode surface shape deformations or surface buckling

that the viscous finite thickness layer damp out. By compar-

ing with the finite-thickness model, these deformations are

damped by viscous tangential shear stresses in the finite

thickness model, which are ignored in the zero-thickness

model.

C. Application to dynamics of thick-shelled contrast
agents near a wall

1. Rigid wall standoff effect for insonified agents

The 3-D zero-thickness shell model is used in this sec-

tion to simulate the dynamics of a contrast agent near a rigid

wall. For illustration, we consider a triacetin-shelled bubble

with an initial outer radius R0¼ 1.45 lm, and a shell thick-

ness, d0¼ 0.5 lm.

Figures 7–9 show the time evolution of the contrast

agent outer contour when the Triacetin-shelled bubble is

subjected to a sinusoidal acoustic wave with DP ¼ 1 MPa,

Patm ¼ 0:1 MPa, and f¼ 2.5 MHz. The figures show the

first period of oscillation (growth and collapse) at three dif-

ferent initial standoffs (distances between the bubble cen-

ter and the plane wall) are X¼ 1.45, 2.85, and 4.35 lm.

These correspond, based on the resulting maximum

radius in each case, to normalized standoff distances of

( �X ¼ 1:0; 2:0; 3:0). Among these three cases, only the larg-

est standoff case, �X ¼ 3:0, was able to continue to the next

cycle while the simulations for �X ¼ 1:45 and �X ¼ 2:85 lm

FIG. 5. (Color online) Comparison of the bubble shape variations between the 3-D finite-thickness model (solid line) and the equivalent zero-thickness shell

model (dashdot line) at several time steps during the first bubble oscillation cycle. DP ¼ 1 MPa, f¼ 2.5 MHz. Patm ¼ 0:1 MPa. Initial inner and outer radii: 1.2

and 1.7 lm. Initial distance from rigid wall: 2.85 lm.

FIG. 6. (Color online) Comparison of the equivalent encapsulated bubble

radius versus time between the 3-D finite-thickness model and the equiva-

lent zero-thickness shell model (represented as sold line) during the first

bubble oscillation cycle. DP ¼ 1 MPa, f¼ 2.5 MHz. Patm ¼ 0:1 MPa. Initial

inner and outer radii: 1.2 and 1.7 lm. Initial distance from rigid wall:

2.85 lm.
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were terminated when the bubble surface became multi-

connected due to two sides of the surface touching each

other at the end of collapse. In the present simulations, this

occurs either when a reentrant jet traverses the whole

bubble interior to touch the other side or when a part of the

surface pinches off. These phenomena may initiate shell

break up.

Figure 10 shows for X¼ 2.85 lm the contrast agent 3-D

shape and the normal velocities at the bubble surface at three

different instants. The top set shows color contours of the

normal component of the velocity, while the lower row

shows the bubble contour and the velocity vectors. A posi-

tive normal velocity indicates the surface moving outward

(away from the gas region). In the figure, the times are

selected such that the second contours are when the contrast

agent attains its maximum size while the third contours are

at the last computation time step before the shelled micro-

bubble volume rebounds.

FIG. 8. (Color online) Contrast agent shape variations obtained by the equivalent 3-D zero-thickness model. Oscillations near a rigid wall under a sinusoidal

acoustic wave with DP ¼ 1 MPa, Patm ¼ 0:1 MPa, and f¼ 2.5 MHz at an initial standoff from the rigid wall of 2.85 lm with R0¼ 1.7 lm, d0¼ 0.5 lm. (a)

Bubble growth, (b) bubble collapse during first oscillation period.

FIG. 7. (Color online) Contrast agent shape variations obtained by the equivalent 3-D zero-thickness model. Oscillations near a rigid wall under a sinusoidal

acoustic wave with DP¼ 1 MPa, Patm ¼ 0:1 MPa, and f¼ 2.5 MHz at an initial standoff from the rigid wall of 1.45 lm with R0¼ 1.45 lm, d0¼ 0.5 lm. (a)

Bubble growth, (b) bubble collapse during first oscillation period.
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Figure 11 shows a comparison of the time history of the

contrast agent equivalent radii for three different initial

standoffs (1.45, 2.85, and 4.35 lm). For this comparison, the

initial shell thickness was chosen to be d0¼ 0.7 lm so that

the bubble oscillations can continue to the second bubble

period without the bubble becoming multi-connected.

From the comparison, we can see that reducing the standoff

reduces the equivalent maximum bubble radius but increases

the first bubble period. It is noted that the first bubble period

is defined as the time lapse from the beginning of excitation

to the moment when the bubble rebound, i.e., the bubble

size is at its minimum. This is similar to the behavior of an

air/vapor bubble behavior near a rigid wall (Chahine, 1982;

Blake and Gibson, 1987).

