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We develop and investigate an integral equation connecting the first passage time distribution of a
stochastic process in the presence of an absorbing boundary condition and the corresponding
Green’s function in the absence of the absorbing boundary. Analytical solutions to the integral
equations are obtained for three diffusion processes in time-independent potentials which have been
previously investigated by other methods. The integral equation provides an alternative way to
analytically solve the three diffusion-controlled reactive processes. In order to help analyze
biological rupture experiments, we further investigate the numerical solutions of the integral
equation for a diffusion process in a time-dependent potential. Our numerical procedure, based on
the exact integral equation, avoids the adiabatic approximation used in previous analytical theories
and is useful for fitting the rupture force distribution data from single-molecule pulling experiments
or molecular dynamics simulation data, especially at larger pulling speeds, larger cantilever spring
constants, and smaller reaction rates. Stochastic simulation results confirm the validity of our
numerical procedure. We suggest combining a previous analytical theory with our integral equation
approach to analyze the kinetics of force induced rupture of biomacromolecules. © 2010 American
Institute of Physics. �doi:10.1063/1.3456556�

I. INTRODUCTION

First passage time distributions of stochastic processes in
the presence of absorbing boundaries have important appli-
cations in diffusion controlled reactions, self-organized criti-
cality, dynamics of neurons, and trigger of stock options.1

Recently, first passage models have been proposed to
analyze the kinetics of unfolding �or bond rupture� in
single-molecule pulling experiments by atomic force
spectroscopy.2–5 Hummer and Szabo2 showed that a simple
first passage time model incorporating Kramers rate theory
can be used to extract much more accurate kinetic informa-
tion than the previously used Bell’s model. Their analytic
theory fits experimental data both for the average rupture
force as a function of pulling speed and the distribution of
rupture forces at certain �usually slow� pulling speeds. Their
work and later work of Dudko et al.3,4 and Freund5 assumed
a first-order rate equation governing the decay of the survival
probability with a time-dependent rate constant ��exp�
−�0

t d�k�����. In addition Dudko et al.6 independently applied
Kramers theory to a smooth free energy surface. It has been
noted that the adiabatic approximation underlying this rate
equation breaks down2,3 at extreme pulling speeds where the
rate of pulling is fast compared to the diffusion rate. In this
paper we will show how to bypass this approximation. Aside

from its validity being dependent on the rate of pulling, the
validity of the formulas based on the adiabatic assumption2–5

has never been investigated with respect to other parameters
such as the cantilever spring constant and the intrinsic reac-
tion rate even though reasonable parameters have been ex-
tracted from rupture experiments of unfolding proteins7,8 and
unzipping of DNA hairpins.9

In this letter, we present integral equations connecting
the first passage time distribution in the presence of an ab-
sorbing boundary condition and the corresponding condi-
tional probability �Green’s function� without the absorbing
boundary. The equations are a generalized version of similar
treatments of discrete random walks.10,11 We solve the inte-
gral equation analytically for three different potential func-
tions to determine how the first passage time distribution of a
particle diffusion is affected by time-independent external
fields. Because the first passage time distribution was already
determined analytically by other methods, these three cases
provide benchmarks that validate our integral equation ap-
proach. We then apply the integral equation to the case of
time-dependent pulling experiments and obtain numerical re-
sults for different pulling speeds, cantilever spring constants,
and intrinsic reaction rates. We show that the previous theory
is likely to break down not only at larger pulling speeds, but
also at smaller reaction rates and larger cantilever spring
constants. The simple iteration scheme based on the integral
equation will thus help to fit force distribution data at these
conditions where the adiabatic approximation breaks down.a�Electronic mail: bb8@coulmbia.edu.

