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Abstract

The reverse engineering of metabolic networks from experimental data is traditionally a labor-

intensive task requiring a priori systems knowledge. Using a proven model as a test system, we

demonstrate an automated method to simplify this process by modifying an existing or related

model – suggesting nonlinear terms and structural modifications – or even constructing a new

model that agrees with the system’s time-series observations. In certain cases, this method can

identify the full dynamical model from scratch without prior knowledge or structural assumptions.

The algorithm selects between multiple candidate models by designing experiments to make their

predictions disagree. We performed computational experiments to analyze a nonlinear seven-

dimensional model of yeast glycolytic oscillations. This approach corrected mistakes reliably in

both approximated and overspecified models. The method performed well to high levels of noise

for most states, could identify the correct model de novo, and make better predictions than

ordinary parametric regression and neural network models. We identified an invariant quantity in

the model, which accurately derived kinetics and the numerical sensitivity coefficients of the

system. Finally, we compared the system to dynamic flux estimation and discussed the scaling and

application of this methodology to automated experiment design and control in biological systems

in real-time.
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Introduction

Many remarkable behaviors in nature arise from complex signaling or metabolic networks.

A mathematical description is one way to represent the dynamics of a network that is

amenable to human interpretation. Mathematical models also often permit the prediction of

new or rare behavior. A predictive network model is essential for external control of

complex cellular behaviors. However, manually finding a full analytical expression can be

an arduous task – particularly in multidimensional biological systems with nonlinear

reactions, feedback, and oscillations. Models can either be reductionist with the utmost

possible detail [1-3], or effective or surrogate models that capture specific dynamics, often

using simplified mathematical representations [4-10]. In both cases, the identification of

metabolic and signaling network models and their parameters is of pressing practical interest

[11, 12].

Active-learning methods applied to the metabolic inverse problem [13] offer the possibility

of using a computational system not only to test hypotheses but to generate new ones. The

“robot scientist” project [14-17] is developing systems that can 1) assemble the background

knowledge into a model in the form of a logical graph, 2) use that knowledge to design the

best experiment to identify the location of a genetic perturbation on that graph, 3) perform

and analyze microbial experiments, and 4) use the results to design the next experiment or

genetic modification, and it provides significant savings in cost and time over human or

random selection of experiments.

Here we propose a new method that could accelerate the task of model inference by

automatically correcting hypothesized models – simplifying terms or proposing new

nonlinear structures – to improve the agreement between model and experimental

observations. The proposed approach does not require the assumption that the variables

being modeled obey power-law or piecewise power-law representations. We also test the

ability to model de novo, without prior knowledge of the structure of the metabolic system

under study. This approach can be applied either to existing time-series data, in silico

simulations of experiments, or wet-lab experiments suggested (or controlled) by the

algorithm. Finally, we adapt the process to identify an invariant quantity in the system that

plays a key role in predicting the system dynamics.

We performed computational experiments to analyze a seven-dimensional nonlinear model

of glycolytic oscillation in yeast by perturbing and collecting noisy observations based on a

well-characterized target model that could serve as a benchmark for validation of our

methodology. Past research [18-20] has demonstrated the construction of a model of a

biological system using automated experimental design. Here, we provide new advances

into automated modeling: the ability to utilize exceedingly large data sets efficiently with

fitness prediction, improved representations of mathematical models in the computational

search, and integration of these approaches with automated experiment design. The

advances presented here enable the first automated dynamical modeling of a realistic and

biologically interesting system, where the system is an order of magnitude more complex

and nonlinear, and in the presence of an order of magnitude higher measurement noise than

we have previously shown.
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A variety of methods has been used to infer gene regulatory networks (GRN) [21, 22],

including genetics, biochemistry, molecular biology, and medicine [23]. Most often,

preexisting models are used to provide a functional form, and then an optimization

technique is used to fit the model parameters. Because of the breadth of data available, much

of signaling network inference is based upon high-throughput mRNA microarray data for

gene arrays, while metabolic network analysis considers both gene expression and high-

throughput mass spectrometry of metabolites [24]. There are various challenges specific to

the inference of metabolic networks from such data [25], since metabolism includes not only

transcriptional regulation of enzymes, but also the conversion of substrate species with

stoichiometric constraints. The computational challenge is exacerbated by the range of

metabolic time constants and concentrations, each of which can easily span many orders of

magnitude.

While there remain many unsolved problems in the inference of GRN models, metabolic

networks surpass many other biological networks in terms of their breadth, detail,

quantitative nature, and experimental validation. Currently, it is possible to obtain

quantitative, dynamic measurements of metabolic concentrations, metabolite fluxes, and

genetic modification simultaneously, providing an important connection between the

transcriptome/proteome and cellular phenotype [26, 27]. The speed and efficiency with

which these data can be acquired suggest that metabolic networks are well suited for

automated inference using computer-designed and - controlled wet-lab experiments.

The most common mathematical form used to represent a metabolic network is a set of

ordinary differential equations (ODEs) that describe the time derivatives of chemical

concentrations [28] in the system as a function of its current state. ODEs are amenable to

human interpretation because they are deterministic models and explicitly encode causal

relationships [29], including feedback loops that are difficult to model using other methods.

Terms in the differential equations correspond to reactions occurring in the system based on

their connectivity, such as first- and second-order rate laws, power laws, and Michaelis-

Menten kinetics [30].

Methods such as symbolic regression [31-34] are capable of identifying and adapting

differential equations automatically from experimental data [18, 35, 36]; however,

substantial challenges remain to scale this approach to the dimensionality and functional

complexity necessary for biological applications. We describe how an integrated framework

of equations, graph-based symbolic encoding [36], fitness prediction [35, 37], and

estimation-exploration [18-20] can for the first time provide the degree of symbolic

regression required for biological applications. In addition, this symbolic regression

approach also allows the extraction of an algebraic expression that remains essentially

invariant under all dynamic conditions of the model, shown by means of an example

involving the yeast glycolytic oscillatory model. This result has key implications for

enabling wet-lab automation via computation of kinetics and the related sensitivity

coefficients for the observed variable in the model, constructed via symbolic regression with

data from biological experiments.
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Background

Metabolic modeling

While our approach is generally applicable to a variety of biological networks, we restrict

the present analysis to metabolism. Given the breadth of metabolic networks, we find it

useful to organize metabolic models into three categories: comprehensive versus localized,

static versus dynamic, and linear versus nonlinear. All metabolic modeling approaches share

these three categories, as shown in Table 1. Among these approaches, Metabolic Control

Analysis (MCA) examines sensitivity of steady-state metabolic fluxes and concentrations to

small perturbations of control variables. This provides some insights into the metabolic

inverse problem [38], which involves determining the nature of the equation network that

underlies observed behavior using techniques such as reverse engineering or systems

identification. MCA analysis further suggests that the metabolome may provide more

information about cellular phenotype than the transcriptome, as changes in individual

enzymes have little effect on metabolite fluxes but major effects on metabolite

concentrations [39]. The propagation of impulse perturbations in such chemical

concentrations can also be used to infer kinetic network topology [40, 41]. Genetic

programming techniques, previously demonstrated for the reverse engineering of chemical

reaction networks from observed time-series data, can be used to infer both the topology and

numerical parameters of metabolic networks [30, 41]. For example, evolutionary

programming produced the best solution for a three-enzyme problem despite its large

computation time [42], while gradient methods performed the worst.