FIG. 10. (Color online) Dynamics of a contrast agent near a rigid wall when subjected to a sinusoidal acoustic wave with DP ¼ 1 MPa, Patm ¼ 0:1 MPa, and

f¼ 2.5 MHz. The initial standoff form the rigid wall is 2.85 lm. R0¼ 1.45 lm, d0¼ 0.5 lm. Top row: Contrast agent shape evolution and normal velocity con-

tours obtained with equivalent the 3-D zero-thickness model at three time steps (during growth, at maximum volume, and at minimum volume prior to

rebound). Bottom row: Bubble outline and velocity vectors at the three time steps.

FIG. 9. (Color online) Contrast agent shape variations obtained by the equivalent 3-D zero-thickness model. Oscillations near a rigid wall under a sinusoidal

acoustic wave with DP ¼ 1 MPa, Patm ¼ 0:1 MPa, and f¼ 2.5 MHz at an initial standoff from the rigid wall of 4.35 lm with R0¼ 1.7 lm, d0¼ 0.5 lm. (a)

Bubble growth, (b) bubble collapse during first oscillation period.
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2. Comparison between zero-thickness approximation
and 3-D full solution

In addition to the comparison between the results of

finite-thickness and zero-thickness models already shown in

Fig. 5 (X¼ 2.85 lm), we compare here the two methods for

three other standoffs (X¼ 2.0, 2.6, and 4.35 lm) to cover the

various bubble dynamics regimes.

When the standoff distance is very small (e.g.,

X¼ 2.0 lm, Fig. 12), the zero-thickness shell model is able

to continue the simulation to the end of the first bubble

cycle, while the strong bubble-wall interaction and exces-

sive shell stretching prevents the finite-thickness shell

model from completing the simulation. As the standoff

increases (X¼ 2.6 lm in Fig. 13 and X¼ 4.35 lm in

Fig. 14), the two methods can complete the computation

successfully. Figure 13 shows that the thick viscous layer

prevents the bubble side closer to the wall from expanding

as much as obtained with the zero-thickness model.

However, the overall dynamics and bubble shape are cap-

tured very well with the zero-thickness model. The final

shapes of the zero-thickness model appear as an average

through the thickness of the 3-D solution. For the largest

standoff, Fig. 14, the dynamics during the bubble growth

are almost identical between the two methods. However,

during the collapse, higher order mode surface deformations

appear in the zero-thickness model, while they are damped

through viscous losses in the finite-thickness shell model.

The overall dynamics is similar between the two codes;

however, the comparison shows the need for some addi-

tional damping in the zero-thickness model.

3. Dilatational viscosity and reentrant jet formation

One significant result from these and previous simula-

tions (Hsiao et al., 2007; Hsiao et al., 2010) is that, even for

the smallest standoff case, there is no conventional reentrant

jet formation during the bubble collapse. To investigate the

connection between this observation and the effect of the

dilatational viscosity, we consider the same 2.85 lm standoff

case shown in the preceding text and for the same acoustic

excitation but in absence of the dilatational viscosity in

equation (i.e., after canceling the strong viscous effect of

the layer).

Figure 15 shows, in absence of the viscous effects, the

bubble shape and normal velocity contours at three times. In

the figure, the second sequence corresponds to the maximum

bubble size, while the third sequence corresponds to the time

step when the reentrant jet touched the other side bubble.

The figure shows that without the dilatational viscosity the

bubble behaves as a regular gas bubble and a strong reentrant

jet is formed. By comparing the microbubble behavior with

that in Fig. 7, it can be seen that the shell viscosity both

reduces the maximum bubble size and opposes the formation

of a reentrant jet, making the effective standoff larger.

D. Effect of shell thickness and standoff on shell
break-up

It has been shown by Chahine (1997) that a bubble

growing and collapsing explosively may become in pres-

ence of other body forces (e.g., gravity) pinched off and cut

FIG. 12. Comparison of the bubble

shape variations between the 3-D

finite-thickness model and the equiva-

lent zero-thickness shell model (repre-

sented as dashdot curves) at two time

steps for initial distance from rigid

wall equal to 2.0 lm. DP ¼ 1 MPa,

f¼ 2.5 MHz. Patm ¼ 0:1 MPa. Initial

inner and outer radii: 1.2 and 1.7 lm.

FIG. 11. (Color online) Comparison of the time history of a contrast agent

equivalent radius for three different standoff distances. Dynamics near a

rigid wall when subjected to a sinusoidal acoustic wave with DP ¼ 1 MPa,

Patm ¼ 0:1 MPa, and f¼ 2.5 MHz, R0¼ 1.45 lm, d0¼ 0.7 lm.
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FIG. 14. Comparison of the bubble

shape variations between the 3-D

finite-thickness model and the equiva-

lent zero-thickness shell model (repre-

sented as dashdot curves) at two time

steps for initial distance from rigid

wall equal to 4.35 lm. DP ¼ 1 MPa,

f¼ 2.5 MHz. Patm ¼ 0:1 MPa. Initial

inner and outer radii: 1.2 and 1.7 lm.