THE JOURNAL OF CHEMICAL PHYSICS 133, 034105 �2010�

0021-9606/2010/133�3�/034105/8/$30.00 © 2010 American Institute of Physics133, 034105-1

http://dx.doi.org/10.1063/1.3456556
http://dx.doi.org/10.1063/1.3456556
http://dx.doi.org/10.1063/1.3456556
http://dx.doi.org/10.1063/1.3456556


II. INTEGRAL EQUATIONS OF FIRST PASSAGE TIME
DISTRIBUTION

In general, we are interested in the following Markov
process of a random variable u:12

du

dt
= − D

��V�u,t�
�u

+ �2D��t� , �1�

where D is the diffusion constant and � satisfies the white
noise condition 	��t���t��
=��t− t��. The time-dependent po-
tential V�u , t� has discontinuity at a point b

V�u,t� = �V0�u,t� u � b

− � u � b
� , �2�

where �=1 /kbT and V0�u , t� is a smooth function, differen-
tiable for the range −�	u	� at an arbitrary time. This
random process may correspond to the diffusion of a particle
in an external field V0�x� in the limit of large friction,13 but –
in addition to this – the particle may disappear when passing
over the point b. Assuming that the particle is initially lo-
cated at x0�x0	b� with probability of 1, the probability den-
sity function of the random variable u as a function of time,
fu�x , t� satisfies the Smoluchowski equation

� f

�t
= D

�

�x
 ��V0�x,t�

�x
+

�

�x
� f �3�

subject to the initial condition and the absorbing boundary
condition

� f�x,0� = ��x − x0�
f�b,t� = 0 for 0 � t 	 + �

� . �4�

We are interested in calculating the survival probability de-
fined as

S�t� � �
−�

b

dxfu�x,t� = P�u�t� � b�u�0� = x0� , �5�

which is a conditional probability of finding the particle hav-
ing not passed over the point b at time t given that the par-
ticle is initially located at x0. The first passage time distribu-
tion, h�t��−dS�t� /dt, is such that h�t�dt is the probability
that a particle passes through the point b for the first time in
the time interval �t , t+dt�. It is usually difficult to solve the
combined initial value and boundary value problem de-
scribed by Eqs. �3� and �4� while the solution to the Smolu-
chowski Eq. �3� itself without any absorbing boundary con-
dition, the usual conditional probability �Green’s function� in
the absence of reaction, might be easily obtained for special
cases of V0�u , t�. Letting fu

0�x , t �x� ,�� denote that conditional
probability subject to a general initial condition f�x ,��=��x
−x��, we derive an integral equation relating h�t� to
fu

0�x , t �x� ,��, and we obtain analytical and numerical solu-
tions for several different potentials V0�u , t�.

Clearly, the usual conditional probability in the absence
of reaction at time t for any point x	b has two contribu-
tions: one from the real survival events and the other from
events where the particle passed over the point b at an earlier
time ���	 t� but later comes back to the point x. Our argu-
ment yields

fu
0�x,t�x0,0� = fu�x,t� + �

0

t

d�h���fu
0�x,t�b,�� for x � b−.

�6�

Similarly, in the event that the particle is at any point x�b at
time t, the particle must have passed over the point b at an
earlier time �. We thus have the relation for x�b

fu
0�x,t�x0,0� = �

0

t

d�h���fu
0�x,t�b,�� for x 
 b+. �7�

The arguments used here to derive Eqs. �6� and �7� are con-
ceptually similar to arguments used for discrete random
walks with absorbing walls.1,10,11 Similar relations in Laplace
space connecting the two Green’s functions �with and with-
out the absorbing boundaries� have been previously derived
as well.14,15 When the usual conditional probability
fu

0�x , t �x0 ,0� is continuous at the point b, Eqs. �6� and �7� are
consistent with the absorbing boundary condition in Eq. �4�.
Integrating both sides of Eqs. �6�, we obtain the self-
consistent relation between survival probability and the first
passage time distribution