Reverse engineering a deterministic model of a metabolic network consists of determining

both the correct functional form of a set of ODEs to describe the system and the proper set

of model parameters to fit experimentally collected data to within a given tolerance. The

inverse metabolic problem is universally recognized as very hard [14, 39] and is most likely

NP complete [21, 43]. A number of approaches, including global nonlinear optimization

approaches [44-47], have been developed to solve this problem. Similarly, neural networks

have also been used to address the metabolic inverse problem, where the measurable

variables are the inputs and the unknown parameters are the outputs. The method is

predicated on knowledge of the pathway structure and requires multiple hidden layers in the

case of nonlinear kinetics (such as Michaelis-Menten) [43]. Alternatively, a neural network

can be used to map the relationships between concentration gradients directly from data. In

both cases, the resulting network is used to primarily predict performance, rather than to

gain insight into the structure of the underlying system.

Within the past decade, a variety of techniques have been introduced to accelerate the

estimation of model parameters [48]. A more daunting challenge is to determine the

mathematical representation of the model’s system dynamics. This requires incorporation of

steady-state solutions and constraints that ensure stoichiometric consistency. A difficulty

with the application of such a priori constraints is the possibility that the system will deviate

significantly from the assumed optimal condition under transient abnormal conditions, such

as myocardial ischemia. While this can be overcome with dynamic flux balance analysis
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(dFBA) [49], the researcher must still choose an appropriate set of constraints to describe the

transient behavior of the system, which can be challenging.

In the larger context, it is recognized that traditional metabolic flux analysis must be

extended to include functional genomic information [24, 50], particularly since the

regulation of metabolic behavior is shared by both metabolic constraints and transcriptional

regulation [51]. Further, metabolic modeling and detailed comprehensive models of

biological networks increasingly suffer from the identifiability problem [52], where there is

an inability to distinguish experimentally between parameter combinations that produce

identical measurements. Consequently, additional methods are needed to reduce model

complexity of large biochemical systems [28]. We address this need by presenting an

approach that can identify local or effective models for nonlinear and dynamic subsets of

larger systems. This will aid in exploring the underlying physiology and enable accurate

external control of the system [53] and the optimized design of wet-lab experiments to

address these challenges.

Dynamics of biological systems and their invariants

In recent years, the application of concepts from dynamical systems theory to biological

systems has led to the development of Systems Biology [54]. This has enabled the study of

complex biochemical systems with nonlinear enzyme kinetics and regulatory feedback

loops. Models of such systems can aid in recreating phenomena such as glycolytic

oscillations [55] with the help of tools that are also used in many other disciplines [56] to

study behaviors such as bifurcations and limit cycles. Often, these are identified using a

system linearized about its steady state [57] and can lead to the discovery of structures in

phase space called attractors [58]. These include stable, unstable, and center manifolds,

collectively known as invariant manifolds [56]. Similar studies have also been attempted

using alternative approaches, such as Fourier transforms, to identify control mechanisms for

autonomous oscillations [59]. For example, variations in gene expressions in multistable

systems are reduced over the course of time in a process known as canalization, which has

recently been investigated by means of invariant manifolds [60]. This is computationally

expensive, however, and has therefore led to alternate approximation methods [61, 62] that

can improve the performance of many model reduction algorithms [63, 64] and the

partitioning of the system into slow and fast components [65]. Identification of these

invariant manifolds is therefore of interest to fields such as chemical kinetics [66], as it

enables the reduction of a complex model with many variables to one containing only a few.

Such advances show the applicability of methods from dynamical systems theory to

understanding problems of interest in metabolic networks.

Classical mechanical systems such as the double pendulum can be described in terms of

Hamiltonians, Lagrangians, and equations of motion which are derived from the physical

principles that govern their dynamics. In contrast, biochemical systems were not expected to

be governed by similar laws. However, symbolic regression applied to an oscillatory

physical system has uncovered such invariant expressions using only observable data [67].

Herein we apply this approach to the model of yeast glycolysis. While the relationship

between the derived invariants and the model dynamics is yet to be fully understood, the
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invariant form yields the equations for the observed variables, which are selected from

species amenable to measurement, and their numerical sensitivities.

Methods

Overview of the approach

We first provide a brief overview of the proposed approach for adapting and modeling

dynamical models before describing the methods in more detail. The purpose of our

approach, illustrated in Figure 1, is to identify the differential equations that describe the

reactions taking place in the metabolic network by designing numerical experiments and

searching for dynamical equations automatically. Initially, we have no data, and the first

experiments could either be to observe the system performance for a randomly selected set

of initial conditions within the normal bounds of the system, or to make simple observations

of nominal stable behavior, such as stable nodes and limit cycles. Later, these experiments

are chosen optimally to discriminate among the candidate models in the equation search. We

perform experiments in a virtual wet-lab, where a glycolysis system is simulated by a black

box that outputs noisy time-series data (also see Methods in the Supporting Information).

Once we have initial time-course data from the system, we then begin searching for each

differential equation of the system using symbolic regression [31-34] and fitness prediction

[35, 37] (also see Methods in the Supporting Information). Symbolic regression searches

both the structure, i.e., analytical form, and the parameters of an equation to fit and explain

the data in the most parsimonious way. The second component in our method, fitness

prediction, simplifies large data sets to accelerate the equation search while maintaining

accurate ranking among all candidate differentials in the search. Our representation of a

differential equation in the search is an acyclic graph [36]. This encoding also accelerates

the equation search while producing more parsimonious expressions on average in

comparison to traditional encodings. We have made software implementing these techniques

available online for download at [68].