FIG. 15. (Color online) Bubble shape normal velocity contours and velocity vectors at three time steps (during growth, at maximum volume, and at minimum

volume prior to rebound) when the microbubble is subjected to a sinusoidal acoustic wave with DP¼ 1 MPa, Patm ¼ 0:1 MPa and f¼ 2.5 MHz at an initial

standoff of 2.85 lm with R0¼ 1.45 lm. Equivalent 3-D zero-thickness model with dilatational viscosity turned off artificially.

FIG. 13. Comparison of the bubble

shape variations between the 3-D

finite-thickness model and the equiva-

lent zero-thickness shell model (repre-

sented as dashdot curves) at two time

steps for initial distance from rigid

wall equal to 2.6 lm. DP ¼ 1 MPa,

f¼ 2.5 MHz. Patm ¼ 0:1 MPa. Initial

inner and outer radii: 1.2 and 1.7lm.
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into two as opposed to forming a reentrant jet during its

collapse, depending on its initial distance to a solid bound-

ary. For the current problem, parameters such as the shell

thickness, shell material, initial bubble radius, acoustic

pressure amplitude, and frequency affect the bubble shape

and type of deformation and will influence the breakup

mechanism. Here we only focus on the effect of stand-off

to the wall and shell thickness on the shell deformation

and breakup. Simulations were conducted again for a

triacetin-shelled bubble with an initial equivalent zero-

thickness shelled microbubble radius of R0¼ 1.45 lm

under ultrasound acoustic excitation with DP ¼ 1 MPa,

and f¼ 2.5 MHz.

Simulations are presented in Fig. 16 for five wall stand-

off distances, X¼ 1.45, 2.85, 4.35, 5.80, and 7.25 lm, and

five shell thicknesses, d0¼ 0.1, 0.3, 0.5, 0.7, and 0.9 lm. The

simulation in each case was continued for more than one os-

cillation cycle unless microbubble breakup occurred earlier.

Within the parametric space studied, Fig. 16 shows a dia-

gram of the resulting bubble shapes, either at the end of the

simulation due to bubbles becoming multi-connected or at

the end of the first bubble oscillation cycle. It is noted that

the rigid wall, which is not shown in each bubble image, is

located above the bubble for all the cases. According to the

last shape of the bubble surface, we can divide the diagram

into four zones:

(1) In Zone A, a single re-entering jet is found to punch

through the bubble.

(2) In Zone B, a ring type jet is formed at touchdown in

addition to an elongated bubble.

(3) In Zone C, the bubble is seen to pinch off into two in the

direction perpendicular to the wall.

(4) In Zone D, the relative importance of the viscosity in the

shell is so large that the bubble surface does not become

multi-connected during the first cycle.

Figure 17 shows three representative bubble center-

plane crosscuts with velocity vectors to illustrate a typical

single reentrant jet touchdown for Zone A, ring-type reen-

trant jet touchdown for Zone B and pinch-off touchdown for

Zone C. Based on this diagram, bubble break-up in Zones A

and B could be the best conditions for drug or gene delivery.

This is because the break-up of bubble in the first cycle

allows lower pressure amplitude, and the jet directed to the

wall can help drug or gene particles penetrate the cell mem-

brane. Although the bubble also breaks up due to pinch-off

in Zone C within the first cycle, there is no jet vectoring

towards the wall to enhance sonoporation.

VI. CONCLUSIONS

A 3-D zero-thickness shell model was developed to

model the dynamics of encapsulated bubble with viscous

shells in strong pressure field oscillations, reduce computa-

tional cost, and enable parametric study of shell break-up

mechanisms. Test cases were considered for triacetin-

shelled microbubbles subjected to ultrasound excitation.

The study showed that the zero-thickness shell model can

recover well the full 3-D viscous-inviscid dynamics of

encapsulated microbubbles if the initial shell thickness is

less than 10% of the initial shell outer radius. This limit

may be due to the present assumption in the equivalent

model that the shell thickness retains its initial value during

the dynamics. The model is being improved by allowing the

shell thickness to vary in time and space according to the

local pressure and velocity conditions while conserving the

shell volume.

A parametric study on shell thickness and stand-off

shows a variety of bubble shapes at break-up. Four zones are

identified in the parametric space. Based on the diagram, the

best conditions for drug and gene delivery enhancement

using the reentrant jet mechanism are identified and corre-

spond as expected to thin shells and closeness to the bound-

ary. Because this study considered rigid boundaries, its

results need to be reconsidered for nearby flexible bounda-

ries interacting with the microbubble.

FIG. 16. (Color online) Diagram of bubble shapes at breakup (Zones A, B,

C) or at the end of the first bubble period (Zone D) within the parametric

space studied for DP¼ 1 MPa, Patm ¼ 0:1 MPa, and f¼ 2.5 MHz,

R0¼ 1.45 lm. It is noted that the wall is located above the bubble in all

cases.

FIG. 17. (Color online) Three repre-

sentative bubble center plane cross-

cuts with velocity vectors illustrating

(a) single reentrant jet touchdown for

Zone A, (b) ring-type reentrant jet

touchdown for Zone Band, (c)

pinch-off touchdown for Zone C.
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