�
−�

b

dxfu�x,t� � S�t� = �
−�

b

dxfu
0�x,t�x0,0�

− �
0

t

d�h����
−�

b

dxfu
0�x,t�b,�� . �8�

III. ANALYTICAL SOLUTIONS

Exact Eqs. �6�–�8� are soluble for three cases of time-
independent potentials shown in Fig. 1�a�. In case of the free
particle diffusion V0�x�=0, the usual conditional probability
and the first passage time distribution are

fu
0�x,t�x�,�� =

1
�4�D�t − ��

exp�−
�x − x��2

4D�t − ��� �9�

and

h�t� =
�b − x0�
�4�Dt3

exp�−
�b − x0�2

4Dt
� , �10�

respectively. In the long time limit t� �b−x0�2 /D, the first
passage time distribution asymptotically decays as t−3/2. In
case of the linear potential V0�x�=−Fx, we have

fu
0�x,t�x�,�� =

1
�4�D�t − ��

exp�−
�x − x� − FD�t − ���2

4D�t − �� �
�11�

and

h�t� =
�b − x0�
�4�Dt3

exp�−
�b − x0 − FDt�2

4Dt
� . �12�

In the long time limit t� �b−x0� / �FD�, h�t� decays as
t−3/2e−F2Dt/4. In case of the harmonic potential V0�x�= 1

2kx2

with b=0, we have

034105-2 Hu, Cheng, and Berne J. Chem. Phys. 133, 034105 �2010�



fu
0�x,t�x�,�� =

1
�2�t−�

exp�−
�x − x�e

−Dk�t−���2

2t−�
� �13�

and

h�t� =
2De−Dkt�x0�

�2�t
3

exp�−
�x0e−Dkt�2

2t
� . �14�

where the variance t= �1−e−2Dkt� /k. In the long time limit
t�1 / �Dk�, the asymptotic behavior is h�t��e−Dkt. For con-
venience, we have assumed �=1 for all the three cases con-
sidered here. For cases of particle diffusion in zero or linear
potential, the results for first passage time distribution, Eqs.
�10� and �12� can be alternatively obtained either by a
Green’s function approach or by an intuitive image
method.1,10 For the harmonic potential with the absorbing
boundary at the bottom, Eq. �14� has also been previously
obtained through the image method by Szabo et al.16 In the
Appendix A, we show how one can easily solve the first
passage problem through the integral Eqs. �7� and �8� for the
three linear processes. A plot of the first passage time distri-
butions for parameters D=1, b−x0=1, F=1, and k=2 are
shown in Fig. 1�b�. The long tail behavior t−3/2 in the case of
free diffusion rapidly vanishes as the diffusion is biased
while the peak of the h�t� is much more slowly varying. As
the first passage model of the biased diffusive process in the
linear potential was used to understand the distribution of
times between voltage spikes in neuron dynamics,17,18 the
analytical formula Eq. �14� might be useful to study the cases
of integrate-and-fire neurons where the excitatory or inhibi-
tory inputs linearly depends on the distance between the ac-
cumulated potential and the threshold.

IV. NUMERICAL SOLUTIONS

The total time-dependent interaction potential V0�x , t� of
a protein molecule acted upon by a constant speed pulling
force �exerted by either an atomic force microscope or laser
tweezers� is taken to be

�V0�x,t� = �Vm�x� + 1
2ks�x − vt�2, �15�

where x is the fluctuating distance between the two pulling
points, Vm�x� is the intrinsic potential of mean force of the
molecular system along the pulling coordinate, v is the pull-
ing speed, and ks is the effective spring constant of the pull-
ing apparatus. An approximation used by Hummer and
Szabo2 and later by Dudko et al.3,4 and Freund5 is to calcu-
late a Kramers rate constant at time t, K�t�, using the instan-
taneous force at time t, an approximation that is probably
valid only if the force varies slowly compared to the diffu-
sional exploration of the instantaneous potential surface. This
time-dependent rate constant is then used to estimate the
survival probability so that

S�t� � exp�− �
0

t

K���d�� , �16�

assuming first-order reaction kinetics, dS�t� /dt=−K�t�S�t�.
The classical work of Kramers13,19–21 states that the mean
first passage time or the inverse of the rate constant for the
barrier crossing problem of a time-independent potential
V0�x� is given by

k0
−1 =

1

D
�

b
dxe�V0�x��

well
dye−�V0�y�. �17�

Extending the Kramers result to the time-dependent potential
in Eq. �15� when the pulling speed is slow, as suggested by
Hummer and Szabo, yields the time-dependent mean first
passage time