As many differential equations compete to fit the training data, it is likely that multiple

equations are able to explain the behavior in different ways. Given these multiple

explanations, we use an estimation-exploration algorithm (EEA) to search in parallel for

experiments that will maximize disagreement in the predictions of the evolving set of

models [18-20]. For a dynamical system such as glycolysis, we represent an experiment as a

set of initial conditions that we apply in silico to the black-box system so we can observe its

transient trajectory and behavior. We dictate the most informative experiment to be the set

of initial conditions in which the current population of equations has the highest statistical

variance in its predicted dynamics. Periodically, we perform the best experiment on the

black-box system, collect new data, and once again evolve equations to explain them. We

repeat this process until a dominant model emerges. Figure 2 outlines the overall approach,

whose steps we now describe in detail.
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Symbolic regression and fitness prediction

Genetic programming is a widely studied class of evolutionary algorithms inspired by

biological evolution [34] that can be used to search for mathematical models. In a traditional

genetic program, an initially random population of individuals evolves iteratively in

computer memory to maximize some objective – for example, equations to model

experimental data with the lowest squared error. Equations with the highest fitness, i.e., the

lowest error, persist in the population to recombine (genetic crossover) and mutate to replace

less-fit individuals.

Symbolic regression uses genetic programming to evolve (compete) algebraic expressions to

explain experimental data [34]. Unlike polynomial (parametric) regression or neural

networks which also fit data, symbolic regression searches a space of analytical equations to

explain available experimental observations. Symbolic regression composes equations using

basic algebraic building blocks with the aim to formulate simpler (e.g., fewer parameters) or

more natural expressions (robust to perturbations) that are most likely to correspond to the

underlying intrinsic mechanisms of the system.

Symbolic regression compares candidate equations by calculating their residual errors on the

experimental data – also known as the equation’s fitness metric – for example, using square-

error or correlation. The scaling of symbolic regression is dominated by the size of the

equations that need to be evaluated, which can be exponential in the worst case, rather than

the dimensionality of the system [36].

This paper emphasizes that this approach can be made tractable for appreciable systems. In

past research, algorithms have used all available data at once to evaluate the fit. However,

this metric can be overly stringent and inhibit equations from building intermediate

expressions needed for the final model.

Instead, we have developed a method called fitness prediction to reduce overall

computational cost and to approximate the local search gradient [35, 37]. A fitness predictor

is a small subset of all collected data samples that approximates the entire data set. For

example, if a data set contains 1000 data points, a fitness predictor could be a list of 10

points from the full data set. If the samples in the predictor are chosen well, measuring

fitness on the smaller sample is sufficient to rank and discriminate the candidate equations in

the population of equations.

The data subset is adapted within a separate population of fitness predictors (data subsets)

that evolves in parallel with the symbolic regression of differential equations. The fitness of

a fitness predictor is its ability to approximate error on the full data set for the current

population of equations.

The differential equation and the fitness predictor populations coevolve together throughout

the equation search. In the symbolic regression population, the fitness of each equation is

calculated using the data samples in the top-ranked predictor at all times. In contrast to

standard symbolic regression alone, equations still compete to fit the experimental data, but
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are free to drift in more trajectories; the predictors adapt with the goal of defeating poor

deviations.

Fitness prediction allows a genetic algorithm to search a wider range of equations by

adapting the fitness heuristic and reducing its computational cost. An interesting result [37]

shows that symbolic regression is more successful when equations are pressured to explain

only key features of the systems at any given time rather than the entire data set at once. The

effect of overfitting is actually reduced when using fitness prediction as the predictors adapt

(coevolve) to defeat overfitting to the subset [37], and consequently further overfitting. This

allows equations to drift from the objective gradient, but the focus adapts with the

population to prevent excessive divergence from the intended gradient.

Here, we have introduced the key concepts of symbolic regression and fitness prediction.

Additional details and implementation information are available in [37] and the Supporting

Information, where we provide the algorithm settings. We have developed our own software

to perform all computational searches described in this paper, available at [68], but the

procedure could be implemented in many ways on different software platforms.

Acyclic graph encoding of the model

The ability to identify an accurate and parsimonious differential equation model using

symbolic regression can rely strongly on the genetic encoding (e.g., the genotype

organization of a symbolic expression within the algorithm) used in the equation search. In

particular, the encoding needs to be amenable to crossover and mutation operations of the

evolutionary algorithm.

Traditionally, symbolic expressions have been represented as binary-trees, where parent

nodes represent algebraic operations such as addition or multiplication, and leaf nodes

represent symbolic variables and parameter constants (Figure 3A). While tree encodings are

simple and easy to manipulate in an evolutionary search, they are susceptible to producing

complex and bloated equations, often resulting in unsuitable models for understanding the

underlying system.

Instead of a tree, we use an acyclic graph encoding for symbolic regression that scales well

computationally and exploits the shared structures found in differential equations [36]. The

acyclic graph encoding represents a symbolic expression similarly to a tree encoding –

interpreting parent nodes as mathematical operations such as addition and multiplication and

leaf nodes as state-variables or parameter constants – however, subexpressions can be reused

(Figure 3B). In our implementation, the encoding for the graph is an ordered list of

operations much like assembly code: each operation builds up successive subexpressions in

the final expression, using any preceding operations and symbolic variables.

The graph encoding takes advantage of redundant subexpressions, such as coupled reactions

in metabolic networks. Effectively, a reused subexpression constrains the genotype of the

equation, making these subexpressions more stable and less likely to drift to more bloated

equivalents and thereby biasing the search against bloated equations and overfitting [36]. In

the end, the graph-encoded equations are simpler and faster to evaluate on average, allowing
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us to scale the modeling procedure to more complex systems. Additional details are

provided in [36] and the Supporting Information.

Automated experimental design

Once the symbolic regression step has evolved a population of candidate equations to fit the

current set of training data, there may be several coherent equations that model the data in

different ways – particularly in high-dimensional domains with sparse data where many

equivalent explanations exist for the simplest behavior. But which of these several

mathematical explanations of the system is correct?

The estimation-exploration algorithm (EEA) is a method to automatically design a new

experiment that can help differentiate the current model candidates and refine their structure

[18-20, 69]. The purpose of the EEA is to decipher which model is likely to be correct by

searching for experiment settings, initial conditions, perturbations, or procedures that cause

current models to disagree most in their predictions.

The EEA designs and conducts the experiments in parallel with the equation search.

Different experiments compete in a population to maximize the variance they produce in the

current differential equations. Periodically, every 50,000 iterations (or roughly every 10

minutes), we take the best experiment and perform it on the black-box system to collect new

data to test predictions made by the current population of differential equations.

Generating data

For our experiments in this paper, we collect data in a virtual wet-lab by numerically

integrating the glycolysis model from an initial state and recording the state-variables over

the transient trajectory. The initial state is either randomly chosen (for collecting initial data

before modeling) or chosen by the algorithm. For a given initial state, we record the

system’s state-variables every 0.1 minutes until we have acquired 100 samples.

In our results, we report performance on two data sets: a training data set and a test data set.

Only the training data set is used to evolve and select the differential equation models, while

the larger test data set is used to help analyze and compare the different modeling methods

considered in our results.