K�t�−1 =
1

D
�

b
dxe�V0�x,t��

well
dye−�V0�y,t�. �18�

For a simple parabolic potential �Vm�x�= 1
2kmx2, Eq. �18� can

be evaluated approximately as �see details in the Appendix
B�

K�t� �
D

�2�
k3/2�b −

ksvt

k
�e−�1/2�k�b − ksvt/k�2

, �19�

where k=km+ks. Following first-order kinetics, Eq. �16�
reads

S�t� � exp�−
Dk3/2

�2�ksv
exp�ksvbt −

1

2

�ksvt�2

k
� − 1��

�20�

which is the same as Eq. �16� in Ref. 2. The above procedure
for handling this simple potential can be generalized to more
complicated potentials as shown by Dudko et al.3,4 and
Freund.5 Freund has also shown that the first-order rate equa-
tion can be naturally derived from a thermodynamic ap-
proach. It has been noted that the underlying adiabatic ap-
proximation breaks down at extreme pulling speeds.3 It

X

V
0 b

x
0

x
0

b

x
0

b

0 2 4 6 8 10
t

0.001

0.01

0.1

1

h
(t

)

b-x
0
=1

F=1
k=2

(b)

(a)

FIG. 1. Several different potentials where we can solve the boundary value
problem analytically. The particle starts from a position x0 and disappear
when passing over the point b. From left to right, V0�x�=0, V0�x�=−Fx, and
V0�x�= 1

2kx2.
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might be interesting to know whether their analytic formulas
�Eq. �16� in Ref. 2, Eq. �4� in Ref. 3, Eq. �1� in Ref. 4, and
Eqs. �10� and �14� in Ref. 5� are valid or not at conditions of
slow intrinsic reaction rates �small k0 or small D� or rela-
tively larger pulling spring constant ks.

For a complicated form of the potential of mean force
Vm�x�, there is no analytical expression for either the first
passage time distribution or the usual conditional probability
in the absence of reaction. However, for the simple model
potential �Vm�x�= 1

2kmx2,2–4 the usual conditional probability
of this linear process has a Gaussian form �see details in
Appendix C� �Ref. 12�

fu
0�x,t�x�,�� =

1
�2�t−�

exp�−
�x − x̄�,t�2

2t−�
� �21�

with the mean and variance

x̄�,t = x�e
−Dk�t−�� +

ksv
Dk2 ��1 − Dk��e−Dk�t−�� + Dkt − 1� �22�

and

t−� = �1 − e−2Dk�t−���/k . �23�

We are not able to solve the corresponding Smoluchowski
Eq. �3� subject to the absorbing boundary condition �4� ana-
lytically to obtain the survival probability and the first pas-
sage time distribution. Instead, we evaluate the numerical
solution of the integral Eq. �8� with the usual conditional
probability of Eq. �21�. Since the upper limit of the survival
probability is

S�t� � �
−�

b

dxfu
0�x,t�x0,0� =

1

2
erfc�−

�b − x̄0,t�
�2t

� , �24�

Equation �8� might be solved iteratively by taking the upper
limit as an ansatz. For general diffusive models having fre-
quencies in the well �x0� and the transition �b� regions, we
might be able to use the analytical expression of the usual
conditional probability corresponding to the harmonic poten-
tial for fu

0�x , t �x0 ,0� as in Eq. �21� and use that corresponding
to the inverted parabolic potential for fu

0�x , t �b ,�� to solve
Eq. �8� numerically.

We choose parameters km=900 pN /nm, ks=10 pN /nm,
and b=0.42 nm describing the unfolding of the I27 protein
monomer.2,7 The diffusion constant is chosen as either D
=0.044 nm2 /ms or D=0.0044 nm2 /ms corresponding to the
intrinsic reaction rate k0=10−4 s−1 or k0=10−5 s−1, respec-
tively. Both intrinsic reaction rates are typical of biological
systems. Figure 2 shows the results for the survival probabil-
ity from direct simulations of the stochastic process Eq. �1�
�black lines with circles�, numerical solutions of the integral
Eq. �8� �red�, the approximate analytical form of Eq. �20�
�green�, and the upper limit Eq. �24� �blue lines with
crosses�. All green lines are terminated at t such that x̄0,t=b
when the upper limit of the exact survival probability is
equal to 1/2.

The overlap between the black and red lines confirms the
exact relation between the usual conditional probability and
the first passage time distribution at all pulling speeds and
intrinsic reaction rates. The statistics and efficiency are much
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FIG. 2. Survival probabilities at four different pulling speeds and two dif-
ferent diffusion constants calculated from several numerical and analytical
methods. The k0 rates are 10−4 s−1 �a and b� and 10−5 s−1 �c and d�, respec-
tively. Four pulling speeds v=0.6, 6.0, 60.0, and 600.0 nm/ms are studied.
Black, red, green, and blue lines are numerical results from stochastic simu-
lation, numerical results from the integral equation, approximated analytical
results, and the Gaussian upper limit results, respectively. Black and red
lines overlap in all graphs. Black, red, and blue dash lines in graphs �b� and
�d� overlap. The pulling spring constant is ks=10 pN /nm and x0=0. We
have put circles on the black lines �simulation results� and crosses on the
blue lines �upper limit results� for a better view. Overlaps between black,
red, and green lines at v=0.6 nm /ms �a and c� show that the adiabatic
approximation works well at this experimental condition.
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better when the numerical results are generated from the in-
tegral equation rather than from the stochastic simulation. As
expected, the approximation underlying Eq. �16� is invalid at
larger pulling speeds. Figures 2�a� and 2�c� shows that the
previous theory �Eq. �16� in Ref. 2� starts to break down at
relatively slower pulling speeds when the intrinsic rate of the
system is relatively smaller �k0=10−5 s−1�. In the limit of
large pulling speeds, the survival probability approaches its
upper limit indicating that the recrossing events make small
contributions to the usual conditional probability. The ana-
lytical upper limit formula could be used to obtain estimates
of thermodynamic and kinetic parameters when experimental
data at large pulling speeds are available.

In experimental systems of forced protein unfolding
where multimodules connected by molecular linkers are used
instead of a single module, the effective pulling spring con-
stant ks is relevant not only to the cantilever of the apparatus
but also to the properties of the molecular linker and the
module itself. In a recent experiment of unfolding I27 do-
main by Harris and Kiang,22 the spring constant of the can-
tilever is 50 pN /nm. As suggested by Hummer and Szabo,2

a rough estimate from the slope of the force-extension curves
before rupture �Fig. 1b in Ref. 22� yields the effective pulling
spring constants ks=10–20 pN /nm. Figure 3 shows our cal-
culations of the survival probabilities at ks=50 pN /nm and
k0=10−4 s−1. Comparison between Figs. 2�a� and 3 reveals
that the rupture time significantly reduces as ks increases
from 10 to 50 pN/nm. Thus the approximated analytical
theory based on Eq. �16� become less applicable at a larger
ks.

Experimentalists usually report the distribution and av-
erage of the force at rupture for different pulling speeds de-
termined from the integration and the differentiation of the
measured survival probability

F̄ = − ks�b − v�
0

�

d��h���� = − ks�b − v�
0

�

S�t�dt�
�25�

and

p�F� =
1

ksv
h�t��t=�F+ksb�/�ksv�. �26�

As shown in Figs. 2 and 3, the areas under the survival
probability from the exact solution �black or red� and the
approximated analytical solution �green� are almost equal for
all cases investigated. Thus the previous analytical expres-
sions based on Eq. �16� are still approximately valid when
fitting the average force as a function of the pulling speeds.
However the deviations of the rupture force distribution are
severe especially at larger pulling speeds v, slower intrinsic
rates k0, or larger effective pulling spring constants ks. A
comparison among the predictions of the approximate theory,
the stochastic simulation results, and the exact results deter-
mined from the integral equation for varying v, k0, and ks is
shown in Fig. 4. Clearly, to fit the experimental data at rela-
tively larger pulling speeds, larger pulling spring constant or
smaller intrinsic reaction rates, it is quite necessary to obtain
the numerical results from the integral equations for the spe-
cific model and not from the approximate theory.