We confined all initial states to realistic environments indicated in Table 2 for the training

data. These constraints are the ranges each metabolite experiences when the system is left

alone to oscillate naturally on its stable limit cycle. Therefore, each initial condition is a

combination of typical individual metabolite levels found in the metabolic network’s natural

oscillations. In the case of the test data set, however, the upper-bound constraints were

doubled to expand the phase space by a factor of 27. The looser constraints used for the test

data set measure how well models extrapolate and predict new behavior in locations in

phase space distant from those used in the inference of the model.

As part of the black-box glycolysis model, we simulate taking physical measurements on a

real system by adding normally distributed random noise to each state-variable in each time-

sample. The standard deviation of the random noise added to each state is relative to the
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standard deviation of the state-variable in the system’s stable limit cycle. This gives

variables with large magnitude oscillations higher noise than variables with smaller

magnitudes and makes the noise impact independent of measurement units. We used 10%

noise in most experiments, i.e., the ratio between the noise standard deviation and the

metabolite standard deviation is 0.1. This is consistent with reports of ~10% average

standard errors of the measured metabolic oscillation amplitudes (with the percentage errors

smaller on large-amplitude variables) [70] and added noise amplitudes of 10% used in other

metabolic system estimates [48]. We estimated the numerical derivative of the data using

Loess locally weighted polynomial fitting [71] with window size of 50 (also see Methods

and Figure S3 in Supporting Information).

In later experiments, we sweep the amount of noise from zero to 50% noise. The 10% noise

is the first level where identifying the exact system structure becomes nontrivial. After this

point, five of the seven states can be modeled exactly up to 30% noise, and four of the seven

at 50% noise. It is worth noting that many real biological systems may also contain different

types of noise, such as asymmetrical noise, and a modified equation search method could be

used in these cases, such as explicitly including symbolic noise sources in the ODE model

[72].

The glycolytic oscillation models

For our in silico demonstration of this process, we begin with a published numerical model

[73, 74] of glycolytic oscillation in yeast for the system upon which our algorithm

experiments. Tables 2 and 3 and other tables in the Supporting Information provide details

of the models shown in Figure 4. In this seven-variable model, the respiratory chain

(mitochondrial oxidative phosphorylation) is completely inhibited. The reaction network for

this system, shown in Figure 4A, contains the main reactions of glycolysis and adjacent

reactions producing ethanol and glycerol. We provide additional model details in the

Supporting Information. During the original model development, the complexity of the

model was reduced by omitting many of the glycolytic reactions, and by lumping together

other reactions, so that several of the model variables denote concentrations of pools of

intermediates rather than concentrations of the individual compounds, e.g., the pools of

triose phosphates (glyceraldehydes-3-phosphate, dihydroxyacetone phosphate) and pyruvate

and acetaldehyde. This simplification has been rigorously justified using a judiciously

applied quasi-steady-state approximation [75]. This particular model is capable of

reproducing glycolytic oscillations with a period in the range of 0.10 to 12 minutes and has

been used to study the temperature dependence and temperature compensation of yeast

glycolytic oscillations [74].

Reverse engineering glycolytic oscillation in yeast

We used the model of glycolytic oscillations in yeast shown in Figure 4A to simulate

experimenting on a wet system. Glycolytic oscillation is one of the most common examples

of oscillatory behavior at the cellular level and enables a broader understanding of the

underlying dynamic processes that lead to rhythmic behavior. Of such systems, anaerobic

glucose metabolism in yeast is one of the most commonly studied. In a particular region of

parameter space, all of the glycolytic intermediates show an oscillatory behavior with a
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variation in the frequency of oscillation observed across species. In the vicinity of the

attractor that is responsible for these oscillations, the system never reaches steady state and

hence this behavior cannot be readily analyzed by equilibrium or stoichiometric approaches

such as metabolic flux balance analysis [76]. We use this oscillatory system to demonstrate

the capability of our approach to infer the equations governing a nonlinear dynamical

metabolic system.

Our experiments placed the yeast glucose model (Figure 4A and Figure S1) in a numerical

black box and then allowed our algorithm to conduct in silico experiments on this black box.

For our studies, we collect data by numerically integrating the differential equations in the

black-box glycolysis model and adding noise. Initial states, i.e., the initial conditions, are

constrained to a specified range, and the initial states for the test data are sampled over a

larger volume in state-variable space to determine how well models can extrapolate and

predict new behavior.

Our goal is to find the exact differential equations of the unknown system algorithmically.

More specifically, we are interested in modeling metabolic networks as a dynamical system

– a set of ODEs. In a system of N state-variables that we observe experimentally (e.g.,

extracellular concentrations of glucose (S1) or NADH (N2) over time), we must identify N

(possibly nonlinear) differential equations. Synthesizing these mathematical models of a

dynamical system is the most computationally intensive task in our procedure. We first

smooth and then differentiate the observed time-series data to produce its derivatives. We

then search for the differential equations that reproduce each numerically estimated

derivative.

We calculate the numerical time derivative of each variable at each data point in order to

compare it with the value of the candidate differential equation explicitly. Accumulating

errors of the derivative values avoids the need to integrate each differential equation, which

can be computationally expensive [18].

Regression procedure for all methods

During regression for each compared algorithm – symbolic regression, nonlinear regression,

and neural network regression – we track accuracy on both the training and test data sets

over time. Only the training data set is used to update the models. By recording the accuracy

of the model of the test data set over time, we can analyze later how well the regression

procedure identifies models that generalize and extrapolate to data not in the training set

(e.g., Figure 6 below).

In nonlinear regression and neural network regression, the training set was constant, with

200 trajectories (random experiments on the black box). In contrast, the symbolic regression

algorithm’s training set begins with10 trajectories that were produced following 10 different,

random initial conditions, but subsequently adds new black-box trajectories from initial

conditions chosen by the algorithm throughout regression for a maximum of 200 total

experiments, with 100 measurements per experiment. Hence such a single black-box

experiment provides 100 measurements of each variable over the duration of each

experiment. As we discussed above, each black-box experiment is followed by
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approximately 50,000 EEA iterations conducted during 10 minutes of real time, an interval

that would be consistent with an automated wet-lab experiment [53]. For all algorithms, the

test data set was held constant. The test data set contained 100 random trajectories. We do

not perform early stopping on any of the methods; however, performance trends such as

overfitting can be gleaned from the fitness of the test data set using values from the training

data set (also see Methods and Figure S7 in Supporting Information).

Construction of an invariant expression

The search for a conserved quantity used a similar symbolic regression search as that which

produced the dynamical model, but instead of modeling a specific signal, such as a

numerical derivative, the search looked for an invariant expression.