V. CONCLUSION

We have presented an integral equation connecting the
usual conditional probability in the absence of reaction and
the first passage time distribution and have found analytical
solutions of this equation for the cases of free and biased
particle diffusion in time-independent potentials. The long
time tail t−3/2 in the case of free diffusion rapidly vanishes as
the diffusion is biased by a linear or harmonic potential. For
diffusion in a time-dependent potential of biological interest,
we solved the integral equations numerically and compared
the results with both stochastic simulations and a previously
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FIG. 3. Survival probability at two different pulling speeds, similar to Fig.
2�a� but for the pulling spring constant ks=50 pN /nm. Black and red lines
overlap. All the labels are the same as in Fig. 2.
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analytical theory �green�. See Eqs. �8�, �16�, and �26�.
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developed approximate theory bases on an adiabatic approxi-
mation. We found that iteration from the upper bound of the
survival probability is useful for extracting kinetic and ther-
modynamic parameters �k0, ks, b, and km� from biological
experimental data at extreme pulling speeds. We see that the
approximated analytical formulas for the rupture force distri-
bution based on the Kramers theory and the adiabatic as-
sumption are likely to break down at larger pulling speeds,
larger pulling spring constants, or smaller intrinsic reaction
rates. Once these thermodynamic and kinetic parameters are
estimated or extracted either by fitting the average rupture
force to the approximate analytical theories or by fitting the
survival probability at extreme pulling speeds to their upper
limits, our numerical treatment, based on the integral equa-
tion, can be immediately extended to fit experimental rupture
force distributions at all pulling speeds and to further verify
the validity of the parameters.

In this paper we provide a simple numerical procedure,
based on an iterative solution of an integral equation for the
survival probability, to extend previous methods for fitting
the force distribution for arbitrary conditions of pulling
speeds, cantilever spring constants, and intrinsic reaction
rates. However, we should point out that the underlying as-
sumption that the rupture kinetics can be described by a
Langevin process in its spatial diffusion limit might not be
generally true. Recently, simulations and experiments have
revealed that water insertion plays a significant role in the
single-molecule kinetics of the forced unfolding of
ubiquitin.23,24 When the unfolding kinetics depends on the
number of inserted water molecules, there might not exist a
well-defined transition state, but rather a broad distribution
of transition states which give rise to static disorder and non-
exponential decay. Further investigation will be required to
determine whether a diffusive model with an effective diffu-
sion constant, fixed barrier height, and transition distance is
still valid for the description of these biological rupture ex-
periments.

Note added in proof. After our paper was accepted for
publication, Attila Szabo told us that our integral equation
Eq. �6� is similar to an established equation found in
Schrødinger’s 1915 paper.25 Our self-consistent integral Eq.
�8� is therefore a natural extension of Schrødinger’s work in
1915.
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APPENDIX A: ANALYTICAL SOLUTIONS
FOR THE FIRST PASSAGE TIME DISTRIBUTION
FOR THREE MODEL POTENTIALS

We derive the analytical solutions of the integral Eqs. �7�
and �8� for the simple potentials illustrated in Fig. 1�a� in this
appendix. For V0�x�=0, we find

�
−�

b

dxfu
0�x,t�b,�� = �

−�

b

dx
1

�4�D�t − ��

�exp�−
�x − b�2

4D�t − ��� =
1

2
. �A1�

Equation �8� thus takes a remarkably simple form

S�t� = �
−�

b

dxfu
0�x,t�x0,0� −

1

2
�1 − S�t�� . �A2�

The analytical solution of the survival probability is

S�t� = 2�
−�

b

dxfu
0�x,t�x0,0� − 1 �A3�

and its differentiation gives the first passage time distribution

h�t� = −
dS�t�

dt
=

�b − x0�
�4�Dt3

exp�−
�b − x0�2

4Dt
� �A4�

which is the same as Eq. �10�. Alternatively, the Laplace
transform of Eq. �7� in the case of free particle diffusion
yields

1
�4Ds

exp�−
�x − b��s

�D
�h̃�s�

=
1

�4Ds
exp�−

�x − x0��s
�D

� . �A5�

Immediately we have

h̃�s� = exp�−
�b − x0��s

�D
� �A6�

and its inverse Laplace transform gives the same result as in
Eq. �A4�.