Searching for invariant equations, however, is particularly challenging because an error

metric is difficult to define [77]. For example, in any data set there are infinitely many trivial

equations that satisfy a conserved quantity, such as x-x, or other more complicated identities

that simplify to, or nearly simplify to, a constant. Instead, the invariant search looked for

equations that accurately predict implicit derivatives estimated from the data [67, 77]. This

requirement identifies invariant expressions that can also derive nontrivial dynamical

relations in the data.

We searched for an invariant in the glycolysis system that used the variables S1, N2, A2, and

v1, i.e., glucose, NADH, ADP, and the rate of the S1 reaction (glucose to GAP), respectively,

as shown in Figure 4A. Invariant equations were rewarded for predicting the implicit

derivatives between each pair (such as dS1/dN2, dS1/dA3, etc.) and for using all four in the

expression (a requirement for our post-analysis). If an expression used less than four of these

variables it was removed from the search population. We selected the most parsimonious

invariant equation on the resulting search Pareto frontier (see for example, Figure S2 in the

Supporting Information).

Finally, we used nonlinear regression on the resulting invariant form to fine-tune the

parameter coefficients because the invariants have some freedom in their exact coefficient

values. In this step, we solve the invariant equation (e.g., f(S1,N2,A3,v1) = 0) for S1. We then

used Mathematica to tune parameters to predict the S1 signal. The resulting model is

predictive of both the implicit derivatives of the data set and the explicit S1 signal while still

remaining invariant.

Results

We used the proposed automated modeling procedure to analyze the seven-dimensional

model of glycolytic oscillations in yeast. We tested the ability of the algorithm to adapt and

correct a partially correct hypothesized model chosen by the experimenter to fit the exact

system, i.e., to augment expert modeling. We tested the regression of the entire system de

novo (without prior knowledge of the system structure) and compared predicted results with

those obtained from nonlinear parametric regression and fitting to neural networks. Finally,

we modified the procedure to identify an invariant quantity of the biochemical system that is

distinct from any conserved moieties that may exist in the model. The invariant also predicts
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kinetics of an observed variable of the system (in our case v1) which in turn allows for

computation of the numerical sensitivities to a high degree of accuracy.

Correcting hypothesized models

The first experiment is to adapt or improve upon an existing hypothesized model, given a

hypothesized differential equation. For example, the algorithm can modify a partially correct

model by altering its existing structure and terms, pruning unnecessary terms, or

synthesizing new terms to identify the exact intrinsic model. While methods for simplifying

models already exist [52], these techniques do not compose new terms in a model or correct

erroneous terms. Using automated data acquisition, the algorithm can also design

experiments to differentiate multiple hypothesized models and test their correctness where

they disagree most.

In order to use the algorithm to refine a given model, we first initialize its search population

by seeding the initial population with the chosen models. Effectively, this biases the

algorithm to reuse the structure of the given model, but does not restrict the algorithm from

making large alterations. We first test the impact of this seeding procedure to correctly

model the glycolysis S4 differential equation using the impaired and overspecified models.

(The hypothesized differential equations for S4 in this experiment are given in Table S5.)

There are two possible impacts that seeding a hypothesized model can have on symbolic

regression. In the best case, the seeded model may be very close and the algorithm only

needs to make minor adjustments to converge to the intrinsic model. Alternatively, the

seeded model may be absurd, in which case there is no benefit and the algorithm evolves de

novo. Figure 5B and D exemplifies these two symbolic regression behaviors for the S4

differential equation.

As shown in Figure 5B and D, in the overspecified case, the seeding has improved by a

factor of ten both the speed to regress and the reliability of the results in comparison to

regression without a prior model (shown below). In effect, the algorithm has corrected the

model by removing the sink term and fixing the differences in parameters. In the impaired

model case, the effect is much less dramatic. The algorithm must construct the two missing

terms. However, the seeding improves the reliability of convergence on average. There is

also the possibility that the initial seeding might trap the algorithm in a local error minimum

from which the present algorithm cannot escape. Similar problems have been encountered

and addressed in conventional nonlinear regression schemes by, for example, choosing

random data points at some distance from the regressed data to ensure that the solution is in

fact a global rather than local minimum. Similar approaches could be taken with our

method, although it is unclear whether this would provide any advantage to ab initio

regression.

Modeling without a prior model

When modeling without a prior model, we do not assume an initial hypothesis model. The

initial equations in the search are randomly initialized; therefore, the algorithm’s search for

each ODE equation starts at a random point. Table S4 provides an example of how the

Schmidt et al. Page 13

Phys Biol. Author manuscript; available in PMC 2014 July 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



equation for S2 evolves during regression. We conducted ten independent trials to collect

data and model each equation (Table 3) corresponding to Figure 4A. We show in Figure 6

the runs that reached the highest performance on the training data (blue). Additionally, at

each level of computation we measured performance of the same equations on the test data

(shown in red). Variables S3 (1,3-bisphosphoglycerate), S4 (cytosolic pyruvate and

acetaldehyde pool), N2, and S5 were the fastest equations to infer, and their performance

curves gradually converge monotonically during regression. Equations for S1, S2

(glyceraldehydes-3-phosphate and dihydroxyacetone phosphate pool) and A3, which have

the most nonlinear structure, show performance that is more rugged. Dips in the training

data performance indicate that data from a new black-box experiment revealed dynamics

that were not in the current data set (or perhaps underemphasized). Such dips tend to

precede large improvements in performance.

The equations with the best fits to the training data obtained from the model in Figure 4A

for the ten trials are shown in Table 3. The automatically inferred equations are nearly

identical to the black-box generating numerical model. Some slight differences remain: most

notably, the parameters are inexact, which results in a slight mass imbalance, and one

nonlinear term is approximated by a linear term in the S2 equation. Specifically in our ab

initio model inference, the S2 equation approximates the N2*S2 term and adds a constant

term (0.9467) to the ODE in Table 3. The N2*S2 term comes from the balance of v2 and v6,

where v2 is the conversion of S2 to S3, and v6 is the loss of S2 to glycerol production. Both

the v6 and v2 fluxes are NAD dependent, which gives rise to the N2*S2 term through a

simple application of mass action kinetics. The decoupled N2*S2 dependence is now

represented as a linear combination of (N2 + S2). For the N2 equation, the combined action

of v2 and v6 is properly inferred. However, there is (once again) a small constant term

(−0.0549) in the N2 ODE that compensates for the fact that the NAD pool is not being

strictly conserved.

Figure 7 shows integration of the inferred model compared to the exact model (Figure 4A),

with the differences in frequency being the results of the small mass imbalances that are

compensated for with the additional terms. Despite these small differences, Figure 7 shows

the same behavior as the original system. Since symbolic regression does not have any

inbuilt “chemical logic,” it is unable to recognize and constrain reaction rate expressions that

appear in multiple ODEs. The ramifications of this are twofold: first, the inferred model

incurs small mass imbalances within the system that manifest themselves as a carbon loss or

a source term in the energetic pools (ATP and NADH); second, the inferred model

compensates for the imbalances by adding compensatory terms.