We further rewrite Eq. �7� as

�
0

t

d�h���
fu

0�x,t�b,��
fu

0�x,t�x0,0�
= 1. �A7�

h��� implicitly depends on b and x0 only and it has to be
chosen such that the integration is 1 for any x
b. For the
case of V0�x�=0,

fu
0�x,t�b,��

fu
0�x,t�x0,0�

=
�t

�t − �
exp�−

�x − b�2

4D�t − ��
+

�x − x0�2

4Dt
� .

�A8�

The exponential part of h�t� as in Eq. �A4� completes a para-
bolic form inside the exponential

−
�x − b�2

4D�t − ��
+

�x − x0�2

4Dt
−

�b − x0�2

4D�

= −
��x − x0�� − �b − x0�t�2

4Dt��t − ��
. �A9�

After a substitution of the integration dummy variable y
=�t−� /�t�, Eq. �A7� becomes a known result
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�
0

�

dy
2d
��

exp�− d2y −
c

y
�2� = 1, �A10�

where c= �x−b� / �t�b−x0�� and d= �b−x0� / �4D� are both
positive parameters independent of y. The derivation from
Eq. �A7� to Eq. �A10� provides a simple method through
which we can guess the form of h�t� such that the integration
does not depend on the parameter x, for general cases of the
biased diffusions.

For V0�x�=−Fx, the usual conditional probability of the
linear process takes the form of Eq. �11�. We might make the
following analogy:

x ↔ x − FDt, b ↔ b − FD�, x0 ↔ x0.

When we choose h����exp�−�b−FD�−x0�2 / �4D���, the
analog expression inside the exponential of the integral is

−
��x − x0�� − �b − x0�t�2

4Dt��t − ��

↔ −
��x − FDt − x0�� − �b − FD� − x0�t�2

4Dt��t − ��

= −
��x − x0�� − �b − x0�t�2

4Dt��t − ��
�A11�

which is the same as in the case of the free particle diffusion.
Therefore taking the same coefficient as in Eq. �A4� arrives
at Eq. �A10� after the substitution from � to y. We thus find
the result in Eq. �12�

h�t� =
�b − x0�
�4�Dt3

exp�−
�b − FDt − x0�2

4Dt
� . �A12�

For V0�x�= 1
2kx2, we apply the following analogy:

x ↔ xeDkt, b ↔ beDk�, x0 ↔ x0,

t ↔
e2Dkt − 1

2Dk
= t̂,

� ↔
e2Dk� − 1

2Dk
= �̂, t − � ↔

e2Dkt − e2Dk�

2Dk
= t̂ − �̂ .

The corresponding analog expression inside the exponential
reads

−
��x − x0�� − �b − x0�t�2

4Dt��t − ��

↔ −
��xeDkt − x0��̂ − �beDk� − x0�t̂�2

4Dt̂�̂�t̂ − �̂�
. �A13�

In this case, it might not be easy to choose an appropriate
coefficient of h��� such that the integral is independent of x.
However, for b=0, it is straightforward to have

h��� =
d�̂

d�

b − x0

�4�D�̂3
exp�−

�beDk� − x0�2

4D�̂
�

=
e2Dk��x0�
�4�D�̂3

exp�−
x0

2

4D�̂
� , �A14�

which is equivalent to Eq. �14�. We thus complete the ana-
lytical solutions for the three simple potentials in Fig. 1.

APPENDIX B: ANALYTICAL SOLUTION
FOR A TIME-DEPENDENT BARRIER CROSSING
PROBLEM USING KRAMERS THEORY
AND THE ADIABATIC APPROXIMATION

We explain the derivation of Eq. �19� in this appendix.
For a time-independent potential �V0�x , t�=kmx2 /2, the inte-
gral over the well appearing in the right hand side �rhs� of
Eq. �17� is bounded as

1
2

�2�

�km

= �
−�

0

dye−�1/2�kmy2

� �
well

dye−�1/2�kmy2

� �
−�

+�

dye−�1/2�kmy2
=

�2�

�km

. �B1�

The integral over the barrier of the rhs of Eq. �17� is written
as

�
0

b

dxe−�1/2�kmx2
= e�1/2�kmb2�

0

b

dxe�km/2��x2−b2�. �B2�

For 0	x	b and 2b�x−b�	 �x2−b2�	b�x−b�, the above in-
tegral is bounded as

�
0

b

dxe−�1/2�kmx2
� e�1/2�kmb2�

0

b

dxe−�1/2�kmb�x−b�

= e�1/2�kmb2 2

kmb
�1 − e−�1/2�kmb2

� �B3�

and

�
0

b

dxe−�1/2�kmx2

 e�1/2�kmb2�

0

b

dxe−kmb�x−b�

= e�1/2�kmb2 1

kmb
�1 − e−kmb2

� . �B4�

The Kramers rate in Eq. �17�, dependent on km and b is thus
bounded as

k0
−1�km,b� 


1

D

1

2

�2�

�km

1

kmb
e�1/2�kmb2

�1 − e−kmb2
� �B5�

and

k0
−1�km,b� �

1

D

�2�

�km

2

kmb
e�1/2�kmb2

�1 − e−�1/2�kmb2
� . �B6�

In case of kmb2�1, we might take the middle value
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k0
−1�km,b� �

1

D

�2�

�km

1

kmb
e�1/2�kmb2

�B7�

which is Eq. �11� in ref. 2. For the time-dependent potential,

�V0�x,t� =
1

2
kmx2 +

1

2
ks�x − vt�2

=
1

2
k�x −

ksvt

k
�2

+
1

2

kmksv
2t2

k

=
1

2
k�x − s�2 +

1

2

kkms2

ks
, �B8�

where s=ksvt /k is a parameter independent of x. Based on
the result of Eq. �B7�, Eq. �19� is evaluated as

K�t�−1 = k0
−1�k,b − s� �

1

D

�2�

�k

1

k�b − s�
e�1/2�k�b − s�2

�B9�

which is the same as Eq. �19�.

APPENDIX C: TIME-DEPENDENT GREEN’S
FUNCTION FOR A LINEAR STOCHASTIC
PROCESS IN THE ABSENCE
OF AN ABSORBING BOUNDARY

We explain the derivation of Eqs. �21�–�23�. There are
many alternative methods to solve the stochastic differential
equation described by Eq. �1� in a time-dependent harmonic
potential. One method is to use the solution for the Ornstein–
Uhlenbeck process given on page 238 of Ref. 12. We indi-
cate here a similar approach for the simple case of one-
dimensional system in order to illustrate this method. The
Markov process of interest can be rewritten as

du

dt
= − D�km + ks�u + Dksvt + �2D

d�

dt
, �C1�

where ��t� denotes a Gaussian random variable with mean 0
and variance t. Considering the initial condition u���=x�

with probability of 1, direct integration gives the solution to
the first order differential equation �C1� as

u�t� = x�e
−Dk�t−�� + �

�

t

e−Dk�t−t���Dksvt� + �2D
d�

dt�
�dt�

= x�e
−Dk�t−�� +

ksv
Dk2 ��1 − Dk��e−Dk�t−�� + Dkt − 1�

+ �2D�
�

t

e−Dk�t−t��d� = x̄�,t

+ �2D lim
�t→0

�
i=1

N

e−Dk�t−�−�i−1��t��i��t� , �C2�

where x̄�,t is the same as in Eq. �22�. �i��t� are treated as
independent Gaussian random variables with variance �t and
t=�+N�t. The variance of the random variable u�t� is

t−� = 2De−2Dk�t−�� lim
�t→0

�t
1 − e2Dk�t−��

1 − e2Dk�t =
1 − e−2Dk�t−��

k

�C3�

which is the expression given in Eq. �23�.
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