Identification of the simplest equation, S5 (external pyruvate/acetaldehyde), without a priori

information required approximately one minute for ~3 × 106 evaluations for ab initio

modeling, and ~1 model/experiment/evolution cycle. In contrast, the time to regress the

most complex differential equations in the glycolysis model, A3 (ATP), was approximately

1-2 hours, and involved ~4 × 1011 point evaluations on four workstations (eight 2.4 GHz

cores), representing ~200 model/experiment evolution cycles and ~2 × 109 point

evaluations/cycle.
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Comparison to established methods

Searching the space of symbolic differential equations is unique in that it does not require

prior information about the system or a prior model. Hence it is difficult to compare this

model inference process with the process of historical development of an existing metabolic

model. To demonstrate the capabilities of this approach to specify a compact representation

of a model, as might be needed for prediction and control of metabolism in a bioreactor[53],

we have compared our approach with two relevant methods: nonlinear regression and neural

network regression.

Neural networks are recognized as being useful for predicting a time series when the

underlying mechanism is unknown or is too complex to be easily represented, or noisy data

limit the analysis [44]. Such numerical models are less amenable to human interpretation,

but can model and predict data similar to that used for training. In the neural network

regression, we use a 1024-neuron hidden layer network mapping the seven state-variables to

their seven respective time derivatives. The output layer consists of linear perceptrons. We

use standard back-propagation to train the network and bias-node weights.

In nonlinear regression, a preexisting mathematical model is chosen to be fitted to the data.

The selected preexisting model is assumed to closely relate to the actual, underlying model

of the system but may have a slightly different structure – it may be missing key terms, or

have unnecessary terms, or incorrect terms. Regressing data to the wrong model may

provide a low-error fit, but with parameter values that are in fact quite different from the

actual ones because of the adjustments required to fit the wrong model to the data. We fit the

nonlinear regression models via gradient-descent, with initial parameters given by their

theoretical values (see Table S3 of the Supporting Information).

For the nonlinear parametric regression comparison, we chose two slightly different

preexisting glycolysis models, also shown in Figure 4B and C – one that is a simplification

of the exact model (the “impaired” model) and one that is more complex in that it replaces

some dynamics with an additional sink term (the “overspecified” model). The impaired

model is produced by eliminating the glycerol (v6) and ethanol (v4) production and having

the NADH→NAD recycle occur with the production of lactate from pyruvate. This

essentially converts the yeast model into that of a mammalian cell. The overspecified model

is produced by relaxing the assumption of no carbon loss to other cellular synthetic

processes in the yeast model (fatty acid biosynthesis, amino acid production, etc.). This is

accomplished by adding a carbon sink term (vsink) to the pyruvate pool, whose rate is

primarily controlled by the presence of ATP.

On average, all three algorithms model the training data equally well, but some do not

generalize well when the regression results are applied to the broader test data set that was

not used for training (Figure 5C). It is clear that nonlinear regression of both related models

can explain a substantial amount of the S4 dynamics, particularly within the training data.

However, extrapolation to the wider domain of the test data only reaches correlation of

approximately one half. Similarly, the neural network accurately models the training data,

but as shown by the early dip in correlation, it significantly overfits before converging,
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possibly due to the added noise. Additional details are provided in the Supporting

Information.

Invariant-derived model results

Finally, we tested the ability to find an invariant quantity directly from the data. We

modified our procedure by changing the fitness metric from the error in predicting the rate

of change of each variable to the error in estimating implicit derivatives between pairs of

variables in the system [67]. We chose the equation with the lowest magnitude (most

invariant) in the resulting models as closest to a true invariant of the system.

This analysis was carried out for three different temperatures of 280 K, 284 K, and 293 K, as

is it known that the period of yeast glycolytic oscillations increases with temperature. An

invariant with the same form was extracted for all three temperatures, and contained three

coefficients. This invariant had the form ITemp = A3S1 − (v1 (A3
4 (k1 – k2N2) + k3)) where k1,

k2, and k3 are coefficients of the terms in the invariant that vary with temperature. These

coefficients are listed to the right of each panel in Figure 8 for all three temperatures, and the

time-courses of the corresponding invariants are shown in Figure 8A, Figure 8B, and Figure

8C, respectively. It can be seen that the invariants, computed by solving the equation

f(S1,N2,A3,v1) = 0 for S1, have small magnitudes relative to the oscillations of the variables

themselves in Figure 7.

As a demonstration of the utility of the invariant, the variable v1 can be obtained by solving

the invariant expression for v1, which has been plotted versus time in Figure 9a, 9c, and 9e,

respectively, along with the corresponding v1 from the analytical model. The error between

the invariant-derived and analytical model v1 is shown in Figure 9b, 9d, and 9f, respectively

(see also Figure S8 in the Supporting Information). Numerical sensitivities can be obtained

from the invariant expression by differentiating with respect to the species of interest. We

computed sensitivities of v1 with respect to A3 and N2 using the invariants for the three

temperatures, which have been plotted in Figure 10 along with the corresponding difference

with respect to the actual model-derived sensitivities (see also Figure S9 and Figure S10 in

the Supporting Information).

This result shows that searching for invariants directly can closely model the kinetics of the

observed variable and its associated numerical sensitivities without access to any additional

internal model structure. It could also be useful to use an existing dynamical system from

which to then identify an invariant expression to derive the kinetics and sensitivities,

yielding a compact representation of the model’s dynamics.

Modeling limitations

Modeling any dynamical system requires some baseline assumptions, such as the set of state

variables with which to model the system [78]. This is a form of implicit prior knowledge,

whereas we ordinarily refer to prior knowledge as higher level assumptions, such as known

model relationships or structures. We therefore implicitly assume that the system’s key

dynamics can be accurately derived and represented by the choice of variables.
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While our present implementation does not require chemical mass balance other than what is

provided by the ODEs, mass-balance logic could be built into future implementations, albeit

with some performance costs. For example, one could assume the current best model and

use it to test for constraint violations. Models and experiments could then be penalized or

rejected accordingly, focusing the search on the valid equations as shown in [48].

Alternatively, it may be possible to enforce chemical logic [79, 80] by providing the SRA

algorithm with an appropriate chemical operator set rather than just the four algebraic

operations we allowed.

A potential difficulty when modeling the dynamics of biological systems arises when only a

few relevant states in the system can be observed directly. In such cases, these variables

must be estimated or inferred in parallel. For example, missing state-variables could be

represented by one or more parameters that vary with time (e.g., a Taylor series). Missing

states can also be estimated, or sometimes exactly derived, by the available observables – as

is done in inferential sensing [81]. Finally, missing states could be encoded directly into the

model as latent variables. In this case, an initial condition and a corresponding equation

could be included for each latent variable in the model search, and this variable would then

be simulated using the observable data to produce the missing time series. If the missing

states are ignored completely, the inferred dynamical models will necessarily be higher-level

approximations of the system’s dynamics. These are important areas of future research; in

this paper, however, we focus on the case where we can observe, or have already accurately

estimated, the relevant states.

Finally, searching for a dynamical model from scratch can be computationally intensive. A

previous study [36] showed that the performance is dominated by the size of the target

expression rather than the dimensionality of the problem. Therefore, systems with an

increasing number of state-variables take linearly more computation effort (an additional

search for each additional state-variable). However, modeling systems with extremely dense

and complex equations (e.g., equations that are difficult to write or even read manually)

could require substantially more computational effort with the depth of the expression.

Finally, in cases where the algorithm could not deduce exact equations in detail, it can still

provide an approximate high-level model of the major dynamics., i.e., an effective or

surrogate model that could be used for controlling the system [53].

Discussion

Our experiments tested the proposed method to modify a related or hypothesized

mathematical model – suggesting nonlinear terms or modifications – to make it agree with

data, or to propose complete dynamical models without a prior model. The modeling process

searches the space of symbolic differential equations using symbolic regression and fitness

prediction for building mathematical equations and an estimation-exploration algorithm for

designing new in silico or even wet-lab experiments to test and refine candidate models.

While this method is general enough to be applied to many types of modeling problems, we

focus on metabolic networks because they are known to be difficult to model with

conventional methods due to their dimensionality, feedback loops, and rich dynamics, yet

should be well suited for automated wet-lab experimentation.
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Our in silico experiments showed that seeding symbolic regression with a hypothesized

model or closely related model can significantly improve the ability and speed to find the

exact model for the unknown metabolic network. In contrast to other techniques for model

reduction, this approach can also expand a nonlinear model to include features not present in

the hypothesized or baseline model. Similarly, the approach can be used to identify a set of

initial conditions that could be used to discriminate between two models, i.e., design

experiments that can test hypotheses and correct subtle differences using experimental data

to identify how a particular metabolic system differs from one described by an established

model.

We also demonstrated that our approach could identify the complete set of differential

equations without a prior model. All equations were identified reliably with up to 10%

observation noise, and five of the seven were identified reliably with up to 50% noise. It is

worth noting that this system also represents one of the largest and most realistic

experiments where the set of ODEs was identified automatically from data. While the

understanding of nonlinear interactions of glycolytic oscillations in yeast has required

several years of analysis [73, 74], our results indicate that the proposed method could help

accelerate this task.

We also compared the ability of our symbolic regression based-approach to predict future

trajectories of the system with the nonlinear regression of two approximate glycolysis

models, neural network regression, and the proposed method. While each algorithm

modeled the training data well, the proposed method found models that extrapolated

accurately to the test data set better than the ordinary regression and neural network

methods. This suggests that the method could also be beneficial for numerical simulations in

addition to analytical analysis.

Finally, we showed that the symbolic regression approach can be applied to find an invariant

expression for the metabolic network. The invariant of the biochemical network identified

by the algorithm can be considered to be a closed object embedded in the multidimensional

phase space of the model variables. The projection of this surface onto the subspace of the

observed variables accurately derived its kinetics and respective sensitivity coefficients. We

have yet to identify formally the relationship between the invariants that we derive and

invariant manifolds [56, 59-66]. Similarly, we have not yet determined whether the

modeling process for the entire system could be accelerated by first searching for a single

invariant equation.

We are currently developing the substantial experimental hardware and algorithms required

to allow the EEA to conduct wet-lab experiments on yeast and other biochemical systems

[53, 82]. A fascinating possibility would be to add near-real-time measurements of the

transcriptome into robot metabolic scientists by measuring the expression of selected genes

through optical detection of green fluorescent protein (GFP) markers. This would be

particularly important when studying systems that demonstrate rapid coupling between

metabolic dynamics and gene expression [83, 84]. Expansion of the robot scientists’

techniques to large numbers of genes would require, for example, chemostats capable of

providing a steady supply of cells for mRNA analysis, and an mRNA identification
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technique that was both rapid and required only small numbers of cells. A major challenge

will be to infer long-term metabolic network dynamics, where metabolic changes are driven

by complex gene regulatory networks and the transcriptional factors that they control, some

of which are themselves metabolites, and neither the active network topology nor the

network parameters are fixed [85]. At issue would be whether in a wet-lab environment the

algorithm can infer a model faster than the system itself evolves, i.e., whether the biological

system can be treated as quasistatic during model inference.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Concept and flow chart for automated model inference
A: Noisy time-series data reflecting anaerobic metabolism concentrations over time

(presented with a higher-than-required sampling rate). B: The noisy time-series data are

automatically translated into a set of coupled analytical differential equations without prior

knowledge of the system structure.
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Figure 2. Workflow detailing the steps involved in our approach
A: The method starts with a set of randomly chosen experimental data. Next, fitness

predictors are optimized to approximate the complete data set (B). The graph encoding is

initiated with random equations, and candidate models are then coevolved to optimize to the

fitness predictors. The new candidate models are then used to design new experiments (C)

which maximize disagreement among model predictions to refine their structure, and the

cycle is repeated.
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Figure 3. Two analytical model representations for NADH in the cell glycolysis model
A: Tree encoding, and B: graph encoding of the same equation (below). While the tree

encoding is simpler to manipulate algorithmically (e.g., alter subexpressions), it requires

redundant subtrees and is prone to produce large equations that may not accurately represent

the biological system. The graph encoding couples subtrees, thereby biasing equations to

preserve simpler shared expressions.
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Figure 4. Reaction networks for anaerobic metabolism in a yeast cell
A: The exact model includes membrane transport of glucose and pyruvate/acetaldehyde.

Reactions in red involve ATP production/usage, and reactions in blue involve redox species

production/usage. B: The impaired model does not produce either glycerol or ethanol. C:

The overspecified model has an additional sink for pyruvate/acetaldehyde (S4).
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Figure 5. Performance comparison between symbolic, nonlinear, and neural network regression
Left: Nonlinear parametric regression to the impaired and overspecified models, and neural

network regression, as compared to symbolic regression without a prior model. Training

data performance (A) shows that all algorithms accurately explain the training data. The test

data performance (C) of the same equations plotted for the training data shows that not all

methods extrapolate well to the larger test set. Note that symbolic regression uses more point

evaluations in the same amount of running time because it is a parallel search, whereas

nonlinear regression and neural network back-propagation use serial updates. Right:

Performance comparison of symbolic regression when correcting a hypothesized model. B:

The blue curves represent the performance of the algorithm to the S4 equation without any

prior model. For the other two pairs of curves, the symbolic regression algorithm was seeded

with an incorrect hypothesized model (black = impaired, red = overspecified) and the

algorithm had to modify the seeded model to fit the original training data, i.e., to return to

the model that was inferred during the progress of the blue curve. The figure shows the

performance for the training data (B) and the test data (D) on the same equations. For both

A) and B) results are averaged over 100 trials – error bars represent the standard error.
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Figure 6. The fit to the data of the highest ranked equation during regression for each glycolysis
variable
The blue series show the correlation coefficient to the training data, and the red to the test

data. The training data contain 10% noise while the test data have none. The test data

contain a larger range of allowed state-variables (i.e., sampled with weaker constraints to

explore a variable phase space that is 27 times larger than for the training set) to determine

whether the model identified from the training data can extrapolate and predict new

behavior. The variables are identified in Figure 4 and Table 2.

Schmidt et al. Page 29

Phys Biol. Author manuscript; available in PMC 2014 July 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 7. Integration over time of the exact black-box and inferred models
The inferred model shown in Table 3 differs from the exact model by a slight mass

imbalance. Integrated over 10 minutes, the inferred model captures the same behavior.

While small differences in derivative values tend to accumulate during integration, the

inferred model captures the integrated behavior remarkably well. The inferred model

predicts early behavior accurately and exhibits the same qualitative dynamics later in time,

differing only slightly in the phase.
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Figure 8. Description of the invariant expression obtained by means of symbolic regression at
three temperatures
All invariants are equations of the form at the top of the figure. To the right are shown the

coefficients of the invariant that was constructed for each temperature using data from the

published model. The graphs show the invariant plotted as a function of time for the three

temperatures. Note that the invariant oscillates with a period whose length equals that of the

model, and has very small magnitude (10−6 to 10−8 as shown on the left-side scale) relative

to the scale of the oscillations of the system variables (Fig. 7). Numerical experiments have

shown that the invariant is sensitive to the number of significant digits included, implying

that accuracy can be improved by allowing the symbolic regression algorithm to run for a

longer time, leading to an invariant with smaller magnitudes that are even closer to zero.
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Figure 9. A comparison of the glucose reaction rate obtained from the invariant and the
analytical model
v1 is plotted versus time and compared with the v1 obtained from the analytical model for

each of the temperatures considered (panels A, C, and E). Panels B, D, and F show the

difference between v1 derived from the invariant and the v derived from the model. Note that

the amplitude of the difference is 10−5 1 to 10−6 smaller than that of either v1.
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Figure 10. The invariant-determined sensitivity of v1 with respect to A3 and N2
The invariant was used to compute the sensitivity of v1 with respect to A3 (equation at the

top of the left column) and N2 (equation at the top of right column) for 280 K (panels A and

B); for 284 K (C and D); and for 293 K (E and F).

Schmidt et al. Page 33

Phys Biol. Author manuscript; available in PMC 2014 July 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Schmidt et al. Page 34

Table 1

Properties of various modeling approaches used to study metabolic systems

Name of Modeling Approach Linear or
Nonlinear

Static or
Dynamic

Localized or
Comprehensive

Genome-scale modeling using generalized mass action
kinetics [38] Linear Dynamic

ComprehensiveFlux Balance Analysis (FBA) Linear Static

Metabolic Control Analysis (MCA) Linear Static

Dynamic Flux Balance Analysis (dFBA) [40,41] Linear Static
Between

Localized and
Comprehensive

Dynamic Metabolic Control Analysis (dMCA) [42-44] Linear Static

Cybernetic Modeling [47] Nonlinear Dynamic

Biochemical Systems Theory (S-Systems Approach)
[45,46] Nonlinear Dynamic Localized
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Table 2

Model variables, the allowed range of initial states for the training data set, and the standard deviation of the

limit cycle used to compute the amount of added noise.

Variable Name Range Standard
deviation

S1 Glucose [0.15, 1.60] 0.4872

S2
Glyceraldehydes-3-phosphate and
dihydroxyacetone phosphate pool [0.19, 2.16] 0.6263

S3 1,3-bisphosphoglycerate [0.04, 0.20] 0.0503

S4
Cytosolic pyruvate and

acetaldehyde pool [0.10, 0.35] 0.0814

N2 NADH [0.08, 0.30] 0.0379

A3 ATP [0.14, 2.67] 0.7478

S5
Extracellular pyruvate and

acetaldehyde pool [0.05, 0.10] 0.0159
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Table 3

The differential equations describing glycolytic oscillation of the generating model (left pane) and the inferred

model from the training data, which had 10% noise (right pane).

Original system Automatically inferred system

dS1
dt

= 2.5 −
100∗A3S1

1 + 13.68∗A3
4

dS1
dt

= 2.53 −
98.79 ⋅ A3S1

1 + 12.66 ⋅ A3
4

dS2
dt

=
200∗A3S1

1 + 13.68∗A3
4

− 6∗S2 − 6∗S2N2

dS2
dt

=
200.23 ⋅ A3S1

1 + 13.80 ⋅ A3
4

− 6.87 ⋅ S2 − 6.87 ⋅ N2 + 0.95

dS3
dt

= 6∗S2 − 6∗N2S2 − 64∗S3 + 16∗A3S3

dS3
dt

= 6.00 ⋅ S2 − 6.00 ⋅ N2S2 − 64.16 ⋅ S3 + 16.08 ⋅ A3S3

dS4
dt

= 64∗S3 − 16∗A3S3 − 13∗S4 − 100∗N2S4 + 13∗S5

dS4
dt

= 64.04 ⋅ S3 − 16.03 ⋅ A3S3 − 13.03 ⋅ S4 − 100.11 ⋅ N2S4 + 13.21 ⋅ S5

dN2
dt

= 6∗S2 − 18∗N2S2 − 100∗N2S4

dN2
dt

= − 0.055 + 5.99 ⋅ S2 − 17.94 ⋅ N2S2 − 98.82 ⋅ N2S4

dA3
dt

= − 1.28∗A3 −
200∗A3S1

1 + 13.68∗A3
4

+ 128∗S3 + 32∗A3S3

dA3
dt

= − 1.12 ⋅ A3 −
192.24 ⋅ A3S1

1 + 12.50 ⋅ A3
4

+ 124.92 ⋅ S3 + 31.69 ⋅ A3S3

dS5
dt

= 1.3∗S4 − 3.1∗S5

dS5
dt

= 1.23 ⋅ S4 − 2.91 ⋅ S5
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